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1 Introduction
The EMBEDDIA project aims to improve the cross-lingual transfer of language resources and trained
models using word embeddings and cross-lingual word embeddings. The objectives of work package
WP1 of the EMBEDDIA project are to advance cross-lingual and context-dependent word embeddings
and test them with deep neural networks. This WP forms a technological basis for other WPs in the
project, in particular WP3, WP4, and WP5 that work on concrete news media problems. To demonstrate
advancements, EMBEDDIA covers English and eight less-resourced languages: Croatian, Estonian,
Finnish, Latvian, Lithuanian, Russian, Slovene, and Swedish. The specific objectives of WP1 are as
follows:

1. advance cross-lingual and multilingual word embeddings technology in T1.1,

2. advance context-dependent and dynamic embeddings technology in T1.2,

3. advance deep learning technology for morphologically rich, less-resourced languages in T1.3,

4. improve the interpretability of models and visualisation of results in T1.4,

5. collect and prepare datasets and benchmarks required to evaluate the developed technologies in
T1.5.

This report titled Final evaluation report on cross-lingual embedding technology describes the results of the
work performed in T1.5 from M10 to M30. It is the final deliverable of this task and of the whole WP1.
The initial work within T1.1 from M1 to M9 was reported and accepted as Deliverable D1.1 in M9. That
work covered the initial collection of datasets, benchmarks and evaluation metrics for word embeddings
and cross-lingual embeddings, while in this report, we
i) describe further datasets and benchmarks not covered in the initial report, and
ii) report on the evaluation of the most successful embedding approaches developed within WP1 using
collected datasets and benchmarks.

The main contributions presented in this report (in the order of appearance) are as follows.

1. Translation and adaptation of the SuperGLUE (Super General Language Understanding Evalua-
tion) benchmark to Slovene (less-resourced language), presented in Section 3.2.5. This achieve-
ment allows cross-lingual evaluation of models on several important natural language understand-
ing (NLU) tasks: question answering (QA), coreference resolution and natural language inference
(NLI).

2. Evaluation of monolingual embedding approaches produced in WP1, presented in Section 4.1.

3. Evaluation of cross-lingual embedding approaches produced in WP1, presented in Section 4.2.

Besides these contributions, the work in T1.5 has contributed to the achievements reported in all other
tasks of WP1. The presented evaluations will guide further research in workpackages WP3, WP4,
and WP5. Furthermore, the produced resources are integrated into EMBEDDIA Media Assistant and
ClowdFlows platform as contributions to WP6.

The structure of the report is as follows. In Section 2, we describe the used monolingual and cross-
lingual approaches. We split them into four parts: baseline non-contextual fastText embeddings, con-
textual ELMo embeddings, cross-lingual maps for these two, and BERT-based monolingual and cross-
lingual models. In Section 3, we present evaluation scenarios, divided into settings and benchmarks.
Section 4 contains the results of the evaluations. We first cover the monolingual approaches, followed
by the cross-lingual ones. The conclusions are presented in Section 5, and the outputs associated with
this report are collected in Section 6.

5 of 38



ICT-29-2018 D1.10: Final embeddings evaluation

2 Cross-lingual and contextual embedding
In this section, we shortly describe the used monolingual and cross-lingual approaches. Detailed de-
scriptions of various methods are contained in previous Deliverables D1.2, D1.3, D1.6, and D1.7. In
Section 2.1, we first present the non-contextual fastText baseline, and in Section 2.2, the contextual
ELMo embeddings. Mapping methods for the embedding spaces produced by these two types of ap-
proaches are discussed in Section 2.3. We describe large pretrained language models based on the
transformer neural network architecture in Section 2.4.

2.1 Baseline fastText embeddings

As deep neural networks became the predominant learning method for text analytics, it was natural that
they also gradually became the method of choice for text embeddings. A procedure common to these
embeddings is to train a neural network on one or more semantic text classification tasks and then take
the weights of the trained neural network as a representation for each text unit (word, n-gram, sentence,
or document). The labels required for training such a classifier come from huge corpora of available
texts. Typically, they reflect word co-occurrence, like predicting the next or previous word in a sequence
or filling in missing words but may be extended with other related tasks, such as sentence entailment.
The positive instances for the training are obtained from texts in the used corpora, while the negative
instances are mainly obtained with negative sampling (sampling from instances that are highly unlikely
related).

Mikolov et al. (2013) introduced the word2vec method and trained it on a huge Google News data
set (about 100 billion words). The pretrained 300-dimensional vectors for 3 million English words and
phrases are publicly available1. Word2vec consists of two related methods, continuous bag of words
(CBOW) and skip-gram. Both methods construct a neural network to classify co-occurring words by
taking as an input a word and its d preceding and succeeding words, e.g., ± 5 words.

Bojanowski et al. (2017) developed the fastText method, built upon the word2vec method but introduced
subword information, which is more appropriate for morphologically rich languages such as the ones
processed in EMBEDDIA. They took the skip-gram method from word2vec and edited the scoring func-
tion used to calculate the probabilities. In the word2vec method, this scoring function is equal to a dot
product between two word vectors. For words wt and wc and their respective vectors ut and uc , the
scoring function s is equal to s(wt ,wc) = u>t uc . The scoring function in fastText is a sum of dot products
for each subword (i.e. character n-gram) that appears in the word wt :

s(wt ,wc) =
∑
g∈Gt

z>g uc,

where zg is a vector representation of an n-gram (subword) g and Gt is a set of all n-grams (subwords)
appearing in wt . As fastText is conceptually very similar to word2vec, we do not treat them as different
methods but only test fastText as the baseline.

2.2 ELMo embeddings

ELMo (Embeddings from Language Models) embedding (Peters et al., 2018) is an example of a pre-
trained transfer learning model. The first layer is a CNN (Convolutional Neural Network) layer, which
operates on a character level. This layer is context-independent, so each word always gets the same
embedding, regardless of its context. It is followed by two biLM (bidirectional language model) layers. A
biLM layer consists of two concatenated LSTMs (Hochreiter & Schmidhuber, 1997). In the first LSTM,
we try to predict the following word, based on the given past words, where each word is represented by
the embeddings from the CNN layer. In the second LSTM, we try to predict the preceding word based

1https://code.google.com/archive/p/word2vec/
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on the given following words. The second LSTM layer is equivalent to the first LSTM, just reading the
text in reverse.

The actual embeddings are constructed from the internal states of a bidirectional LSTM neural net-
work. Higher-level layers capture context-dependent aspects, while lower-level layers capture aspects
of syntax (Peters et al., 2018). To train the ELMo network, one inputs one sentence at a time. The
representation of each word depends on the whole sentence, i.e. it reflects the contextual features of
the input text and thereby polysemy of words. For an explicit word representation, one can use only the
top layer. Still, more frequently, one combines all layers into a vector. The representation of a word or a
token tk at position k is composed of

Rk = {xLM
k ,
−→
h

LM

k,j ,
←−
h

LM

k,j | j = 1, ... , L} (1)

where L is the number of layers (ELMo uses L = 2), index j refers to the level of bidirectional LSTM
network, x is the initial token representation (either word or character embedding), and hLM denotes
hidden layers of forward or backward language model.

In NLP tasks, any set of these embeddings may be used; however, a weighted average is usually used.
The weights of the average are learned during the training of the model for the specific task. Additionally,
an entire ELMo model can be fine-tuned on a specific end task.

At the time of its introduction, ELMo has been shown to outperform previous pretrained word embed-
dings like word2vec and GloVe on many NLP tasks, e.g., question answering, named entity extraction,
sentiment analysis, textual entailment, semantic role labelling, and coreference resolution (Peters et al.,
2018). Later, BERT models turned out to be even more successful on these tasks. However, as our
work shows, concerning the quality of extracted vectors, ELMo is often advantageous (Škvorc et al.,
2020). The information it contains is condensed into only three layers, while multilingual BERT uses
14 layers. We reported on our novel cross-lingual mappings suitable for ELMo precomputed contextual
models (Ulčar & Robnik-Šikonja, 2020) in Deliverable D1.6. The actual implementations of ELMo mod-
els result from our work in T1.2 (Ulčar & Robnik-Šikonja, 2020a), where we developed several ELMo
contextual embeddings approaches for the languages covered in the EMBEDDIA project.

We compare EMBEDDIA ELMo models with models produced in the ELMoForManyLangs (Che et al.,
2018) project. These models were trained on significantly smaller datasets of 20 million words randomly
sampled from the raw text released by the CONLL 2017 shared task (wikidump + common crawl) (Ginter
et al., 2017).

2.3 Cross-lingual maps for fastText and ELMo

Cross-lingual alignment methods take precomputed word embeddings for each language and align
them with the optional use of bilingual dictionaries. The goal of alignments is that the embeddings for
words with the same meaning shall be as close as possible in the final vector space. A comprehensive
summary of existing approaches can be found in (Artetxe et al., 2018). In addition, we reported on the
existing and newly proposed mapping techniques in Deliverable D1.6.

Context-dependent embedding models calculate a word embedding for each word’s occurrence; thus,
a word gets a different vector for each context. Mapping such vector spaces from different languages
is not straightforward. Schuster et al. (2019) observed that vectors representing different occurrences
of each word form clusters. They averaged the vectors for each word occurrence so that each word
was represented with only one vector, a so-called anchor. They applied the same procedure to both
languages and aligned the anchors using the supervised or unsupervised method of MUSE (Conneau
et al., 2018). This method, however, comes with a loss of information. Many words have multiple
meanings, which can not be averaged. For example, the word »mouse« can mean a small rodent or
a computer input device. Context-dependent models correctly assign significantly different vectors to
these two meanings since they appear in different contexts. Further, a word in one language can be
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represented with several different words (one for each meaning) in another language or vice versa. By
averaging the contextual embedding vectors, we lose these distinctions in meaning.

To align contextual ELMo embeddings, we developed two methods that take different contexts and word
meanings into account (reported in Deliverable D1.6). Both methods require a different type of con-
textual mapping datasets, described in Section 2.3.1. The datasets map not only words but also their
contexts. The first contextual mapping approach requires these datasets but uses the same isomorphic
embedding mapping methods as commonly used for fastText embeddings (described in Section 2.3.2)
for alignment of contextual embeddings. The second cross-lingual contextual mapping approach, de-
scribed in Section 2.3.3, uses the same contextual datasets but drops the assumption that the aligned
spaces are isomorphic.

2.3.1 Cross-lingual contextual dataset

The main obstacle to form a cross-lingual mapping between contextual embeddings is that a word in
one language is represented with several different words (one for each meaning) in another language.
We proposed two novel methods for the alignment of contextual embeddings based on the idea of
matching contexts in different languages (see Section 2.3.2 and Section 2.3.3). For that, we require
two resources: a sentence aligned parallel corpus of the two covered languages and their bilingual
dictionary. The dictionary alone is not sufficient, as the words are not given in the context; therefore, it
cannot help for alignment of contextual embeddings. The parallel corpus alone is also not sufficient as
the alignment is on the level of paragraphs or sentences and not on the level of words. By combining
both resources, we take a translation pair from the dictionary and find sentences in the parallel corpus,
with one word from the pair present in the sentence of the first language and the second word from
the translation pair present in the second language sentence. As a result, we get matching words in
matching contexts (sentences).

We used the OpenSubtitles parallel corpus2 (Lison & Tiedemann, 2016) from the Opus web page3 for
each pair of languages that we evaluated. The dictionaries we used are bilingual dictionaries extracted
from wiktionary, using wikt2dict4 tool (Acs, 2014). We extracted dictionaries for each EMBEDDIA lan-
guage paired with English and the following language pairs of similar languages: Croatian-Slovenian,
Estonian-Finnish, and Latvian-Lithuanian. For the language pairs not involving English, we created two
different dictionaries, a direct bilingual dictionary and a dictionary created with triangulation via English.
Dictionaries created with triangulation have more entries but are of worse quality than direct dictionaries.
After the extraction, we manually cleaned the dictionaries using filters, such as removing accent marks
on vowels from languages that do not use them (e.g., Slovenian) and removing extra non-alphabetical
characters, like brackets, colon, and hash. We limited the dictionaries to entries with single-word terms
in both languages.

