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1 Introduction
The EMBEDDIA project aims to improve cross-lingual transfer of language resources and trained mod-
els using word embeddings and cross-lingual word embeddings. EMBEDDIA works with nine languages:
English, Slovene, Croatian, Estonian, Lithuanian, Latvian, Russian, Finnish, and Swedish. We pre-
sented the basic description of embeddings and cross-lingual embeddings in Deliverable D1.1 Datasets,
benchmarks and evaluation metrics for cross-lingual word embeddings. To make this document self-contained,
we first repeat some basic explanations in Section 1.1, which a reader acquainted with embeddings can
skip. Section 1.2 outlines the context of this deliverable within the EMBEDDIA project and presents the
structure of this report.

1.1 Introducing embeddings

To process text, neural networks require numerical representation of the given text (words, sentences,
documents), referred to as text embeddings. In this report we focus on word embeddings, as the main
ingredient of text embeddings.

Word embeddings are representations of words in numerical form, as vectors of typically several hundred
dimensions. The vectors are used as an input to machine learning models; for complex language
processing tasks these are typically deep neural networks. The embedding vectors are obtained from
specialized neural network-based embedding alsogirhms, e.g., word2vec (Mikolov, Le, & Sutskever,
2013), GloVe (Pennington et al., 2014), or fastText (Bojanowski et al., 2017). For training, the embedding
algorithms use large monolingual text collections (called corpora) that encode important information
about word meaning as distances between the embedded vectors. To enable downstream machine
learning on text understanding tasks, the embeddings shall retain semantic relations between words,
which should be preserved even across languages.

Currently, the best known word embeddings are produced by the word2vec method (Mikolov, Sutskever,
et al., 2013), which we use as a baseline in this report. The problem with word2vec embeddings is
their failure to express polysemous words. During training of an embedding, all senses of a given word
(e.g., paper as a material, as a newspaper, as a scientific work, and as an exam) contribute relevant
information in proportion to their frequency in the training corpus. This causes the final vector to be
placed somewhere in the weighted middle of all the word’s meanings. Consequently, rare meanings
of words are poorly expressed with word2vec and the resulting vectors do not offer good semantic
representations. For example, none of the 50 closest vectors of the word paper is related to science1.
This problem is addressed by contextual embeddings, where the idea is to generate a different vector for
each context a word appears in, with the notion of context typically defined as the surrounding sentence.
To a large extent, this solves the problems with word polysemy, i.e. the context of a sentence is typically
enough to disambiguate different meanings of a word for humans and so it is for the learning algorithms.
In our work we mostly use, analyze, and improve upon currently the most successful approaches to
contextual word embeddings, ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019).

The state-of-the-art in embeddings is rapidly progressing. Modern word embedding spaces exhibit
similar structures across languages, even when considering distant language pairs like English and
Vietnamese (Mikolov, Le, & Sutskever, 2013). This means that embeddings independently produced
from monolingual text resources can be aligned (Mikolov, Le, & Sutskever, 2013), resulting in a com-
mon cross-lingual representation, called cross-lingual embedding, which allows for fast and effective
integration of information in different languages.

1A demo showing near vectors computed with word2vec from Google News corpus is available at http://bionlp-www.utu
.fi/wv_demo/.
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1.2 Objectives and structure of the report

The objectives of workpackage WP1 of the EMBEDDIA project are to advance cross-lingual and context-
dependent word embeddings and test them with deep neural networks. This report describes the results
of the work performed in T1.1 in the first 12 months of project duration. The specific objective of T1.1 is to
advance cross-lingual and multilingual word embeddings technology. The main contributions presented
in this report (in the order of appearance) are as follows:

1. development of a dataset and a novel alignment approach for contextual embeddings (e.g., ELMo)
based on a dictionary and parallel corpus, described in Section 3.1;

2. initial development of a novel method for cross-lingual alignment of non-contextual and contextual
embeddings based on locally isomorphic transformations, presented in Section 3.2;

3. evaluation of the main existing cross-lingual mapping techniques using both intrinsic and extrinsic
tasks, described in Section 4;

4. development of publicly available culture-independent monolingual analogy datasets for all EM-
BEDDIA languages, and culture-independent cross-lingual analogy datasets for all combinations
of EMBEDDIA languages, described in Section 4.2 and in the appended paper by Ulčar & Robnik-
Šikonja (2019b), submitted to the LREC-2020 conference;

5. development of a novel network topology based approach for language comparison that may be
useful in unsupervised alignment, described in Section 5 and in the appended paper by Škrlj &
Pollak (2019), published in Proceedings of the International Conference on Statistical Language
and Speech Processing 2019.