2.3.2 Isomorphic maps

The first method we developed for the computation of cross-lingual mappings between contextual em-
beddings is based on the assumption that the aligned spaces are isomorphic. With a large enough
collection of words in matching contexts, we compute their contextual embedding vectors and align
them with any non-contextual mapping method. We use either the vecmap library (Artetxe et al., 2018),
which showed the best performance in our experiments, reported in Deliverable D1.2, or the MUSE
library (Conneau et al., 2018), which only aligns target vectors and is therefore computationally more
efficient. To test this approach, we work with ELMo contextual embeddings due to their advantage over
BERT concerning extracted vectors.

2https://www.opensubtitles.org/.
3http://opus.nlpl.eu
4https://github.com/juditacs/wikt2dict
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In our isomorphic method for alignment of ELMo contextual embeddings, we approached the creation
of the contextual mapping dataset in two ways, one for contextual ELMo layers and the second for the
non-contextual ELMo layer. The first of the three ELMo layers is non-contextual. We calculated the non-
contextual part (i.e. the first layer) of ELMo embeddings for each pair of words in the bilingual dictionary.
We used that as our list of non-contextual anchors.

For contextual ELMo layers, we lemmatised the parallel corpora using the Stanza tool (Qi et al., 2020).
We then processed each corpus context by context. For each context, we calculated the embeddings
of the non-lemmatised corpus. We then checked for each word of the lemmatised context if its pair
from the bilingual dictionary appears in the same lemmatised context of the other language. When
such a match was found, the two words’ IDs and their contextual part of ELMo embeddings (i.e. the
second and third layer) were added to the list of contextual anchors. The reason for the lemmatisation
is that the bilingual dictionaries predominantly contain lemmas of the words. Note that we still use
the non-lemmatised corpus in the computation of embeddings to get the correct contexts. In creating
the contextual mapping dataset, we considered at most 20 different contexts of each lemma, not to
overwhelm the dataset with frequent words (such as stop words).

We split the created datasets of anchor lists into the training and testing part. The training part takes
98.5% of the whole dataset for each language pair, and the testing part takes 1.5%. These datasets (one
for each layer) were used to map one vector space to another, allowing us to map one word with multiple
meanings in one language to multiple words in another language.

We used the computed bilingually aligned contextual embedding pairs as an input to methods that align
two monolingual embeddings. To get the cross-lingual alignment, we used the vecmap supervised
method (Artetxe et al., 2018) or the MUSE supervised method (Conneau et al., 2018).

2.3.3 Non-isomorphic maps

As several researchers have observed, the monolingual embedding spaces of two different languages
are not completely isomorphic, which is especially true for distant languages (Ormazabal et al., 2019).
This causes error in methods that assume isomorphism of embedding spaces, including the commonly
used vecmap and MUSE methods.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a type of neural networks con-
sisting of two connected neural models, a generator and a discriminator. The two models are trained
simultaneously via an adversarial process. The discriminator attempts to discern whether the data
passed to its input is real or fake (i.e. artificially generated). At the same time, the generator attempts
to generate artificial data, which can fool the discriminator. GANs play a zero-sum game, where the
success of the discriminator means a failure of the generator and vice versa. By simultaneously training
both networks, they both improve. GANs are primarily used on images, where the described process
can lead to compelling new generated images.

Following the success of GANs in neural machine translation (Yang et al., 2018) and unsupervised
cross-lingual alignment (Conneau et al., 2018; Fu et al., 2020), we proposed a novel supervised non-
linear mapping method using bidirectional GANs. We based our contextual alignment method, called
ELMo-GAN, on the model of Fu et al. (2020). Contrary to Fu et al. (2020), who only used their method
with non-contextual fastText embeddings (Bojanowski et al., 2017) to align sentences, we align contex-
tual ELMo embeddings (Peters et al., 2018), which is only possible by constructing special contextual
mapping datasets, described in Deliverable D1.6.

The GAN mapping comprises the generator module and the discriminator module. The generator mod-
ule contains two generators that map vectors from one vector space to the other. Specifically, for a pair
of languages L1 and L2, one generator will map from L1 to L2, and the second will map from L2 to L1.
The discriminator module contains two discriminators. The first discriminator tries to predict whether a
given pair of vectors represent the same token, i.e. if the first vector represents the word x in L1 and the
second vector represents the translation of the word x in L2. The second discriminator attempts to learn
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the difference between the direction of mapping. For a given pair of vectors, it predicts whether they are
a vector from L1 and its mapping to L2 or a vector from L2 and its mapping to L1.

We produced two different versions of the ELMoGAN based on the number of iterations in the model’s
training. The first version (ELMoGAN-10k) was trained for a fixed number of 10 000 iterations for each
layer of each language pair. The second version (ELMoGAN-O) was trained for the number of iterations
that gave the best result in the dictionary induction task, using the evaluation dictionary. This choice
was determined in our preliminary tests on unrelated NER tasks and might not be optimal for other
tasks.

2.4 BERT embeddings

BERT (Bidirectional Encoder Representations from Transformers) embedding (Devlin et al., 2019) gen-
eralises the idea of language models (LM) to masked language models (MLM). The MLM randomly
masks some of the tokens from the input, and the task of LM is to predict the missing token based on
its neighbourhood. BERT uses the transformer architecture of neural networks (Vaswani et al., 2017) in
a bidirectional sense and further introduces the task of predicting whether two sentences appear in a
sequence. The input representation of BERT are sequences of tokens representing subword units. The
input to the BERT encoder is constructed by summing the embeddings of corresponding tokens, seg-
ments, and positions. Some widespread words are kept as single tokens; others are split into subwords
(e.g., frequent stems, prefixes, suffixes—if needed, down to single letter tokens).

To use BERT in classification tasks only requires adding connections between its last hidden layer
and new neurons corresponding to the number of classes in the intended task. Then, the fine-tuning
process is applied to the whole network; all the parameters of BERT and new class-specific weights are
fine-tuned jointly to maximise the log-probability of the correct labels.

BERT has shown excellent performance on 11 NLP tasks: 8 from GLUE language understanding bench-
mark (Wang et al., 2018), question answering, named entity recognition, and common-sense inference
(Devlin et al., 2019). The performance on monolingual tasks has often improved upon ELMo. However,
while multilingual BERT covers 104 languages, its subword dictionary comprises tokens from all covered
languages, which might not be optimal for a particular language. Further, similarly to ELMo, its training
and tuning are computationally highly demanding tasks out of reach for most researchers.

2.4.1 Monolingual and massively multilingual BERT and RoBERTa models

The original BERT project offers pretrained English, Chinese, Spanish, and multilingual models. The
multilingual BERT model (mBERT) is trained simultaneously on 104 languages, including all EMBEDDIA
languages, using vast amounts of data. The mBERT model provides a representation in which the
languages are embedded in the same space without requiring further explicit cross-lingual mapping.
This massively multilingual representation might be sub-optimal for any specific language or subset of
languages.

Deriving from BERT, Liu et al. (2019) developed RoBERTa, which drops the sentence inference training
task (are two given sentences consecutive or not) and keeps only masked token prediction. Unlike
BERT, which generates masked corpus as a training dataset in advance, RoBERTa randomly masks
a given percentage of tokens on the fly. In that way, in each epoch, a different subset of tokens get
masked. Conneau et al. (2019) used RoBERTa architecture to train the massive multilingual XLM-
RoBERTa (XLM-R) model, using 100 languages, akin to the mBERT model.

An open source DeepPavlov library5 offers a specific Russian BERT model. Recently, monolingual
Finnish (FinBERT) (Virtanen et al., 2019), Estonian (EstBERT) (Tanvir et al., 2020), Latvian (LVBERT)

5https://github.com/deepmipt/DeepPavlov
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(Znotin, š & Barzdin, š, 2020), and Swedish (KB-BERT) (Malmsten et al., 2020) BERT models were re-
leased.

The quality of these monolingual BERT models vary. For some languages, EMBEDDIA internal datasets
are large and of high-quality. For these languages, we expected to train a better monolingual model
(Estonian) or train a non-existent high-quality monolingual model (Slovene). We describe these models
in the next paragraph. For pairs of similar languages, we trained trilingual BERT models in combination
with English (see Section 2.4.2). We did not train models for Swedish or Russian, as the training
procedure is computationally intensive, and we do not have enough high-quality data to improve over
already existing monolingual models in these two languages.

We have trained two monolingual RoBERTa-based models, one on Slovene (SloBERTa) and one on
Estonian (Est-RoBERTa). Both models closely follow the architecture and training approach of the
Camembert base model (Martin et al., 2020), which is itself based on RoBERTa. Both our models have
12 transformer layers and approximately 110 million parameters. SloBERTa was trained for 200,000
steps (about 98 epochs) on Slovene corpora, containing 3.47 billion tokens in total. The corpora is
composed of general language corpus, web-crawled texts, academic writings (BSc/BA, MSc/MA and
PhD theses) and texts from Slovenian parliament. Est-RoBERTa was trained for about 40 epochs on
Estonian corpora, containing mostly news articles from Express Meedia. The corpora has 2.51 billion
tokens in total. We used the sentencepiece algorithm6 to produce subword byte-pair-encodings (BPE)
from a given training dataset. The created subword vocabularies contain 32,000 tokens for SloBERTa
model and 40,000 tokens for Est-RoBERTa model. Both models are publicly available via the popular
Hugging Face library and for individual download from CLARIN (see Section 6).

BERTić (Ljubešić & Lauc, 2021) is a transformer-based pretrained model using the Electra approach
(Clark et al., 2019). Electra models train a smaller generator model and the main, larger discriminator
model whose task is to discriminate whether a specific word is an original word from the text or a word
generated by the generator model. The authors claim that the Electra approach is computationally more
efficient than the BERT models based on masked language modelling. BERTić is a BERT-base sized
model (110 million parameters and 12 transformer layers), trained on crawled texts from the Croatian,
Bosnian, Serbian and Montenegrin web domains. While BERTić is a multilingual model, we use it as
a monolingual model and apply it to the Croatian language datasets. Two reasons are supporting this
decision. First, most training texts are Croatian (5.5 billion words out of 8 billion). Second, the covered
South Slavic languages are closely related, mutually intelligible, and are classified under the same HBS
(Serbo-Croatian) macro-language by the ISO-693-3 standard.

2.4.2 Trilingual EMBEDDIA BERT models

At the start of this task, there were no language-specific BERT models for EMBEDDIA languages other
than English (later, the Russian version mentioned above appeared). Therefore, we trained new BERT
models for EMBEDDIA languages, as presented in Deliverable D1.7. We decided to build trilingual
models featuring two similar languages and one highly resourced language (English). Because these
models are trained on a small number of languages, they better capture each of them and offer better
monolingual performance. At the same time, they can be used in a cross-lingual manner for knowledge
transfer from a high-resource language to a low-resource language or between similar languages.

We have trained three trilingual models, one on Slovene, Croatian and English data (CroSloEngual
BERT), one on Estonian, Finnish and English (FinEst BERT), and one on Latvian, Lithuanian and En-
glish (LitLat BERT). The models are now publicly available via the popular Huggingface library and for
individual download from CLARIN (see Section 6). For each model, we combined deduplicated corpora
from all three languages. The corpora used to train our BERT models are described in Deliverable
D1.7.

FinEst BERT and CroSloEngual BERT were trained on BERT-base architecture (Ulčar & Robnik-Šikonja,

6https://github.com/google/sentencepiece
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2020). We used bert-vocab-builder7 to produce wordpiece vocabularies (composed of subword tokens)
from the given corpora. The created wordpiece vocabularies contain 74,986 tokens for FinEst and
49,601 tokens for the CroSloEngual model. The training dataset is a masked corpus. We randomly
masked 15% of the tokens in the corpus and repeated the process five times, each time with different
15% of the tokens being masked. The dataset is thus five times larger than the original corpora. On this
data, we trained our BERT models for about 40 epochs, which is approximately the same as multilingual
BERT.