The above objectives and contributions are slightly different from the ones anticipated in the EMBED-
DIA project proposal: at the time of proposal writing we namely anticipated that contextual embedding
methods will need to be developed from scratch. However, due to recently developed highly successful
contextual embedding approaches ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), part of the
original EMBEDDIA objectives were already successfully achieved by AllenNLP and Google research
groups, which have huge amounts of resources available (AllenNLP developed ELMo and Google de-
veloped BERT). While (according to the definitions in the EMBEDDIA proposal) ELMo and BERT are
context-dependent and dynamic, and as such address the objectives of Task 1.2 of EMBEDDIA, we
describe them in this deliverable (D1.2 addressing Task 1.1), given that they represent state-of-the-art
techniques also for cross-lingual and multilingual embedding technologies. Specifically, a variant of
BERT, called multilingual BERT, was trained on 104 languages and works well in cross-lingual setting
with no need for any further alignments.2 Moreover, both ELMo and BERT use subword input, which
is very appropriate for morphologically rich languages (addressing also some of the objectives of Task
1.3). Given the described developments, we have therefore in Task 1.1 re-focused our research on
the challenging remaining issues of cross-lingual alignment for contextual embeddings rather than on
non-contextual embeddings as originally planned.

This report is split into eight further sections. In Section 2, we describe non-contextual and contextual
embeddings used, followed by the description of existing cross-lingual embeddings in Section 2.3. As re-
cently contextual embeddings have turned out to be much more successful compared to non-contextual
embeddings, we propose two new approaches for alignment of these embeddings in Section 3. We
present the evaluation scenarios and the results of experimental evaluation of cross-lingual mappings
in Section 4. Section 5 presents an approach to detecting language similarity, potentially useful to pre-
dict the success of unsupervised cross-lingual embeddings by focusing their application to most similar
languages. Availability of new resources produced in this work is discussed in Section 6. Section 7
summarises our conclusions regarding cross-lingual mappings between embeddings and outlines the
plans for further work. The two appendices include the papers by Ulčar & Robnik-Šikonja (2019b) and
by Škrlj & Pollak (2019).

2For BERT, which uses a novel non-recurrent deep architecture, called Transformer, extraction of explicit numeric vectors (i.e.
embeddings) is questionable, and the model is mostly used as a whole, with only the last layer removed and retrained.
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2 Background: Text embedding models and cross-
lingual embeddings

Historically, text embeddings started with sparse representation of documents in the bag-of-words form
and latent semantic analysis, i.e. matrix decomposition of term-term matrices Landauer et al. (1998).
The resulting word vectors are linear combinations of original words, but the linearity was soon sacri-
ficed for better preservation of semantic properties with neural network-based embeddings which we
present in Section 2.1. We briefly outline the most popular word2vec (Mikolov, Le, & Sutskever, 2013)
embedding approach. As these embeddings have problems with ambiguous words, recent develop-
ments take the context of words into account, as discussed in Section 2.2. We present the ELMo and
BERT embeddings, which are based on deep neural language models.

2.1 Non-contextual embeddings

As deep neural networks became the predominant learning method for text analytics, it was quite natural
that they also gradually became the method of choice for text embeddings. A procedure, common to
these embeddings, is to train a neural network on one or more semantic text classification tasks and
then take the weights of the trained neural network as a representation for each text unit (word, n-gram,
sentence, or document).

The labels required for training such a classifier come from huge corpora of available texts. Typically,
they reflect word co-occurrence, like prediction of the next or previous word in a sequence, and filling in
missing words, but may be extended with other related tasks, such as sentence entailment. The positive
instances for training are obtained from the text in the used corpora, while the negative instances are
mostly obtained with negative sampling (sampling from instances that are highly unlikely related).

As an example of non-contextual embedding methods, we present word2vec method in Section 2.1.1,
which trains a shallow neural network and produces a single vector for each word. In Section 2.2,
we continue with contextual word embeddings which train deeper networks and combine weights from
different layers to produce unique vectors for each word occurrence, based on the sentence it appears
in. These contextual word embeddings are the current state of the art in text representation.

2.1.1 Word2vec embedding

Mikolov, Sutskever, et al. (2013) introduced the word2vec method, and made it immensely popular by
training it on a huge Google News data set (about 100 billion words), and making the pretrained 300-
dimensional vectors for 3 million English words and phrases publicly available.3 Word2vec consists of
two related methods, continuous bag of words (CBOW) and skip-gram. Both methods construct a neural
network for classification of co-occurring words by taking a word and its d preceding and succeeding
words, e.g., ± 5 words.

CBOW takes the neighboring words and predicts the central word. Conversely, the skip-gram variant
takes the word and predicts its neighborhood. The actual neural network is similar in both cases, i.e.
there is one word on the input (either the neighboring word for CBOW or central word for skip-gram
method) and one word on the output, both represented in one-hot encoding. Empirical evaluations have
shown a slight advantage of skip-gram model over CBOW for many tasks, therefore we focus on it in the
reminder of this section.

The words and their contexts (one word at a time) appearing in the training corpus constitute the training
instances of the classification problem. Assuming that we have the context window of size d = 2 and
the sentence Jana is watching her linear algebra lecture with new glasses, we generate the following positive
instances for the word linear :

3https://code.google.com/archive/p/word2vec/

7 of 42

https://code.google.com/archive/p/word2vec/


ICT-29-2018 D1.2: Initial cross-lingual embeddings

(linear, watching), (linear, her), (linear, algebra), (linear, lecture).

The first word of the training pair is presented at the input of the network in 1-hot-encoding represen-
tation. The network is trained to predict the second word. The difference in prediction is evaluated
using the criterion function. For a sequence of T training words w1,w2,w3, ... ,wT , the skip-gram model
maximizes the average log probability of

1

T

T∑
t=1

∑
−d≤j≤d ,j 6=0

log p(wt+j |wt).

To make the process efficient for the 100 billion Google News corpus, the actual implementation uses
several approximation tricks. The biggest problem is the estimation of p(wt+j |wt) which normally requires
a computation of dot product between wt and all other words in the vocabulary. Mikolov, Sutskever, et al.
(2013) solve this issue with negative sampling, which replaces log p(wt+j |wt) terms in objective function
with the results of logistic regression classifiers trained to distinguish between similar and dissimilar
words.

Once the network is trained we can produce the vectors for each word in the vocabulary. One-hot-
encoding of a word only activates one input connection for each hidden layer neuron. The weights on
these connections constitute the embedding vector for the given input word. In principle, we could return
the weights between the input and the hidden layer or between the hidden layer and the output layer,
but mostly the former weights are used.

The properties of the resulting word embeddings depend on the size of the context. For lower number
of neighboring words, we get embeddings that perform better on syntactic tasks (e.g., ± 5 words). For
larger neighborhoods (e.g., ± 10 words) the embeddings better express semantic properties. There is
also some difference between the CBOW and skip-gram variant. CBOW performs well for syntactic
problems, while skip-gram variant works comparably well for syntactic problems as CBOW, and better
for semantic problems.

2.1.2 fastText embedding

Bojanowski et al. (2017) developed the fastText method, built upon the word2vec method but introduced
a subword information, which is more appropriate for morphologically rich languages such as the ones
processed in EMBEDDIA. They took skip-gram method from word2vec and edited the scoring function
used to calculate the probabilities (see Section 2.1.1). In the word2vec method, this scoring function is
equal to a dot product between two word vectors. For words wt and wc and their respective vectors ut
and uc , the scoring function s is equal to s(wt ,wc) = u>t uc . The scoring function in fastText is a sum of dot
products for each subword (i.e. character n-gram) that appears in the word wt :

s(wt ,wc) =
∑
g∈Gt

z>g uc,

where zg is a vector representation of an n-gram (subword) g and Gt is a set of all n-grams (subwords)
appearing in wt . As fastText is conceptually very similar to word2vec, we do not treat them as different
methods, but only test fastText.

2.2 Contextual embeddings

With word2vec embedding, the text mining community gained a powerful tool and soon the word2vec
precomputed embeddings became a popular choice for the first layers of most classification deep neural
networks. The problem with word2vec embeddings is their failure to express polysemous words. Con-
textual word embeddings generate a different vector for each context a word appears in and the context
is typically defined sentence-wise. This solves the problems with word polysemy to a large extent.
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In this section, we describe different approaches to take word context into account used in modern
embeddings. There are two baseline premises common to them, the concepts of language model
and transfer learning. We first describe language models below, while transfer learning approaches
are discussed together with the two most successful implementations to contextual word embeddings,
ELMo (Peters et al., 2018) in Section 2.2.1 and BERT (Devlin et al., 2019) in Section 2.2.2.