Later LitLat BERT is based on the RoBERTa architecture. We opted for the RoBERTa approach because
it has since proven more robust and better performing than BERT. It also offered two practical benefits
over the original BERT approach. By dropping the next-sentence prediction training task, corpora shuf-
fled on the sentence level can be used in training at the expense of more limited context (compared
to the original 512 tokens used in BERT). The second benefit is that it allows for training on multiple
GPUs out of the box, while BERT can only be trained on a single GPU unless complex workarounds
are implemented. We split the Lithuanian, Latvian and English corpora into three sets, train, eval and
test. Train dataset contains 99% of all the corpora; the other two sets contain 0.5% each. We used the
sentencepiece algorithm8 to produce subword byte-pair-encodings (BPE) from a given train dataset.
The created subword vocabulary contains 84,200 tokens. We have trained the model for 40 epochs,
with a maximum sequence length of 512 tokens. Like with FinEst BERT and CroSloEngual BERT, we
randomly masked 15% of the tokens during the training.

7https://github.com/kwonmha/bert-vocab-builder
8https://github.com/google/sentencepiece
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3 Evaluation scenarios
In this section, we describe the evaluation scenarios. First, in Section 3.1, we describe the settings of
monolingual and cross-lingual evaluation experiments. In Section 3.2, we describe the datasets.

3.1 Evaluation settings

We split our evaluations into two categories: monolingual and cross-lingual. In the monolingual eval-
uation, we compare fastText, ELMo, and monolingual BERT and RoBERTa models (English, Rus-
sian, Finnish, Slovene, Croatian, Estonian, and Latvian). The exact choice of compared models de-
pends on the availability of datasets in specific languages. In the cross-lingual setting, we compare
cross-lingual maps for ELMo models, massively multilingual BERT models (mBERT and XLM-R), and
trilingual BERT models (Croatian-Slovene-English, Finish-Estonian-English, and Lithuanian-Latvian-
English). The specifics of models for individual tasks are described below.

3.1.1 Named entity recognition

For each of the compared embeddings, we tested a separate neural architecture, adapted to the
specifics of the embeddings. For fastText and ELMo embeddings, we trained NER classifiers by in-
putting word vectors for each token in a given sentence, along with their labels. We used a model with
two bidirectional LSTM layers with 2048 units. On the output, we used the time-distributed softmax
layer. For ELMo embeddings, we computed a weighted average of the three embedding vectors for
each token, by learning the weights during the training. We used Adam optimizer with a learning rate
10−4 and trained for 5 epochs.

For BERT models, we fine-tuned each model on the NER dataset for 3 epochs. We used the code by
HuggingFace9 for NER classification.

3.1.2 POS-tagging

For training POS-tagging classifiers with fastText or ELMo embeddings, we used the same approach
and hyper-parameters as described above for NER, but a different neural network architecture. We
trained models with four hidden layers, three bidirectional LSTMs and one fully connected feed-forward
layer. The three LSTM layers have 512, 512, and 256 units, respectively. The fully connected layer has
64 neurons.

For BERT models, we fine-tuned each model for 3 epochs, using the POS classification code by Hug-
gingFace as for NER.

3.1.3 Dependency parsing

To train dependency parsers using ELMo embeddings, we used SuPar tool by Yu Zhang.10 SuPar is
based on the deep biaffine attention (Dozat & Manning, 2017). We modified the SuPar tool to accept
ELMo embeddings on the input; specifically, we used the concatenation of the three ELMo vectors.
The modified code has been made publicly available (see Section 6). We trained the parser for 10
epochs for each language, using separately EMBEDDIA ELMo embeddings and ELMoForManyLangs
embeddings.

For training BERT models, we modified the dep2label-bert tool (Strzyz et al., 2019; Gómez-Rodríguez
et al., 2020) to work with newer versions of HuggingFace’s transformers library and to support both

9https://github.com/huggingface/transformers/tree/master/examples/legacy/token-classification
10https://github.com/yzhangcs/parser
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RoBERTa and BERT-based models. We used the modified tool to fine-tune all the BERT/RoBERTa
models on the dependency parsing task for 10 epochs. We used arc-Standard algorithm in transition-
based sequence labelling encoding. The modified tool is publicly available (see Section 6).

3.1.4 Analogies

The word analogy task was initially designed for static embeddings. To evaluate contextual embeddings,
we have to use the words of each analogy entry in a context. Such contexts may not exist in general
corpora for some categories. We used a boilerplate sentence "If the term [w1] corresponds to the term
[w2], then the term [w3] corresponds to the term [w4]." Here, [w1] through [w4] represent the four words
from an analogy entry. We translated the boilerplate sentence to every other EMBEDDIA language for
evaluation in those languages.

For ELMo models, we concentrated on evaluating cross-lingual mapping approaches. Given a cross-
lingual analogy entry (i.e. first two words in one language, last two words in another language), we filled
the boilerplate sentence in the training language with the four analogy words (two of them being in the
"wrong" language) and extracted the vectors for words "w1" and "w2". We then filled the boilerplate
sentence in the testing language with the same four words and extracted the vectors for words "w3" and
"w4". We evaluated the quality of the mapping by measuring the distance between vector v(w4) and
vector v(w2)− v(w1) + v(w3).

BERT models are masked language models, so we tried to exploit that in this task. We masked the
word "w2" and tried to predict it, given every other word. In cross-lingual setting the sentence after the
comma and the words "w3" and "w4" were therefore given in the source/training language, while the
sentence before the comma and word "w1" were given in target/evaluation language. The prediction for
masked word "w2" was expected in the target/testing language, as well.

3.1.5 SuperGLUE

We fine-tuned BERT models on SuperGLUE tasks using Jiant tool (Phang et al., 2020). We used a
single-task learning setting for each task and fine-tuned for 100 epochs, with the initial learning rate of
10−5. Each model was fine-tuned using either machine translated or human translated datasets of the
same size. The evaluation of SuperGLUE tasks and the tasks themselves are described in more detail
in Section 3.2.5 and Section 4.1.6.

3.2 Datasets

We used six categories of datasets: NER, POS-tagging, dependency parsing, analogies, CoSimLex,
and SuperGLUE. Each category contains datasets from several languages, and some contain several
types of tasks (e.g., SuperGLUE). The categories are shortly described below.

3.2.1 Named entity recognition

In the NER experiments, we use datasets in nine languages: Croatian, English, Estonian, Finnish,
Latvian, Lithuanian, Russian, Slovene and Swedish. The number of sentences and tags present in the
datasets is shown in Table 1. The label sets used in datasets for different languages vary, meaning
that some contain more fine-grained labels than others. To make results across different languages
consistent, we trim labels in all datasets to the four common ones: location (LOC), organisation (ORG),
person (PER), and “no entity” (OTHR). The latter includes every token that is not classified as any of
the previous three classes. As this covers a wide variety of tokens (including named entities that do
not belong to one of the three aforementioned classes, non-named entities, verbs, stopwords, etc.), we
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ignore the OTHR label during the evaluation. That is, we only take into account the classification scores
of LOC, ORG, and PER classes.

Table 1: The collected datasets for NER task and their properties: the number of sentences and tagged words.

Language Dataset Sentences Tags
Croatian hr500k 24794 28902
English CoNLL-2003 NER 20744 43979
Estonian Estonian NER corpus 14287 20965
Finnish FiNER data 14484 16833
Latvian LV Tagger train data 9903 11599
Lithuanian TildeNER 5500 7000
Russian factRuEval-2016 4907 9666
Slovene11 ssj500k 9489 9440
Swedish Swedish NER 9369 7292

3.2.2 POS-tagging and Dependency parsing

We used datasets in nine languages (Croatian, English, Estonian, Finnish, Latvian, Lithuanian, Russian,
Slovene and Swedish) to test models on the POS-tagging and DP tasks. The datasets are obtained from
the Universal Dependencies 2.3 (Nivre et al., 2018). The number of sentences and tokens is shown in
Table 2. We limited ourselves to 17 Universal POS tags for the POS-tagging task as they are the same
in all languages and did not predict language-specific XPOS tags.

Table 2: Part of speech tagging and dependency parsing datasets and their properties: the treebank, number of
sentences, number of tokens, and information about the size of the splits.

Language Treebank Tokens Sentences Train Validation Test
Croatian SET 197044 8889 6983 849 1057
English EWT 254854 16622 12543 2002 2077
Estonian EDT 434245 30723 24384 3125 3214
Finnish TDT 202208 15136 12217 1364 1555
Latvian LVTB 152706 9920 7163 1304 1453
Lithuanian HSE 5356 263 153 55 55
Russian GSD 99389 5030 3850 579 601
Slovene SSJ 140670 8000 6478 734 788
Swedish Talbanken 96858 6026 4303 504 1219

We use two evaluation metrics in the dependency parsing task, the mean of unlabeled and labelled
attachment scores (UAS and LAS) on the test set. The UAS and LAS are standard accuracy metrics in
dependency parsing. The UAS score is defined as the proportion of tokens that are assigned the correct
syntactic head, while the LAS score is the proportion of tokens that are assigned the correct syntactic
head as well as the dependency label (Jurafsky & Martin, 2009).

3.2.3 CoSimLex

In contrast to other datasets which are used to evaluate the performance of embeddings on specific
tasks, the CoSimLex task (Armendariz et al., 2020), described in Deliverable D1.3, allows direct in-
vestigation of embeddings’ properties. CoSimLex contains pairs of words and their similarity ratings
assigned by human annotators. The crucial difference to previous such datasets is that the words ap-
peared within a short text (context) when presented to the human annotators. Therefore, the word

11The Slovene ssj500k originally contains more sentences, but only 9489 are annotated with named entities.
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similarity ratings take the context into account, making the dataset suitable to evaluate the contextu-
alised embeddings. Furthermore, the dataset is based on pairs of words from SimLex-999 (Hill et al.,
2015) to allow comparison with the context-independent case. CoSimLex consists of 340 word-pairs
in English, 112 in Croatian, 111 in Slovene, and 24 in Finnish. Each pair is rated within two different
contexts, giving a total of 1174 scores of contextual similarity. For Croatian and Finnish, we used the
existing translations of SimLex-999 (Mrkšić et al., 2017; Venekoski & Vankka, 2017; Kittask, 2019). For
Slovene, T1.2 produced a new translation, following Mrkšić et al. (2017)’s methodology for Croatian; this
has now been made publicly available12.

For each pair of words, two different contexts are extracted from Wikipedia in which these two words
appear. The words in contexts produce two similarity scores, each related to one of the contexts,
calculated as the mean of annotator ratings for that context. This is accompanied by two standard
deviation scores, the p-value computed from the Mann-Whitney U test on the two score distributions,
and the four inflected forms of the words exactly as they appear in the contexts. Note that in the
morphologically rich languages (such as Slovene, Croatian, and Finnish), many inflections are possible.
CoSimLex is the only reasonably sized dataset in which differences in the contextual similarity between
two words are supported with a test of statistical significance. Figure 1 shows an example from the
English dataset.

Figure 1: An example from the English CoSimLex, showing a word pair with two contexts, each with the mean and
standard deviation of human similarity judgements. The original SimLex values for the same word pair
without context are shown for comparison. The p-Value shown results from the Mann-Whitney U test,
showing that the human judgements differ significantly between contexts.

Word1: man Word2: warrior SimLex: µ 4.72 σ 1.03
Context1 Context1: µ 7.88 σ 2.07
When Jaimal died in the war, Patta Sisodia took the command, but he too died in the battle. These young
men displayed true Rajput chivalry. Akbar was so impressed with the bravery of these two warriors that
he commissioned a statue of Jaimal and Patta riding on elephants at the gates of the Agra fort.
Context2 Context2: µ 3.27 σ 2.87
She has a dark past when her whole family was massacred, leaving her an orphan. By day, Shi Yeon
is an employee at a natural history museum. By night, she’s a top-ranking woman warrior in the Nine-
Tailed Fox clan, charged with preserving the delicate balance between man and fox.

p-Value: 1.3× 10−6

Model performance is evaluated using two metrics, which measure different aspects of prediction qual-
ity:

1 - Predicting Changes: The first metric measures the ability of a model to predict the change in similarity
ratings between the two contexts for each word pair. This is evaluated via the correlation between the
changes predicted by the system and those derived from human ratings. We use the uncentered
Pearson correlation. This gives a measure of the accuracy of predicting the relative magnitude
of changes and allows for differences in scaling while maintaining the effect of the direction of
change. The standard centered correlation normalises on the mean, so it could give high values
even when a system predicts changes in the wrong direction, but with a similar distribution over
examples.