Language model (LM) is a probabilistic prediction model that learns a distribution of words in a given
language. For example, for a sequence of words w1w2 ...wn, a language model returns its probabil-
ity p(w1w2 ...wn). Frequently, language models are used to predict the next word in a sequence, i.e.
p(wn+1|w1w2 ...wn). Traditionally, language models were trained on large textual corpora using n-grams,
assuming independence of words beyond certain distance. For example, if we assume that a word only
depends on the previous one in the sequence p(wn+1|w1w2 ...wn) = p(wn+1|wn), we can only count all joint
occurrences of pairs of words. Let c(wi ) denote a count of word wi in a corpus and c(wiwj) a count of
joint occurrence of words wi and wj . To compute the probability of the next word using bigrams we then
use

p(wn+1|wn) =
c(wnwn+1)

c(wn)
.

The probability of a sequence is retrieved using Bayes chain rule for conditional probabilities

p(w1,w2, ...wn) = p(w1)p(w2|w1) ... p(wn|w1w2 ...wn−1).

Using Markov independence assumption for sequences longer than 2 words, we get

p(w1,w2, ...wn) = p(w1)p(w2|w1) ... p(wn|wn−1).

The remaining conditional probabilities can be estimated using bigram and unigram counts as above.

In real texts, Markov independence assumption is not true even for very long sequences (think of split
verbs or dependent sentences separating a noun and its verb). The n-gram counting method therefore
does not work well. Additionally, frequencies of n-grams for n > 3 become statistically very unreliable
even with huge corpora.

Lately, language models are trained using deep neural networks. If a neural network is trained to predict
the next word in a sequence from a large text corpus, the sequences can actually be much longer and
we still get reliable results. Language models can also be trained in the reverse direction, i.e. for a back-
wards language model (←−LM) we train a network to predict p(wi |wi+1wi+2 ...wi+k). Further generalization of
LMs are called masked language models (MLMs) which predict a missing word anywhere in a sequence,
mimicking a gap filling cloze test p(wi |wi−bwi−b+1 ...wi−1wi+1 ...wi+f ). For n-gram approach this would be
unfeasible but neural networks are flexible enough and can successfully predict the gaps.

2.2.1 ELMo

ELMo (Embeddings from Language Models) embedding (Peters et al., 2018) is an example of a state-of-
the-art pre-trained transfer learning model. The first layer is a CNN layer, which operates on a character
level. It is context independent, so each word always gets the same embedding, regardless of its
context. It is followed by two biLM (bidirectional language model) layers. A biLM layer consists of two
concatenated LSTMs. In the first LSTM, we try to predict the following word, based on the given past
words, where each word is represented by the embeddings from the CNN layer. In the second LSTM,
we try to predict the preceding word, based on the given following words. It is equivalent to the first
LSTM, just reading the text in reverse.

The actual embeddings are constructed from the internal states of a bidirectional LSTM neural network.
Higher-level layers capture context-dependent aspects, while lower-level layers capture aspects of syn-
tax (Peters et al., 2018). To train the ELMo network, we put one sentence at a time on the input and
the representation of each word depends on the whole sentence, i.e. it reflects the contextual features
of the input text and thereby polysemy of words. For an explicit word representation, one can use only
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the top layer but more frequently one combines all layers into a vector. The representation of a word or
a token tk at position k is composed from

Rk = {xLM
k ,
−→
h

LM

k,j ,
←−
h

LM

k,j | j = 1, ... , L} (1)

where L is the number of layers (ELMo uses L = 2), index j refers to level of bidirectional LSTM network,
x is the initial token representation (either word or character embedding), and hLM denotes hidden layers
of forward or backward language model.

In NLP tasks, any set of these embeddings may be used, however, a weighted average is usually used.
The weights of the average are learned during the training of the model for the specific task. Additionally,
an entire ELMo model can be fine-tuned on a specific end task.

At the time of its introduction, ELMo has been shown to outperform previous pre-trained word embed-
dings like word2vec and GloVe on many NLP tasks, e.g., question answering, named entity extraction,
sentiment analysis, textual entailment, semantic role labeling, and coreference resolution (Peters et al.,
2018).

We trained high-quality ELMo embedding on large corpora for all EMBEDDIA languages (Ulčar &
Robnik-Šikonja, 2019a). Details of the training and properties of the obtained models are described
in D1.3 Initial context-dependent and dynamic embeddings technology.

2.2.2 BERT

BERT (Bidirectional Encoder Representations from Transformers) embedding (Devlin et al., 2019) gen-
eralises the idea of language models to masked language models, inspired by the cloze test, which
tests understanding of a text by removing certain portion of words, which the participant is asked to
replace. The masked language model randomly masks some of the tokens from the input, and the task
of LM is to predict the missing token based on its neighbourhood. BERT uses transformer architec-
ture of neural networks (Vaswani et al., 2017) in a bidirectional sense and further introduces the task
of predicting whether two sentences appear in a sequence. The input representation of BERT are se-
quences of tokens representing subword units. The input is constructed by summing the embeddings of
corresponding tokens, segments, and positions. Some very common words are kept as single tokens,
others are split into subwords (e.g., common stems, prefixes, suffixes—if needed down to a single letter
tokens). The original BERT project offers pre-trained English, Chinese and multilingual models. The
latter is trained on 104 languages simultaneously and covers all EMBEDDIA languages.

To use BERT in classification tasks only requires adding connections between its last hidden layer and
new neurons corresponding to the number of classes in the intended task. The fine-tuning process is
applied to the whole network and all of the parameters of BERT and new class specific weights are
fine-tuned jointly to maximize the log-probability of the correct labels.

BERT has shown excellent performance on 11 NLP tasks: 8 from GLUE language understanding bench-
mark (Wang et al., 2018), question answering, named entity recognition, and common-sense inference
Devlin et al. (2019). The performance on monolingual tasks has often improved upon ELMo. How-
ever, while multilingual BERT covers 104 languages, its subword dictionary is composed of tokens
for all involved languages, which might not be optimal for a particular language. Further, similarly to
ELMo, its training and tuning are computationally highly demanding tasks, out of reach for most re-
searchers.

We discuss issues on training ELMo and BERT models for EMBEDDIA languages in deliverable D1.3
Initial context-dependent and dynamic embeddings technology.
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2.3 Cross-lingual embeddings

Word embeddings represent each word in a language as a vector in a high dimensional vector space so
that the relations between words in a language are reflected in their corresponding embeddings. Cross-
lingual embeddings attempt to map words represented as vectors from one vector space to the other, so
that the vectors representing words with the same meaning in both languages are as close as possible.
Søgaard et al. (2019) present a detailed overview and classification of cross-lingual methods.

We present approaches to find cross-lingual mappings sorted into two groups. The first group of ap-
proaches, presented in Section 2.3.1, uses monolingual embeddings with the optional help from bilin-
gual dictionary to align the embeddings. The second group of approaches, presented in Section 2.3.2,
uses bilingually aligned (comparable or even parallel) corpora for joint construction of embeddings in all
involved languages.

In this report, we empirically evaluate only the methods from the monolingual mapping approaches
(Section 4) The second group of methods projecting into a joint space is recently dominated by the
contextual embedding methods, e.g., BERT (Devlin et al., 2019), described in Section 2.2.2. Pretrained
multilingual BERT is typically used as starting model to be fine-tuned for a particular task, without
explicitly extracting embedding vectors. We report the evaluation results of BERT used directly on
downstream tasks in several languages in D1.4 Initial deep network architecture.

2.3.1 Alignment of monolingual embeddings

Cross-lingual alignment methods take precomputed word embeddings for each language and align
them with an optional use of bilingual dictionaries. Two types of monolingual embedding alignment
methods exist. The first type of approaches map vectors representing words in one of the languages
into the vector space of the other language (and vice-versa). The second type of approaches maps
embeddings from both languages into a common vector space. The goal of both types of alignments
is the same: the embeddings for words with the same meaning must be as close as possible in the
final vector space. A comprehensive summary of existing approaches can be found in (Artetxe et al.,
2018a).

The open source implementation of the method described in Artetxe et al. (2018b,a), named vecmap4,
is able to align monolingual embeddings either using supervised, semi-supervised or unsupervised
approach.