CCuncentered =

∑n
i=1(xi )(yi )√

(
∑n

i=1 xi )
2(
∑n

i=1 yi )
2

2 - Predicting Ratings: The second metric measures the ability to predict the absolute similarity rating
for each word pair in each context. This was evaluated using the harmonic mean of the Pearson
and the Spearman correlation with gold-standard human judgements.

12http://hdl.handle.net/11356/1309
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3.2.4 Monolingual and cross-lingual analogies

The word analogy task was popularised by Mikolov et al. (2013). The goal is to find a term y for a given
term x so that the relationship between x and y best resembles the given relationship a : b. There are
two main groups of categories: semantic and syntactic. To illustrate a semantic relationship (country
and its capital), consider, for example, that the word pair a : b is given as “Finland : Helsinki”. The task
is to find the term y corresponding to the relationship “Sweden : y”, with the expected answer being y =

Stockholm. In syntactic categories, each category refers to a grammatical feature, for example, adjective
degrees of comparison. The two words in any given pair then have a common stem (or even the same
lemma); for example, given the word pair “long : longer”, we see that we have an adjective in its base
form and the same adjective in a comparative form. The task is then to find the term y corresponding
to the relationship “dark : y”, with the expected answer being y = darker, i.e. a comparative form of the
adjective dark.

In the vector space, the analogy task is transformed into vector arithmetic. We search for nearest
neighbours, i.e. we compute the distance between vectors: d(vec(Finland), vec(Helsinki)) and search
for word y which would give the closest result in distance d(vec(Sweden), vec(y)). In our datasets,
created in T1.1 (Ulčar et al., 2020), the analogies are already prespecified, so we do not search for the
closest result but only check if the prespecified word is indeed the closest; alternatively, we measure the
distance between the given pairs. The proportion of correctly identified words in the five nearest vectors
forms a statistics called accuracy@5, which we report as a result.

In the cross-lingual setting between two languages L1 and L2, the word analogy task (x is to y as a is to b)
using a cross-lingual dataset is composed by matching each relation in one language with each relation
from the same category in the other language. Unfortunately, for cross-lingual contextual mappings, the
word analogy task is not adequate as it only contains words without their context. We described our
approach for applying this task in Section 3.1.4.

3.2.5 SuperGLUE tasks

SuperGLUE (Super General Language Understanding Evaluation) (Wang et al., 2019) is a benchmark
for testing natural language understanding (NLU) of models. It is styled after the GLUE benchmark
(Wang et al., 2018), but much more challenging. It provides a single-number metric for each of its tasks
that enables the comparison and progress of NLP models. The tasks are diverse and comprised of
question answering (BoolQ, COPA, MultiRC, and ReCoRD tasks), natural language inference (CB and
RTE tasks), coreference resolution (WSC), and word sense disambiguation (WiC). Non-expert humans
evaluated all the tasks to give a human baseline to machine systems. We provide an example of each
task in Table 3. Please refer to the original paper for an extensive description of each task.

To evaluate cross-lingual transfer and test specifics of morphologically rich languages, we translated
the SuperGLUE datasets to Slovene. We partially used human translation (HT) and partially machine
translation (MT). The details are presented in Table 4. Some datasets are too large (BoolQ, MultiRC,
ReCoRD, RTE) to be fully human translated with our budget. We thus provide ratios between the human
translated and the original English sizes. For MT from English to Slovene, we used the GoogleMT Cloud
service. In our evaluation, we use six of the original eight tasks.

The WSC dataset cannot be machine-translated because it requires human assistance and verification.
First, GoogleMT translations cannot handle the correct placement of HTML tags indicating coreferences.
The second reason is that in Slovene coreferences can also be expressed with verbs, while coreferences
in English are mainly nouns, proper names and pronouns. This makes the task more difficult in Slovene
compared to English because solutions cover more types of words.

We did not include ReCoRD in the Slovene benchmark due to the low quality of our test set, consisting
of confusing and ambiguous examples. Further, there are differences between English and Slovene
ReCoRD tasks due to the morphological richness of Slovene. Namely, in Slovene, the correct declen-
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Table 3: Examples from the development set of SuperGLUE tasks. Bold texts represent parts of examples’ format.
Texts in italics are part of models’ input. Underlined texts are specially marked in inputs. Texts in the
monospaced font represent the expected models’ outputs.

B
oo

lQ Passage:Barq’s – Barq’s is an American soft drink. Its brand of root beer is notable for having caffeine. Barq’s,
created by Edward Barq and bottled since the turn of the 20th century, is owned by the Barq family but bottled
by the Coca-Cola Company. It was known as Barq’s Famous Olde Tyme Root Beer until 2012.
Question:is barq’s root beer a pepsi product
Answer:No

C
B

Text:B: And yet, uh, I we-, I hope to see employer based, you know, helping out. You know, child, uh, care
centers at the place of employment and things like that, that will help out. A: Uh-huh. B: What do you think, do
you think we are, setting a trend?
Hypothesis:they are setting a trend
Entailment:Unknown

C
O

PA

Premise:My body cast a shadow over the grass.
Question:What’s the CAUSE for this
Alternative 1:The sun was rising.
Alternative 2:The grass was cut.
Correct Alternative:1

M
ul

tiR
C Paragraph:Susan wanted to have a birthday party. She called all of her friends. She has five friends. Her

mom said that Susan can invite them all to the party. Her first friend could not go to the party because she
was sick. Her second friend was going out of town. Her third friend was not so sure if her parents would let
her. The fourth friend said maybe. The fifth friend could go to the party for sure. Susan was a little sad. On
the day of the party, all five friends showed up. Each friend had a present for Susan. Susan was happy and
sent each friend a thank you card the next week.
Question:Did Susan’s sick friend recover?
Candidate answers: Yes, she recoverd, No (F), Yes (T), No, she didn’t recover (F), Yes, she was at Susan’s
party (T)

R
eC

oR
D Paragraph:(CNN) Puerto Rico on Sunday overwhelmingly voted for statehood. But Congress, the only body

that can approve new states, will ultimately decide whether the status of the US commonwealth changes.
Ninety-seven percent of the votes in the nonbinding referendum favored statehood, an increase over the results
of a 2012 referendum, official results from the State Electoral Commission show. It was the fifth such vote on
statehood. Today, we the people of Puerto Rico are sending a strong and clear message to the US Congress
... and to the world ... claiming our equal rights as American citizens, Puerto Rico Gov. Ricardo Rossello said
in a news release.@highlight Puerto Rico voted Sunday in favor of US statehood
Query:For one, they can truthfully say, ”Don’t blame me, I didn’t vote for them,” when discussing the
〈placeholder〉 presidency.
Correct Entities: US

R
TE

Text:Dana Reeve, the widow of the actor Christopher Reeve, has died of lung cancer at age 44, according to
the Christopher Reeve Foundation.
Hypothesis:Christopher Reeve had an accident.
Entailment: False

W
iC

Context 1:Room and board.
Context 2:He nailed boards across the windows.
Sense match: False

W
S

C Text:Mark told Pete many lies about himself, which Pete included in his book. He should have been more
truthful.
Coreference: False

sion of a query is not present in the text, making it impossible to provide the correct answer. Finally, sim-
ilarly to WSC, ReCoRD is also affected by the problem of translating HTML tags with GoogleMT.

The WiC task cannot be translated and would have to be conceived anew because it is impossible to
transfer the same set of meanings of a given word from English to a target language (the example in
Table 3 demonstrates that, i.e. the word board in two different contexts translates to two completely
different words in Slovene).
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Table 4: Number of instances in the original English and translated Slovene SuperGLUE tasks. HT stands for
human translation and MT for machine translation. The “ratio“ indicates the ratio between the number of
human translated instances and all instances.

Dataset split English HT ratio MT
BoolQ train 9427 92 0.0098 yes

val 3270 18 0.0055 yes
test 3245 30 0.0092 yes

CB train 250 110 0.4400 yes
val 57 22 0.3860 yes
test 250 110 0.4400 yes

COPA train 400 400 1.0000 yes
val 100 100 1.0000 yes
test 500 500 1.0000 yes

MultiRC train 5100 15 0.0029 yes
val 953 3 0.0031 yes
test 1800 25 0.0139 yes

ReCoRD train 101000 60 0.0006 /
val 10000 6 0.0006 /
test 10000 30 0.0030 /

RTE train 2500 232 0.0928 yes
val 278 29 0.1043 yes
test 300 29 0.0967 yes

WiC train 6000 / / /
val 638 / / /
test 1400 / / /

WSC train 554 554 1.0000 /
val 104 104 1.0000 /
test 146 146 1.0000 /
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4 Results
We present two sets of results. First, in Section 4.1 we evaluate monolingual models, followed by
evaluation of cross-lingual transfer in Section 4.2.

4.1 Monolingual evaluations

The monolingual evaluation is split into six subsections according to the type of task. We start with
NER, followed by POS-tagging, dependency parsing, CoSimLex, analogies, and SuperGLUE tasks.
The results shown for classification tasks NER, POS-tagging, and dependency parsing are the averages
of five individual evaluation runs.

4.1.1 NER

In Table 5, we present the results of fastText non-contextual baseline, compared with two types of
contextual ELMo embeddings, ELMoForManyLanguages and EMBEDDIA ELMo. EMBEDDIA ELMo,
trained on much larger datasets, is the best on every language except Latvian. The fastText baseline
lags behind both ELMo embeddings. For English, we use the original ELMo model, as EMBEDDIA
ELMo does not exist for English. This model is also better than the ELMoForManyLanguages.

Table 5: The comparison of fastText non-contextual baseline with two types of ELMo embeddings (ELMoForMany-
Languages - EFML and EMBEDDIA ELMo) on the NER task. The results are given as macro F1 scores.
The best model for each language is in bold. For English (marked with *), we show the original ELMo
model.

Language fastText EFML EMBEDDIA ELMo
Croatian 0.570 0.733 0.810
English 0.807 0.879 0.922*
Estonian 0.734 0.828 0.895
Finnish 0.692 0.882 0.923
Latvian 0.557 0.838 0.818
Lithuanian 0.359 N/A 0.755
Slovenian 0.478 0.772 0.849
Swedish 0.663 0.829 0.852

The results of BERT models are presented in Table 6. Each of the listed BERT models was fine-tuned
on NER datasets in languages where that makes sense: monolingual and trilingual BERT models were
used in languages used in their pretraining, and massively multilingual models (mBERT and XLM-R)
were fine-tuned for all used languages.

The results show that EMBEDDIA BERT models are very successful, dominating in all languages where
they exist. The two EMBEDDIA monolingual models (Slovene and Estonian) have a slight edge over
their trilingual counterparts. Comparing BERT results in Table 6 with ELMo results in Table 5, we can
observe clear dominance of BERT models. The extracted ELMo embedding vectors are clearly not
competitive to the entire pretrained BERT models.

4.1.2 POS-tagging

In Table 7, we present the results of fastText non-contextual baseline, compared with two types of
contextual ELMo embeddings, ELMoForManyLanguages and EMBEDDIA ELMO. Again, EMBEDDIA
ELMo models and DeepPavlov ELMo for Russian (trained on much larger datasets) are the best on all
languages. Some results are surprisingly low but this is the effect of low quality of the datasets.
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Table 6: The results of NER evaluation task for various BERT models. The scores are macro average F1 scores
of the three NE classes. We compare BERT models produced outside and inside the EMBEDDIA project.
The non-EMBEDDIA models are massively multilingual models mBERT and XLM-R, as well as mono-
lingual (MONO) models (FinBERT for Finnish, EstBERT for Estonian, LVBERT for Latvian, BERTić for
Croatian, bert-base-cased for English, KB-BERT for Swedish). EMBEDDIA trilingual BERT models are
CroSloEngual BERT (CSE), FinEst BERT, and LitLat BERT. EMBEDDIA monolingual BERT models (E-
MONO) are SloBERTa for Slovene and Est-RoBERTa for Estonian.

Non-EMBEDDIA EMBEDDIA
Language mBERT XLM-R MONO CSE FinEst LitLat E-MONO
Croatian 0.801 0.833 0.881 0.886 - - -
English 0.938 0.941 0.943 0.944 0.937 0.939 -
Estonian 0.900 0.913 0.870 - 0.930 - 0.936
Finnish 0.934 0.932 0.952 - 0.957 - -
Latvian 0.847 0.859 0.145 - - 0.863 -
Lithuanian 0.833 0.802 - - - 0.863 -
Slovenian 0.885 0.912 - 0.928 - - 0.933
Swedish 0.844 0.875 0.887 - - - -

Table 7: The comparison of fastText non-contextual baseline with two types of ELMo embeddings (ELMoForMany-
Languages - EFML and EMBEDDIA ELMo) on the POS-tagging task. The results are given as micro F1

scores. The best results for each language are in bold. For English, the result of the original ELMo model
is shown, and for Russian the results of DeepPavlov ELMo model (both marked with *).

Language fastText EFML EMBEDDIA ELMo
Croatian 0.512 0.573 0.963
English 0.769 0.603 0.952*
Estonian 0.640 0.508 0.969
Finnish 0.506 0.389 0.966
Latvian 0.462 0.489 0.940
Lithuanian 0.209 N/A 0.233
Russian 0.518 0.349 0.929*
Slovenian 0.527 0.541 0.966
Swedish 0.275 0.313 0.933

Table 8: The results of POS-tagging evaluation task for various BERT models expressed with F1 scores. We com-
pare BERT models produced outside and inside the EMBEDDIA project. The non-EMBEDDIA models are
massively multilingual models mBERT and XLM-R, as well as monolingual (MONO) models (FinBERT for
Finnish, EstBERT for Estonian, LVBERT for Latvian, BERTić for Croatian, RuBERT for Russian, bert-base-
cased for English, KB-BERT for Swedish). EMBEDDIA trilingual BERT models are CroSloEngual BERT
(CSE), FinEst BERT, and LitLat BERT. EMBEDDIA monolingual BERT models (E-MONO) are SloBERTa
for Slovene and Est-RoBERTa for Estonian. The best results for each language are in bold.

Non-EMBEDDIA EMBEDDIA
Language mBERT XLM-R MONO CSE FinEst LitLat E-MONO
Croatian 0.978 0.981 0.981 0.982 - - -
English 0.964 0.972 0.967 0.968 0.967 0.968 -
Estonian 0.966 0.970 0.961 - 0.973 - 0.977
Finnish 0.961 0.977 0.980 - 0.976 - -
Latvian 0.946 0.960 0.048 - - 0.966 -
Lithuanian 0.855 0.842 - - - 0.790 -
Russian 0.974 0.976 0.975 - - - -
Slovenian 0.984 0.988 - 0.990 - - 0.991
Swedish 0.979 0.981 0.988 - - - -
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The results of BERT models are presented in Table 8. Each of the listed BERT models was fine-tuned
on POS datasets in languages where that makes sense: monolingual and trilingual BERT models were
used in languages used in their pretraining, and massively multilingual models (mBERT and XLM-R)
were fine-tuned for all used languages.

The results show that EMBEDDIA BERT models and massively multilingual BERT models are very
competitive in the POS-tagging task, differences being relatively small and language-dependent. Nev-
ertheless, for some languages the same pattern appears as in NER: the two EMBEDDIA monolingual
models (Slovenian and Estonian) are the best again, the trilingual LitLat BERT is better then the mono-
lingual Latvian BERT model, which was pretrained on insufficient amounts of data. Comparing BERT
and ELMo results in Tables 7 and Table 8, we again observe a clear dominance of BERT models.

4.1.3 Dependency parsing

In Table 9, we compare two types of contextual ELMo embeddings, ELMoForManyLanguages and EM-
BEDDIA ELMo, on the dependency parsing task. EMBEDDIA ELMo models are the best on all lan-
guages where they exist. For Russian and English, ELMo models do not exist and we tested the
original English ELMo and Russian DeepPavlov ELMo (marked with *), which are both better than EL-
MoForManyLanguages.

Table 9: The comparison of two types of ELMo embeddings (ELMoForManyLanguages - EFML and EMBEDDIA
ELMo) on the dependency parsing task. Results are given as UAS and LAS scores. The best results for
each language are typeset in bold. For English, the result of the original ELMo model is shown, and for
Russian the result of DeepPavlov ELMo (both marked with *). There is no Lithuanian ELMoForManyLangs
model.

ELMoForManyLangs EMBEDDIA ELMo
Language UAS LAS UAS LAS
Croatian 88.18 79.45 91.74 85.84
English 90.28 86.29 90.53* 87.16*
Estonian 81.19 72.50 89.54 85.45
Finnish 88.27 83.44 90.83 86.86
Latvian 87.17 80.76 88.85 82.82
Lithuanian - - 55.05 24.39
Russian 89.28 83.29 89.33* 83.54*
Slovenian 85.55 77.73 93.70 91.39
Swedish 88.03 83.09 89.70 85.07

The results of BERT models are presented in Table 10. Each of the listed BERT models was fine-tuned
on POS datasets in languages where that makes sense: monolingual and trilingual BERT models were
used in languages used in their pretraining, and massively multilingual models (mBERT and XLM-R)
were fine-tuned for all used languages.

The results show that the differences between EMBEDDIA BERT models and massively multilingual
BERT models are language-dependent. Surprisingly, comparing BERT and ELMo results in Tables 9
and Table 10, shows that EMBEDDIA ELMo models dominate in all languages. These results indicate
that BERT models shall not always be the blind choice in text classification, as ELMo might still be
competitive in some tasks.

4.1.4 CoSimLex

In Table 11, we present the comparison between different ELMo models (ELMoForManyLanguages
and EMBEDIA ELMo) and different BERT models (massively multilingual mBERT and two EMBEDDIA
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Table 10: The results of the evaluation in the dependency parsing task for various BERT models. The results
are given as LAS scores. We compare BERT models produced outside and inside the EMBEDDIA
project. The non-EMBEDDIA models are massively multilingual models mBERT and XLM-R, as well as
monolingual (MONO) models (FinBERT for Finnish, EstBERT for Estonian, LVBERT for Latvian, BERTić
for Croatian, RuBERT for Russian, bert-base-cased for English, KB-BERT for Swedish). EMBEDDIA
trilingual BERT models are CroSloEngual BERT (CSE), FinEst BERT, and LitLat BERT. EMBEDDIA
monolingual BERT models (E-MONO) are SloBERTa for Slovene and Est-RoBERTa for Estonian. The
best results for each language are typeset in bold.

Non-EMBEDDIA EMBEDDIA
Language mBERT XLM-R MONO CSE FinEst LitLat E-MONO
Croatian 70.38 78.39 - 82.36 - - -
English 83.19 84.94 83.55 83.91 83.18 81.80 -
Estonian 56.27 68.91 77.44 - 75.67 - 78.64
Finnish 57.22 71.12 83.64 - 79.96 - -
Latvian 54.61 69.26 56.87 - - 74.32 -
Lithuanian 18.30 24.34 - - - 18.30 -
Russian 70.00 73.47 80.90 - - - -
Slovenian 68.08 79.27 - 85.38 - - 84.41
Swedish 74.04 80.93 85.83 - - - -

trilingual models: CroSloEngual BERT and FinEst BERT. The performance is expressed with two met-
rics, uncentered Spearman correlation between the predicted and actual change of similarity scores
(M1) and the harmonic mean of the Spearman and Pearson correlations between predicted and actual
similarity scores (M2).

Table 11: The comparison of different ELMo (upper part) and BERT embeddings (lower part) on CoSimLex
datasets. We compare the performance with the uncentered Spearman correlation between the pre-
dicted and true change of similarity scores (M1), and the harmonic mean of the Spearman and Pearson
correlations between predicted and true similarity scores (M2). The best scores for each language and
type of models are in bold.

English Croatian Slovene Finnish
Model M1 M2 M1 M2 M1 M2 M1 M2
ELMoForManyLangs 0.556 0.449 0.520 0.433 0.467 0.328 0.403 0.403
EMBEDDIA ELMo 0.570 0.510 0.662 0.529 0.550 0.516 0.452 0.407
mBERT 0.713 0.573 0.587 0.443 0.603 0.516 0.671 0.289
EMBEDDIA CroSloEng BERT 0.719 0.601 0.715 0.642 0.673 0.589 - -
EMBEDDIA FinEst BERT 0.692 0.591 - - - - 0.672 0.533

Among ELMo models, EMBEDDIA ELMo models dominate ELMoForManyLanguages, producing closer
scores to humans in both metrics and all four languages. Among BERT models, both EMBEDDIA
trilingual models dominate. Comparing ELMo and BERT models, BERT models are more successful
and predict similarities closer to human assigned scores.

4.1.5 Analogies

Our previous work in Deliverable D1.3 has shown a clear advantage of BERT models over ELMo em-
beddings. For that reason, in this section, we only compare different BERT models. The results are
presented in Table 12.

The results show that EMBEDDIA BERT models are strongly dominating in all languages where they
exist. Furthermore, the two EMBEDDIA monolingual BERT models (Slovene and Estonian) have a
considerable edge over their trilingual counterparts.
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Table 12: The results of the word analogy task for various BERT models expressed as Accuracy@5. We compare
BERT models produced outside and inside the EMBEDDIA project. The non-EMBEDDIA models are
massively multilingual models mBERT and XLM-R, as well as monolingual (MONO) models (FinBERT
for Finnish, EstBERT for Estonian, LVBERT for Latvian, BERTić for Croatian, RuBERT for Russian).
EMBEDDIA trilingual BERT models are CroSloEngual BERT (CSE), FinEst BERT, and LitLat BERT.
EMBEDDIA monolingual BERT models (E-MONO) are SloBERTa for Slovene and Est-RoBERTa for Es-
tonian. The best results for each language are typeset in bold.

Non-EMBEDDIA EMBEDDIA
Language mBERT XLM-R MONO CSE FinEst LitLat E-MONO
Croatian 0.090 0.138 - 0.278 - - -
English 0.404 0.413 0.114 0.390 0.439 0.418 -
Estonian 0.093 0.251 0.165 - 0.224 - 0.393
Finnish 0.067 0.208 0.173 - 0.285 - -
Latvian 0.026 0.118 0.118 - - 0.170 -
Lithuanian 0.036 0.107 - - - 0.214 -
Russian 0.102 0.189 0.000 - - - -
Slovenian 0.061 0.146 - 0.195 - - 0.409
Swedish 0.052 0.097 0.239 - - - -

4.1.6 SuperGLUE tasks

SuperGLUE benchmark is extensively used to compare large pretrained models in English13. In contrast
to that, we concentrate on the Slovene translation of the SuperGLUE tasks, described in Section 3.2.5.
Experiments in English have shown that ELMo embeddings are not competitive to pretrained trans-
former models like BERT in GLUE benchmarks (Wang et al., 2019). For this reason, we skip ELMo
models and compare three BERT models in our experiments: monolingual Slovene SloBERTa, trilingual
CroSloEngual BERT, and massively multilingual mBERT (bert-base-multilingual-cased14). Each model
was fine-tuned using either MT or HT datasets of the same size. Only the translated content varies
between both translation types; otherwise, they contain exactly the same examples. The splits of in-
stances into train, validation and test sets is the same as in the English variant (but mostly considerably
smaller, see Table 4).

In our analysis, we vary the sizes of datasets, translation types, and prediction models. Table 13 shows
the results together with several baselines trained on the original English datasets. Some comparisons
to English baselines are not fair because the reported English models used significantly more examples
(BoolQ, MultiRC) or, in the case of the BERT++ model, the English model was additionally pretrained
with transfer tasks that are similar to a target one (CB, RTE, BoolQ, COPA). In terms of datasets, the
only fair comparison is possible with the COPA and WSC. For the CB task, only half of the dataset is
human translated (further human translation is planned).

The single-number overall average score (Avg in the second column) comprises five equally weighted
tasks: BoolQ, CB, COPA, MultiRC, and RTE. In tasks with multiple metrics, we averaged those metrics
to get a single task score. For the details on how the score is calculated for each task, see (Wang et al.,
2019).

All BERT models, regardless of translation type, perform better than the Most Frequent baselines. From
the translation type perspective, the models trained on HT datasets perform better than those trained
on MT datasets by 2.3 points. The only task where MT is better than HT is BoolQ using mBERT. The
problem here might be the small size of the testing set (only 30 examples). We speculate that for
challenging tasks such as the ones collected in the SuperGLUE benchmark, MT is not yet competitive
to HT.