The supervised approach requires the use of a large bilingual dictionary, which is used to match embed-
dings of same words. Then embeddings are aligned using the Moore-Penrose pseudo-inverse which
minimizes the sum of squared Euclidean distances. The algorithm always converges but can be caught
in a local maximum when the initial solution is poor. To overcome this, several methods (stochas-
tic dictionary introduction, frequency-based vocabulary cutoff, etc) are used that help the algorithm to
climb out of local maximums. A more detailed description of the algorithm is given in (Artetxe et al.,
2018b).

The semi-supervised approach uses a small initial seeding dictionary, while the unsupervised approach
is run without any bilingual information. The latter uses similarity matrices of both embeddings to build
an initial dictionary. This initial dictionary is usually of poor but sufficient quality for later processing.
After the initial dictionary (either by seeding dictionary or using similarity matrices) is built, the iterative
algorithm is applied. The algorithm first computes optimal mapping using pseudo-inverse approach
for the given initial dictionary. Then optimal dictionary for the given embeddings is computed and the
procedure is repeated with the new dictionary.

When constructing mappings between embedding spaces, a bilingual dictionary can be helpful as its
entries can be used as anchors for the alignment map for supervised and semi-supervised approaches.

4https://github.com/artetxem/vecmap
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However, lately researchers have proposed approaches that do not require the use of bilingual dic-
tionary, but rely on adversarial approach (Conneau et al., 2018) or use the frequencies of the words
(Artetxe et al., 2018b) in order to find a required transformation. These are called unsupervised ap-
proaches.

The Facebook research project MUSE5 can find a cross-lingual map with the use of bilingual dictio-
nary (supervised) or without one (unsupervised approach). Unsupervised approach works by using
adversarial training to find the starting linear mapping. From this mapping, a synthetic dictionary is ex-
tracted, which is used to fine-tune the starting mapping using Procrustes approach, described in detail
by Conneau et al. (2018).

2.3.2 Projecting into a common vector space

To construct a common vector space for all involved languages, we require a large aligned bilingual
or multilingual parallel corpus. The constructed embeddings must map the same words in different
languages as close as possible in the common vector space. The availability and quality of alignments
in training set corpus may present an obstacle. While Wikipedia, subtitles, and translation memories
are good sources of aligned texts for large languages, less-resourced languages are not well-presented
and building embeddings for such languages is a challenge.

LASER6 (Language-Agnostic SEntence Representations) is a Facebook research project focusing on
joint sentence representation for many languages (Artetxe & Schwenk, 2019). Similarly to machine
translation architectures, it uses an encoder-decoder architecture. The encoder is trained on a large
parallel corpora, translating a sentence in any language or script to a parallel sentence in either English
or Spanish (whichever exists in the parallel corpus), thereby forming a joint representation of entire
sentences in many languages in a shared vector space. The project focused on scaling to a large
number of languages, currently the encoder supports 93 different languages, including all EMBEDDIA
languages. The resulting joint embedding can be transformed back into a sentence using decoder for
the specific language. This allows training a classifier working on data from just one language and use
it on any language supported by LASER.

Multilingual BERT embedding (Devlin et al., 2019) also projects many languages into a joint space. Its
description is contained in Section 2.2.2.

3 New contextual cross-lingual mapping approaches
Context-dependent models calculate a word embedding for each occurrence of a word, thus a word gets
a different vector for each context. Mapping such vector spaces from different languages is not straight-
forward. Schuster et al. (2019) observed that vectors representing different occurrences of each word
form clusters. They averaged the vectors for each word occurrence so that each word was represented
with only one vector, a so called anchor. They applied the same procedure to both languages and
aligned the anchors using supervised or unsupervised method of MUSE (Conneau et al., 2018). This
method, however, comes with a loss of information. Many words have multiple meanings, which can
not be simply averaged. For example, the word »mouse« can mean a small rodent or a computer
input device. Context-dependent models correctly assign significantly different vectors to these two
meanings, since they tend to appear in very different contexts. Further, a word in one language can be
represented with several different words (one for each meaning) in another language, or vice versa. By
averaging the contextual embedding vectors, we lose these distinctions in meaning. We propose two
new methods which take different contexts and word meanings into account. The first approach uses
parallel corpus and bilingual dictionary, but still uses the monolingual embedding mapping methods
(described in Section 2.3.1) for alignment of contextual embeddings. The second approach uses the

5https://github.com/facebookresearch/MUSE
6https://github.com/facebookresearch/LASER
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same resources but drops the assumption that the aligned spaces are isomorphic. These two methods
are still work in progress and have not been satisfactorily evaluated in this report.