Considering the Avg scores in Table 13, CroSloEngual is the best performing model. However, we

13https://super.gluebenchmark.com/leaderboard
14https://huggingface.co/bert-base-multilingual-cased
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Table 13: The SuperGLUE benchmarks in English (upper part) and Slovene (lower part). All English results are
taken from (Wang et al., 2019). The HT and MT labels indicate human and machine translated Slovene
datasets. The best score for each task and language is in bold. The best Avg scores for each language
are underlined.

Task Avg BoolQ CB COPA MultiRC ReCoRD RTE WiC WSC
Models/Metrics Acc. F1/Acc. Acc. F1a/EM F1/EM Acc. Acc. Acc.
Most Frequent 45.7 62.3 21.7/48.4 50.0 61.1/0.3 33.4/32.5 50.3 50.0 65.1
CBoW 44.7 62.1 49.0/71.2 51.6 0.0/0.4 14.0/13.6 49.7 53.0 65.1
BERT 69.3 77.4 75.7/83.6 70.6 70.0/24.0 72.0/71.3 71.6 69.5 64.3
BERT++ 73.3 79.0 84.7/90.4 73.8 70.0/24.1 72.0/71.3 79.0 69.5 64.3
Human (est.) 89.8 89.0 95.8/98.9 100.0 81.8*/51.9* 91.7/91.3 93.6 80.0 100.0
Most Frequent (Slovene) 49.7 63.3 23.0/52.7 50.0 77.3/0.3 - 58.6 - 65.8
HT-mBERT 51.7 63.3 37.5/58.2 54.2 56.6/12.8 - 58.6 - 61.6
MT-mBERT 52.9 70.0 36.4/59.1 54.4 54.5/12.5 - 58.6 - -
HT-CroSloEngual 56.9 63.3 46.6/67.3 58.2 52.0/8.7 - 75.9 - 56.2
MT-CroSloEngual 52.3 63.3 34.4/56.4 55.0 51.6/12.8 - 65.5 - -
HT-SloBERTa 56.2 63.3 53.3/69.1 61.8 52.9/12.5 - 62.1 - 73.3
MT-SloBERTa 53.0 63.3 42.7/60.0 58.2 55.4/11.5 - 58.6 - -
HT-Avg 55.0 63.3 55.3 58.1 32.6 - 65.5 - 63.7
MT-Avg 52.7 65.5 48.2 55.9 33.1 - 60.1 - -

should be cautious with this conclusion. Recall that Avg scores do not include the WSC dataset, which
was only human translated (MT is not possible for WSC). If we include the WSC dataset into the Avg
calculation, the final Avg score is 56.8 for CroSloEngual and 59.1 for SloBERTa. This would pronounce
SloBERTa as the best Slovene model, which is consistent with other tasks and not surprising given that
it was trained only on Slovene data.

Analysis of specific tasks shows that none of the models learned anything in MultiRC (all scores are
below the Most Frequent baseline). Similar is valid for the BoolQ datasets, where all models but MT-
mBERT predict the most frequent class (as explained above, the testing set might be too small for
reliable conclusions in BoolQ). We can safely assume that training sample sizes are too small in these
two tasks and have to be increased (we have only 92 HT examples in BoolQ and 15 HT examples in
MultiRC). To solve that problem, we will train all models on full-size MT datasets in future. Compared
to English models, the best two Slovene models achieve good results on WSC and RTE. It seems that
none of the English models learns anything from WSC, but the EMBEDDIA SloBERTa model achieves
the score of 73.3 (the Most Frequent baseline gives 65.8). Nevertheless, there is still a large gap to
human performance. The CroSloEngual model performs better than English BERT on RTE with much
fewer training examples (only 9% of the English training data), but lags behind data augmented BERT++.
We expected better results on the fully human translated COPA task. We are investigating the reasons
for low performance in this task.

We conclude that the best EMBEDDIA BERT models perform well and show some level of language
understanding above chance. Furthermore, the models benefited from human translated datasets com-
pared to machine translation. For some datasets, we need to increase the number of training and/or
testing examples. In further work, we intend to create a Slovene version of the WiC task from scratch
and run experiments on the ReCoRD task.
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4.2 Cross-lingual evaluations

The cross-lingual evaluation is split into five subsections according to the type of task. We present
results on NER, POS-tagging, dependency parsing, analogies, and SuperGLUE. We train models on
a source language dataset in each task and use it for classification in the target language, i.e. we
test zero-shot transfer unless specified otherwise. For NER, POS-tagging, and dependency parsing
tasks, the results are averaged over five individual evaluation runs, just like in monolingual evaluations.
Additionally, ELMoGAN maps were also trained five times and each of the five maps was paired with
one of the five classification models for each task during evaluation.

4.2.1 NER

In Table 14, we present the results of cross-lingual transfer of contextual ELMo embeddings. We com-
pared isomorphic mapping with Vecmap and MUSE libraries, and two non-isomorphic mappings using
GANs (ELMoGAN-O and ELMoGAN-10k).

Table 14: Comparison of different methods for cross-lingual mapping of contextual ELMo embeddings, evaluated
on the NER task. The best Macro F1 score for each language pair is in bold. The “Reference“ column
represents direct learning on the target language without cross-lingual transfer. The upper part of the
table contains a scenario of cross-lingual transfer from English to a less-resourced language, and the
lower part of the table shows a transfer between similar languages.

Source. Target. Dictionary Vecmap ELMoGAN-O ELMoGAN-10k MUSE Reference
English Croatian direct 0.385 0.274 0.365 0.024 0.810
English Estonian direct 0.554 0.693 0.728 0.284 0.895
English Finnish direct 0.672 0.705 0.780 0.229 0.922
English Latvian direct 0.499 0.644 0.652 0.216 0.818
English Lithuanian direct 0.498 0.522 0.553 0.208 0.755
English Slovenian direct 0.548 0.572 0.676 0.060 0.850
English Swedish direct 0.786 0.700 0.780 0.568 0.852
Croatian Slovenian direct 0.387 0.279 0.250 0.418 0.850
Croatian Slovenian triang 0.731 0.365 0.420 0.592 0.850
Estonian Finnish direct 0.517 0.339 0.316 0.278 0.922
Estonian Finnish triang 0.779 0.365 0.388 0.296 0.922
Finnish Estonian direct 0.477 0.305 0.324 0.506 0.895
Finnish Estonian triang 0.581 0.334 0.376 0.549 0.895
Latvian Lithuanian direct 0.423 0.398 0.404 0.345 0.755
Latvian Lithuanian triang 0.569 0.445 0.472 0.378 0.755
Lithuanian Latvian direct 0.263 0.312 0.335 0.604 0.818
Lithuanian Latvian triang 0.359 0.405 0.409 0.710 0.818
Slovenian Croatian direct 0.361 0.270 0.307 0.485 0.810
Slovenian Croatian triang 0.566 0.302 0.321 0.518 0.810
Average gap for the best cross-lingual transfer in each language 0.147

The upper part of the table shows a typical cross-lingual transfer learning scenario, where the model
is transferred from resource-rich language (English) to less-resourced languages. In this case, the
non-isomorphic ELMoGAN methods, particularly the ELMoGAN-10k variant, are superior to isomorphic
mapping with Vecmap and MUSE libraries. In this scenario, ELMoGAN-10k is always the best or close
to the best mapping approach. This is not always the case in the lower part of Table 14, which shows
the second most important cross-lingual transfer scenario: transfer between similar languages. In this
scenario, isomorphic mappings with Vecmap and MUSE are superior. We hypothesise that the reason
for the better performance of isomorphic mappings is the similarity of tested language pairs and less
violation of the isomorphism assumption the Vecmap and MUSE methods make. The results of the
mapping with the MUSE method support this hypothesis. While MUSE performs worst in most cases
of transfer from English, the performance gap is smaller for transfer between similar languages. MUSE
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is sometimes the best method for similar languages, but its results fluctuate considerably between lan-
guage pairs. The second possible factor explaining the results is the quality of the dictionaries, which
are in general better for combinations involving English. In particular, dictionaries obtained by triangula-
tion via English are of poor quality, and non-isomorphic translation might be more affected by imprecise
anchor points.

In general, even the best cross-lingual ELMo models lag behind the reference model without cross-
lingual transfer. The differences in Macro F1 score are small for some languages (e.g., 5.5% for English-
Swedish), but they are significantly larger for most languages. The average gap between the best
cross-lingual model in each language and the monolingual reference is 14.7% for ELMo models.

In Table 15, we present the results of cross-lingual transfer for contextual BERT models. We com-
pared massively multilingual BERT models (mBERT and XLM-R) with EMBEDDIA trilingual BERT
models: Croatian-Slovene-English (CSE), Finnish-Estonian-English (FinEst), and Lithuanian-Latvian-
English (LitLat).

Table 15: Comparison of different BERT models, evaluated on the NER task as a zero-shot transfer mode. The
best Macro F1 score for each language pair is in bold. The “Reference“ column represents a direct
learning on the target language without cross-lingual transfer. The upper part of the table contains a
scenario of cross-lingual transfer from English to a less-resourced language, and the lower part of the
table shows a transfer between similar languages.

Non-EMBEDDIA EMBEDDIA Best
Source. Target. mBERT XLM-R CSE FinEst LitLat monolingual
English Croatian 0.632 0.673 0.814 - - 0.886
English Estonian 0.799 0.833 - 0.832 - 0.936
English Finnish 0.780 0.840 - 0.902 - 0.957
English Latvian 0.714 0.756 - - 0.768 0.863
English Lithuanian 0.672 0.656 - - 0.702 0.863
English Slovenian 0.742 0.755 0.847 - - 0.933
Slovenian Croatian 0.751 0.769 0.841 - - 0.886
Finnish Estonian 0.809 0.833 - 0.869 - 0.936
Estonian Finnish 0.832 0.881 - 0.911 - 0.957
Lithuanian Latvian 0.785 0.816 - - 0.834 0.863
Latvian Lithuanian 0.718 0.731 - - 0.776 0.863
Croatian Slovenian 0.844 0.882 0.901 - - 0.933
Average gap for the best cross-lingual transfer in each language 0.052

The results show a clear advantage of EMBEDDIA trilingual models compared to massively multilingual
models. The trilingual models dominate in 11 out of 12 transfers, except the transfer from English
to Estonian, where XLM-R is better for 0.1%. The results also show that the transfer from a similar
language is more successful than transfer from English. The average difference between the most
successful transfer from English and the most successful transfer from a similar language averaged
over target languages is considerable, i.e. 4.6%.

Comparing cross-lingual transfer of ELMo (in Table 14) with variants of multilingual BERT (in Table 15),
the transfer with BERT is considerably more successful. This indicates that ELMo, while useful for
explicit extraction of embedding vectors, is less competitive with BERT in the model transfer, especially
if we consider that ELMo requires additional effort for preparation of contextual mapping datasets, while
BERT does not need it.

Finally, the comparison between the best cross-lingual models (in the bottom part of Table 15) and the
best monolingual models (reference scores taken from Table 6) shows that with cross-lingual transfer
we loose on average 5.2%. (if we excluded the transfer to Lithuanian, which has a problematic dataset,
we get even lower gap of 4.4%). This is a very encouraging result, showing that modern cross-lingual
technologies have made significant progress and can bridge the technological gap for less-resourced
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languages. Further, this score is for zero-shot transfer, while a few-shot transfer (with small amounts of
data in a target language) might be even closer to monolingual results.

4.2.2 POS-tagging

In Table 16, we present the results of cross-lingual transfer of contextual ELMo embeddings. We com-
pared isomorphic mapping with Vecmap and MUSE libraries and two non-isomorphic mappings using
GANs (ELMoGAN-O and ELMoGAN-10k), described in Section 2.2. The upper part of the table shows a
cross-lingual transfer learning scenario, where the model is transferred from resource-rich language (En-
glish) to less-resourced languages, and the lower part shows the transfer from similar languages.

Table 16: Comparison of different methods for cross-lingual mapping of contextual ELMo embeddings, evaluated
on the POS-tagging task. The best micro F1 score for each language pair is in bold. The “Reference“
column represents direct learning on the target language without cross-lingual transfer. The upper part
of the table contains a scenario of cross-lingual transfer from English to a less-resourced language, and
the lower part of the table shows a transfer between similar languages.

Source. Target. Dictionary Vecmap ELMoGAN-O ELMoGAN-10k MUSE Reference
English Croatian direct 0.705 0.629 0.620 0.687 0.963
English Estonian direct 0.728 0.678 0.647 0.729 0.969
English Finnish direct 0.729 0.531 0.578 0.715 0.966
English Latvian direct 0.681 0.625 0.607 0.655 0.940
English Lithuanian direct 0.693 0.621 0.592 0.640 0.233
English Russian direct 0.415 0.488 0.491 0.665 0.929
English Slovenian direct 0.719 0.637 0.584 0.723 0.966
English Swedish direct 0.839 0.688 0.649 0.848 0.933
Croatian Slovenian direct 0.551 0.421 0.435 0.683 0.966
Croatian Slovenian triang 0.734 0.434 0.461 0.833 0.966
Estonian Finnish direct 0.586 0.522 0.533 0.706 0.966
Estonian Finnish triang 0.673 0.514 0.543 0.690 0.966
Finnish Estonian direct 0.619 0.596 0.590 0.792 0.969
Finnish Estonian triang 0.703 0.603 0.583 0.837 0.969
Latvian Lithuanian direct 0.594 0.609 0.591 0.721 0.233
Latvian Lithuanian triang 0.628 0.627 0.583 0.724 0.233
Lithuanian Latvian direct 0.238 0.255 0.257 0.258 0.940
Lithuanian Latvian triang 0.229 0.257 0.254 0.256 0.940
Slovenian Croatian direct 0.558 0.467 0.495 0.662 0.963
Slovenian Croatian triang 0.735 0.492 0.502 0.784 0.963
Average gap for the best cross-lingual transfer in each language 0.100
Average gap for the best cross-lingual transfer in each language (without Lithuanian) 0.184

The isomorphic mappings with MUSE are superior in the POS tagging task, followed by Vecmap. The
non-isomorphic methods are inferior in this task. However, even the best cross-lingual ELMo models lag
considerably compared to the reference model without cross-lingual transfer. The average differences
in Macro F1 score is 22.3% (not taking into account Lithuanian which has a failed monolingual ELMo
model).

In Table 17, we present the results of cross-lingual transfer for contextual BERT models. We com-
pared massively multilingual BERT models (mBERT and XLM-R) with EMBEDDIA trilingual BERT
models: Croatian-Slovene-English (CSE), Finnish-Estonian-English (FinEst), and Lithuanian-Latvian-
English (LitLat).

The results show an advantage of EMBEDDIA trilingual models in transfer from similar languages,
while in the transfer from English, the massively multilingual XLM-R models are more successful. The
transfer from a similar language is more successful than the transfer from English (except for Latvian),
the average difference being 4.4%.
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Table 17: Comparison of different BERT models, evaluated on the POS-tagging task as a zero-shot knowledge
transfer. The best F1 score for each language pair is in bold. The upper part of the table contains a
scenario of cross-lingual transfer from English to a less-resourced language, and the lower part of the
table shows a transfer between similar languages.

Non-EMBEDDIA EMBEDDIA Best
Source. Target. mBERT XLM-R CSE FinEst LitLat monolingual
English Croatian 0.837 0.846 0.827 - - 0.982
English Estonian 0.799 0.849 - 0.851 - 0.977
English Finnish 0.799 0.857 - 0.839 - 0.980
English Latvian 0.756 0.828 - - 0.829 0.966
English Lithuanian 0.797 0.830 - - 0.819 0.855
English Russian 0.812 0.842 - - - 0.976
English Slovenian 0.807 0.834 0.819 - - 0.991
English Swedish 0.908 0.925 - - - 0.981
Slovenian Croatian 0.900 0.910 0.921 - - 0.982
Finnish Estonian 0.834 0.887 - 0.898 - 0.977
Estonian Finnish 0.813 0.889 - 0.890 - 0.980
Lithuanian Latvian 0.795 0.800 - - 0.778 0.966
Latvian Lithuanian 0.841 0.878 - - 0.878 0.855
Croatian Slovenian 0.895 0.919 0.924 - - 0.991
Average gap for the best cross-lingual transfer in each language 0.075

Similarly to NER, the comparison of ELMo cross-lingual transfer (in Table 16) with variants of multilingual
BERT (in Table 17) shows that the transfer with BERT is considerably more successful. The compari-
son between the best cross-lingual models (these are various BERT models in Table 17) and the best
monolingual models (reference scores taken from Table 8) shows that with the cross-lingual transfer we
lose on average 7.5%. However, for Lithuanian both XLM-R and LitLat BERT trained on Latvian beat
the monolingual reference models.

4.2.3 Dependency parsing

In Table 18, we present the results of cross-lingual transfer of contextual ELMo embeddings. We com-
pared isomorphic mapping with Vecmap and MUSE libraries and two non-isomorphic mappings using
GANs (ELMoGAN-O and ELMoGAN-10k). The upper part of the table shows a cross-lingual trans-
fer learning scenario, where the model is transferred from resource-rich language (English) to less-
resourced languages, and the lower part shows the transfer from similar languages.

The isomorphic mappings with Vecmap are superior in the dependency parsing task, followed by MUSE.
Similarly to POS-tagging, the non-isomorphic methods lag. Again, the best cross-lingual ELMo models
produce considerably lower scores than the reference model without cross-lingual transfer. The average
difference in UAS score is 10.38%, and in LAS it is 24.62% (not considering Lithuanian, which has a
failed monolingual ELMo model).

In Table 19, we present the results of cross-lingual transfer for contextual BERT models. We com-
pared massively multilingual BERT models (mBERT and XLM-R) with EMBEDDIA trilingual BERT
models: Croatian-Slovene-English (CSE), Finnish-Estonian-English (FinEst), and Lithuanian-Latvian-
English (LitLat).

The results show an advantage of EMBEDDIA trilingual models in transfer from English and similar
languages (the only difference being the transfer from Lithuanian to Latvian where the XLM-R is more
successful, but this dataset is tiny). The transfer from a similar language is more successful than the
transfer from English (except for Latvian), the average difference being 11.51%. The comparison be-
tween the best BERT cross-lingual models (from Table 19) and the best monolingual models (reference
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Table 18: Comparison of different contextual cross-lingual mapping methods for contextual ELMo embeddings,
evaluated on the dependency parsing task. Results are reported as the unlabelled attachments score
(UAS) and labelled attachment score (LAS). The best results for each language and type of transfer (from
English or similar language) are typeset in bold. The column “Direct“ stands for direct learning on the
target (i.e. evaluation) language without cross-lingual transfer. The languages are represented with their
international language codes ISO 639-1.

Train Eval. Vecmap ELMoGAN-O ELMOGAN-10k MUSE Direct
lang. lang. Dict. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
en hr direct 73.96 60.53 68.73 50.29 69.74 40.93 71.01 54.89 91.74 85.84
en et direct 62.08 40.62 52.01 30.22 44.80 24.59 58.76 34.07 89.54 85.45
en fi direct 64.40 45.32 50.80 25.23 42.65 22.66 55.03 37.61 90.83 86.86
en lv direct 77.84 65.97 68.51 49.47 67.09 39.41 76.26 63.45 88.85 82.82
en lt direct 67.92 39.62 58.87 28.30 57.36 21.13 66.04 37.74 55.05 24.39
en ru direct 72.00 16.62 60.74 8.92 60.68 8.18 65.23 14.77 89.33 83.54
en sl direct 79.01 59.84 68.82 48.20 67.04 43.34 77.18 56.53 93.70 91.39
en sv direct 82.08 72.74 74.39 59.70 73.81 59.63 82.17 72.78 89.70 85.07
hr sl direct 85.47 72.70 51.88 31.50 53.68 33.40 83.45 69.08 93.70 91.39
hr sl triang 87.70 76.51 54.34 36.32 59.61 38.83 87.70 76.40 93.70 91.39
et fi direct 79.14 66.09 55.67 36.85 51.35 30.66 76.66 60.01 90.83 86.86
et fi triang 80.94 67.35 52.63 29.94 52.83 28.70 76.96 63.37 90.83 86.86
fi et direct 75.81 57.32 54.69 33.99 53.27 32.28 74.96 58.14 89.54 85.45
fi et triang 79.04 61.86 53.64 32.73 53.86 30.13 76.74 60.27 89.54 85.45
lv lt direct 72.38 51.43 60.95 38.10 63.24 36.19 67.62 50.48 55.05 24.39
lv lt triang 75.24 50.48 62.48 38.48 63.62 36.19 74.29 53.33 55.05 24.39
lt lv direct 63.68 25.88 43.50 11.54 50.70 13.69 61.05 18.87 88.85 82.82
lt lv triang 61.86 25.94 49.24 13.31 51.91 13.89 57.95 17.45 88.85 82.82
sl hr direct 77.89 62.58 47.34 29.39 52.27 32.48 72.87 55.70 91.74 85.84
sl hr triang 81.32 67.51 50.96 32.82 56.17 35.96 78.63 63.96 91.74 85.84
Average gap for the best cross-lingual transfer in each language 6.56 17.93
Average gap for the best cross-lingual transfer in each language (without Lithuanian) 10.38 24.62

Table 19: Comparison of different BERT models, evaluated on the dependency parsing task as a zero-shot knowl-
edge transfer. The best LAS score for each language pair is in bold. The upper part of the table contains
a scenario of cross-lingual transfer from English to a less-resourced language, and the lower part of the
table shows a transfer between similar languages.

Non-EMBEDDIA EMBEDDIA Best
Source. Target. mBERT XLM-R CSE FinEst LitLat monolingual
English Croatian 42.13 54.00 56.04 - - 82.36
English Estonian 25.12 38.01 - 42.30 - 78.64
English Finnish 29.08 43.30 - 46.18 - 83.64
English Latvian 23.06 38.66 - - 44.93 74.32
English Lithuanian 21.32 35.00 - - 36.60 24.34
English Russian 43.41 48.19 - - - 80.90
English Slovenian 38.72 53.90 58.02 - - 85.38
English Swedish 60.96 70.79 - - - 80.93
Slovenian Croatian 52.61 63.66 67.60 - - 82.36
Finnish Estonian 37.34 53.98 - 63.08 - 78.64
Estonian Finnish 42.11 59.54 - 67.91 - 83.64
Lithuanian Latvian 19.79 29.98 - - 22.35 74.32
Latvian Lithuanian 27.08 45.38 - - 52.83 24.34
Croatian Slovenian 52.33 67.16 71.76 - - 85.38
Average gap for the best cross-lingual transfer in each language 12.93
Average gap for the best cross-lingual transfer in each language (without Lithuanian) 18.84
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scores taken from Table 10) shows that with the cross-lingual transfer we loose on average 12.93% (not
taking Lithuanian with a failed monolingual model into account).

Contrary to other tasks, and similarly to monolingual setting, the comparison of ELMo cross-lingual
transfer (in Table 18) with variants of multilingual BERT (in Table 19) shows that the transfer with ELMo
is more successful. We hypothesise that this is the result of better ELMo source models.

4.2.4 Cross-lingual analogies

We present the results of cross-lingual transfer of contextual ELMo embeddings in Table 20. We com-
pared isomorphic mapping with Vecmap and MUSE libraries and two non-isomorphic mappings using
GANs (ELMoGAN-O and ELMoGAN-10k). The upper part of the table shows a cross-lingual trans-
fer between English and lower-resourced language. The lower part of the table shows a cross-lingual
transfer between two similar languages.

Table 20: Comparison of different contextual cross-lingual mapping methods for contextual ELMo embeddings,
evaluated on the cross-lingual analogy task. Results are reported as the macro average distance be-
tween expected and actual word vector of the word w4. Two distance metrics were used: cosine (cos)
and Euclidean (euc). The best results (shortest distance) for each language and type of transfer (from
English or similar language) are typeset in bold. The column “Direct“ stands for monolingual evaluation
on the target (i.e. evaluation) language without cross-lingual transfer. The languages are represented
with their international language codes ISO 639-1.