3.1 Contextual mapping with parallel corpus and dictionary assum-
ing isomorphic spaces

We propose a novel method for alignment of contextual embeddings based on the idea of matching
contexts in different languages. For that we require two resources, a sentence aligned parallel corpus
of the two involved languages and their bilingual dictionary. The dictionary alone is not sufficient, as the
words are not given in the context, therefore it cannot help for alignment of contextual embeddings. The
parallel corpus alone is also not sufficient as the alignment is on the level of paragraphs or sentences,
and not on the level of words. By combining both resources, we take a translation pair from the dictionary
and find sentences in the parallel corpus, with one word from the pair present in the sentence of the first
language and the second word from the translation pair present in the second language sentence. As a
result we get matching words in matching contexts (sentences). With large enough collection of words
in matching contexts, we compute their contextual embedding vectors using ELMo and align them with
any of the non-contextual mapping methods, e.g., vecmap library (Artetxe et al., 2018a).

Our initial test of the described approach for cross-lingual mapping uses English and Slovene languages.
We used a parallel corpus of EU translation memories (Tiedemann, 2012) from OPUS web page7, in
addition to a large list of translation pairs from Oxford English-Slovene bilingual dictionary with about
300,000 entries. We checked each word translation pair from our collection in the parallel corpus and
collected sentences where one word exists in the first language sentence and its pair exists in the
second language sentence. When such a match was found, the two words and their ELMo embeddings,
computed on the matching contexts (sentences), were added to the list of anchors. This list was used to
map one vector space to another, allowing us to map one word with multiple meanings in one language
to multiple different words in another language.

We used the computed bilingually aligned contextual embedding pairs as an input to previously de-
scribed methods that align two monolingual embeddings (Section 2.3.1). To get the cross-lingual align-
ment we used the vecmap method (Artetxe et al., 2018a).

Recently, a similar approach was proposed by Aldarmaki & Diab (2019) but did not use a high-quality
dictionary as we did. Instead, they extracted a dictionary of contextualized words from the parallel
corpora by first applying word-level alignments using Fast Align approach (Dyer et al., 2013). They then
calculated the ELMo contextual embeddings for both aligned sentences, and extracted a dictionary from
the aligned words that have a one-to-one alignment (i.e. they excluded phrasal alignments). Aldarmaki
& Diab (2019) tested their approach only on similar languages (English, German, Spanish) and showed
good results in sentence translation retrieval task, where they measured the accuracy of retrieving the
correct translation from the target side of a test parallel corpus using nearest neighbor search and
cosine similarity. Our intention is to use the above proposed approach and datasets on morphologically
rich languages, to test a wide range of dictionary sizes and qualities, from small automatically extracted
dictionaries to large professional dictionaries.

3.2 Locally isomorphic mapping

As several researchers have observed, the monolingual embedding spaces of two different languages
are not completely isomorphic, which is especially true for distant languages (Ormazabal et al., 2019).
This causes error in methods which assume isomorphism of embedding spaces, including vecmap and
MUSE.

7http://opus.nlpl.eu/
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We propose a new alignment method that assumes that monolingual embedding spaces are locally
isomorphic. This leads to the following modifications:

• Using the same dataset of bilingually aligned contextual embedding pairs as above (Section 3.1),
we modify the vecmap, which originally computes a single linear mapping between the entire
embedding spaces. We choose a set of words with their contextual embedding vectors in the first
monolingual space and compute the Voronoi cells of their vectors in this embedding space. The
Voronoi cell of a given word vector consists of all points in the embedding space closer to this
vector than to vectors of any other word in the set.

• The words are chosen in such a way that there is approximately the same number of words in
each Voronoi cell. In the next step, we compute the alignment map separately for each Voronoi cell
using the vecmap algorithm in supervised mode, thus producing one linear map for every Voronoi
cell. The maps of all Voronoi cells are merged and represent a joint mappings for the entire
embedding space. As the mappings between Voronoi cells are different the resulting mapping
is not isomorphic but only locally isomorphic, which shall improve the properties of the resulting
embedding.

The method and its empirical evaluation will be described in deliverable D1.6 at M24, as at the time of
writing this report the method has not been fully developed and tested to be included in this deliver-
able.