Train Eval. Vecmap ELMoGAN-O ELMOGAN-10k MUSE Direct
lang. lang. Dict. cos euc cos euc cos euc cos euc cos euc
en hr direct 0.603 23.47 0.814 40.02 0.763 42.40 0.603 44.54 0.428 33.48
en et direct 0.578 27.44 0.791 43.74 0.752 45.01 0.588 51.32 0.435 42.38
en fi direct 0.645 59.26 0.745 39.21 0.694 40.82 0.588 52.45 0.410 41.65
en lv direct 0.635 21.46 0.809 44.62 0.778 46.58 0.623 50.79 0.466 42.75
en lt direct 0.697 30.39 0.812 38.67 0.719 40.84 0.598 41.55 0.389 29.37
en ru direct 0.573 64.35 0.771 41.49 0.705 43.28 0.574 53.20 0.429 44.24
en sl direct 0.613 32.29 0.836 38.42 0.731 40.07 0.664 42.92 0.408 28.16
en sv direct 0.615 64.66 0.787 37.35 0.720 38.84 0.587 47.11 0.478 39.71
hr sl direct 0.690 7.59 0.732 41.02 0.721 41.29 0.592 36.37 0.408 28.16
hr sl triang 0.715 23.89 0.729 40.91 0.727 41.45 0.564 35.22 0.408 28.16
et fi direct 0.545 11.08 0.796 47.04 0.775 48.08 0.549 50.27 0.410 41.65
et fi triang 0.816 33.33 0.799 46.50 0.759 47.97 0.527 49.06 0.410 41.65
fi et direct 0.598 11.27 0.685 41.99 0.653 43.10 0.551 48.47 0.435 42.38
fi et triang 0.692 30.25 0.725 41.23 0.644 43.09 0.554 48.42 0.435 42.38
lv lt direct 0.587 11.96 0.704 39.52 0.624 41.80 0.563 39.99 0.389 29.37
lv lt triang 0.681 19.77 0.711 39.81 0.621 41.77 0.570 40.17 0.389 29.37
lt lv direct 0.690 12.10 0.814 45.38 0.758 46.86 0.524 43.26 0.466 42.75
lt lv triang 0.704 18.18 0.812 45.28 0.752 46.47 0.525 43.36 0.466 42.75
sl hr direct 0.591 6.62 0.663 38.00 0.645 38.23 0.526 38.17 0.428 33.48
sl hr triang 0.572 20.02 0.665 37.45 0.651 38.44 0.501 36.92 0.428 33.48
Average gap for the best cross-lingual transfer in each language 0.118 -20.29

The results depend largely on the metric used for evaluation. With cosine distance, the mappings with
MUSE are the best in most cases. For language pairs, where MUSE method is not the best, it is a close
second. However, with Euclidean distance, Vecmap mappings perform the best in most language pairs,
especially between similar languages, where they significantly outperform even monolingual results.
This can be partially explained by the fact, that Vecmap method changes both the source and target
language embeddings during the mapping. For three language pairs, English-Finnish, English-Russian,
and English-Swedish, Vecmap mappings do not perform well using the Euclidean distance. In those
cases, ELMoGAN-O mapping performs the best.

In Table 21, we present the results of contextual BERT models on the cross-lingual analogy task. We
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compared massively multilingual BERT models (mBERT and XLM-R) with EMBEDDIA trilingual BERT
models: Croatian-Slovene-English (CSE), Finnish-Estonian-English (FinEst), and Lithuanian-Latvian-
English (LitLat). Recall that in the cross-lingual setting, the word analogy task tries to match each
relation in one language with each relation from the same category in the other language. For cross-
lingual contextual mappings, the word analogy task is less adequate, and we apply this task to words
in invented contexts. The upper part of the table shows a cross-lingual scenario from the resource-
rich language (English) to less-resourced languages, and the lower part shows the transfer from similar
languages.

Table 21: Comparison of different BERT models, evaluated on the word analogy task as a zero-shot knowledge
transfer. The best accuracy@5 score for each language pair is in bold. The upper part of the table
contains a scenario of cross-lingual transfer from English to a less-resourced language, and the lower
part of the table shows a transfer between similar languages.

Non-EMBEDDIA EMBEDDIA Best
Source. Target. mBERT XLM-R CSE FinEst LitLat monolingual
English Croatian 0.025 0.015 0.103 - - 0.278
English Estonian 0.018 0.029 - 0.074 - 0.393
English Finnish 0.001 0.013 - 0.114 - 0.285
English Latvian 0.006 0.036 - - 0.033 0.170
English Lithuanian 0.011 0.034 - - 0.042 0.214
English Russian 0.045 0.088 - - - 0.189
English Slovenian 0.007 0.055 0.091 - - 0.409
English Swedish 0.065 0.053 - - - 0.239
Slovenian Croatian 0.024 0.088 0.139 - - 0.278
Finnish Estonian 0.019 0.035 - 0.073 - 0.393
Estonian Finnish 0.003 0.020 - 0.137 - 0.285
Lithuanian Latvian 0.005 0.016 - - 0.032 0.170
Latvian Lithuanian 0.011 0.033 - - 0.068 0.214
Croatian Slovenian 0.013 0.086 0.178 - - 0.409
Average gap for the best cross-lingual transfer in each language 0.174

The results show an advantage of EMBEDDIA trilingual models in transfer from both English and similar
languages (the only difference being the transfer from English to Latvian, where the XLM-R is more
successful). The transfer from a similar language is mostly more successful than the transfer from
English.

4.2.5 SuperGLUE tasks

In the cross-lingual scenario, we tested two models (mBERT, CroSloEngual) and transfer between En-
glish and Slovene datasets (both directions). For Slovene as the source language, we used the available
human translated examples. To make the comparison balanced, we only used the same examples from
English datasets. We tested both zero-shot transfer (no training data in the target language) and few-
shot transfer. In the few-shot training, we used 10 additional examples from the target language for each
task. The fine-tuning hyperparameters are the same as in the monolingual setup.

The results are presented in Table 22. Averaged over all tasks, neither zero-shot nor few-shot learning
improves the Most frequent baseline. In general, the models were quite unsuccessful on BoolQ, CB,
MultiRC, and WSC but showed promising results on COPA and RTE. The low overall performance can
be explained by a low number of training examples in the source language. If we take a closer look at
COPA and RTE, we can observe that CroSloEngual shows promising results in zero-shot transfer and
improves significantly by adding new examples in the target language. Some individual results stand out,
e.g. CroSloEngual scoring 70.0 on BoolQ, a significant decrease in performance of mBERT comparing
zero-shot and few-shot results on the RTE task, and the 45.4/60.0 score of CroSloEngual on CB. We
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Table 22: Cross-lingual results on human translated SuperGLUE test sets. The best results for zero-shot and
few-shot scenarios are in bold.

Evaluation Model source target Avg BoolQ CB COPA MultiRC RTE WSC
acc. F1/acc. Acc. F1a/EM Acc. Acc.

Zero-shot
CroSloEngual english slovene 50.0 63.3 23.0/52.7 54.6 53/9.7 62.1 50.7

slovene english 52.2 63.3 45.4/60 59.0 56.3/12.5 55.2 48.6

mBERT english slovene 51.9 66.6 28.4/42.7 50.2 42.4/8.3 69 64.4
slovene english 46.9 33.3 31.1/55.5 46.2 56.7/11.5 58.6 65.8

Few-shot
CroSloEngual english slovene 50.7 63.3 23.0/52.7 56.4 50.6/11.5 72.4 43.2

slovene english 49.3 70.0 23.0/52.7 62.2 50.6/11.1 55.2 39.7

mBERT english slovene 43.8 50.0 23.0/52.7 49.8 51.1/8.3 55.2 40.4
slovene english 45.6 43.3 23.0/52.7 52.8 56.9/11.8 65.5 39.7

Most frequent 52.4 63.3 23.0/52.7 50.0 77.3/0.3 58.6 65.8

can conclude that for the difficult SuperGLUE benchmark, the cross-lingual transfer is challenging but
not impossible.

In the future, we plan to expand the current set of experiments in several directions. First, we will train
English models on the full SuperGLUE datasets and transfer them to Slovene human and machine-
translated datasets. Second, we will train Slovene models on the combined machine and human trans-
lated datasets and transfer them to full English datasets. We will combine Slovene and English training
sets and apply the models to both languages. Finally, we will also combine training for several tasks and
test transfer learning scenarios.
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5 Conclusions and further work
We performed a large scale evaluation of monolingual and cross-lingual embedding approaches devel-
oped within WP1 of the EMBEDDIA project. We concentrated on recently most successful contextual
embeddings, in particular ELMo and BERT models. For ELMo models, we compared cross-lingual map-
pings with and without isomorphic assumption. For BERT models, we compared monolingual models,
massively multilingual models, and trilingual models. In the evaluation, we used several tasks: NER,
POS-tagging, dependency parsing, CoSimLex, analogies, and SuperGLUE benchmarks. We checked
the performance of models on nine EMBEDDIA languages: Croatian, English, Estonian, Finnish, Lat-
vian, Lithuanian, Russian, Slovene, and Swedish.

Overall, the results show that EMBEDDIA ELMo models are superior to other ELMo models, but in
general, there is a clear advantage of BERT models over ELMo models. In the monolingual setting,
monolingual and trilingual BERT models are very competitive, and frequently the EMBEDDIA BERT
models dominate. In the cross-lingual setting, BERT models are much more successful compared
to ELMo models. The EMBEDDIA trilingual models are mostly better than the massively multilingual
models. There are a few exceptions to these general conclusions. The main outlier is the dependency
parsing task, where EMBEDDIA ELMo embeddings are better than BERT models.

We can conclude that cross-lingual transfer of trained prediction model is feasible with the presented
approaches, especially from similar languages and using specifically designed EMBEDDIA trilingual
models. The performance of the best cross-lingual transferred models lags behind the monolingual
models for only a few percent, confirming our findings from Deliverable D1.6, described in (Robnik-
Šikonja et al., 2021). The exact lag depends on the task and language.

In future work, we will apply the findings to the remaining tasks in WP3, WP4, and WP5 and integrate
the developed models into platforms developed in WP6.
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6 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
ELMo embeddings Clarin.si hdl.handle.net/11356/1277 Public (GPL v3)

CroSloEngual BERT embeddings huggingface.co/EMBEDDIA/crosloengual-bert Public(CC-BY 4.0)
hdl.handle.net/11356/1317 Public(CC-BY 4.0)

FinEst BERT embeddings huggingface.co/EMBEDDIA/finest-bert Public(CC-BY 4.0)
doi.org/10.15155/9-00-0000-0000-0000-0021CL Public(CC-BY 4.0)

LitLatEng BERT embeddings huggingface.co/EMBEDDIA/litlat-bert Public(CC-BY 4.0)
hdl.handle.net/20.500.11821/42 Public(CC-BY 4.0)

SloBERTa embeddings huggingface.co/EMBEDDIA/sloberta Public(CC-BY 4.0)
hdl.handle.net/11356/1397 Public(CC-BY 4.0)

Est-RoBERTa embeddings huggingface.co/EMBEDDIA/est-roberta Public(CC-BY 4.0)
doi.org/10.15155/9-00-0000-0000-0000-00226L Public(CC-BY 4.0)

Word analogy dataset hdl.handle.net/11356/1261 Public (CC-BY-SA)
Crosslingual NER github.com/EMBEDDIA/crosslingual-NER Public (GPL v3)
Vecmap changes github.com/EMBEDDIA/vecmap-changes Public (GPL v3)

ELMoGAN mapping method github.com/EMBEDDIA/elmogan Public (MIT)
SuPAR ELMo dependency parser github.com/EMBEDDIA/supar-elmo Public (GPL v3)

POS-tagger using ELMo github.com/EMBEDDIA/pos-tagging-elmo Public (GPL v3)
DP as Sequence Labeling with BERT github.com/EMBEDDIA/dep2label-transformers Public (MIT)

CoSimLex dataset hdl.handle.net/11356/1308 Public (CC-BY-SA)
Slovene SuperGLUE translation hdl.handle.net/11356/1380 Public (CC-BY-SA)
Slovene SuperGLUE evaluation github.com/EMBEDDIA/jiant_slovene Public (MIT)
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Ulčar, M., Vaik, K., Lindström, J., Dailidėnaitė, M., & Robnik-Šikonja, M. (2020). Multilingual culture-
independent word analogy datasets. In Proceedings of the 12th Language resources and evaluation
conference (pp. 4067–4073).
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