4 Cross-lingual evaluation scenarios and results
We evaluated the produced cross-lingual embeddings on several intrinsic and extrinsic tasks. A detailed
description of these tasks, including the datasets and evaluation metrics is part of deliverable D1.1
Datasets, benchmarks and evaluation metrics for cross-lingual word embeddings. Here, we shortly explain their
role in cross-lingual mapping scenarios.

As baseline context-independent embeddings we use standard neural word2vec embeddings (Mikolov,
Sutskever, et al., 2013) as implemented in the fastText library8. Note that the fastText embeddings use
subword input that is suitable for morphologically rich languages (Bojanowski et al., 2017). As context-
dependent embeddings we use ELMo (Peters et al., 2018)9.

The dictionaries used in supervised methods are bilingual dictionaries extracted from wiktionary, using
wikt2dict10 tool (Acs, 2014). Some of the dictionaries, notably Croatian-Slovenian, were created with
triangulation via English and are of low quality. We use two types of text embeddings evaluation scenar-
ios, intrinsic and extrinsic. The intrinsic evaluation uses synthetic tasks and the evaluation metrics deal
only with a given cross-lingual transformation. This type of evaluation is typically faster and can often
be used to guide the construction of mappings. For non-contextual intrinsic evaluation of cross-lingual
mapping, we use the dictionary induction and word analogy scenarios. The extrinsic evaluation sce-
narios use embeddings as inputs to downstream text mining task, in our case this is the named entity
recognition scenario.

We evaluated cross-lingual mappings of non-contextual fastText embeddings and the contextual ELMo
models we trained. We used supervised and unsupervised methods provided by MUSE and vecmap
libraries. Four language pairs were considered for mapping, two between similar/related languages:
Croatian-Slovenian (hr-sl) and Estonian-Finnish (et-fi), and two between more distant languages: English-
Slovenian (en-sl) and English-Estonian (en-et). In each pair, we mapped embeddings using the first
listed language as the source language and the second as the target language.

8https://fasttext.cc/
9Note that we did not include BERT, which is a multilingual model that does not need explicit alignment.

10https://github.com/juditacs/wikt2dict
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4.1 Dictionary induction task

One of the standard benchmarks for intrinsic evaluation of cross-lingual embeddings is the dictionary
induction task, also called a translation task. The goal is to find the correct translation for each given
word. For example, given a pair of words from the Slovenian-English dictionary “drevo - tree”, we map
the Slovene word “drevo” from Slovene to English and check for the vector among all English word
vectors that is the closest to the mapped Slovenian vector for “drevo”. If the closest vector is “tree”, we
count this as a success, else we do not. This measure is called precision@1 score or 1NN score: the
number of successes, divided by the number of all examples, in this case dictionary pairs (see its formal
definition below).

4.1.1 Experimental setting

For the dictionary induction task we used bilingual dictionaries extracted from wiktionary, using wikt2dict11

tool (Acs, 2014). We split the dictionaries to training and evaluation set. We used the training set for the
supervised cross-lingual mapping and the evaluation set for the dictionary induction task.

The evaluation of cross-lingual word embeddings shall measure the appropriateness of matching word
pairs between two languages. The comparison metric shall give higher score to cross-lingual mappings
where the nearest neighbor of a source word, in the target language, is more likely to have as the
nearest neighbor this particular source word. For example, let us assume that we have a collection of
word pairs from a dictionary and we want to use them to evaluate cross-lingual word embedding. We
take a pair of words, s in a source language and t in a target language, and compute the cross-lingual
mapping of the source word vector to the target embedding space. We search for the nearest words
to that point. For the iNN measure (e.g., 1NN, 5NN, or 10NN), we calculate the percentage of correct
target words found in the i-size neighbourhood of the mapped point.

This measure may be problematic, as nearest neighbors are by nature asymmetric: point y being a k-
NN of point x does not imply that x is a k-NN of y . For example, some vectors, called hubs, are with high
probability nearest neighbors of many other points, while others (anti-hubs) are not nearest neighbors
of any point. To solve the problem of k-NN asymmetry, Conneau et al. (2018) proposed a metric,
called CSLS (Cross-domain Similarity Local Scaling). The idea is to construct a bi-partite neighborhood
graph, in which each word of a given dictionary is connected to its k nearest neighbors in the other
language. Let xs be a word in the source language and W be a cross-lingual mapping matrix which
transforms xs into the target embedding space Wxs . Let NT (Wxs) be the neighborhood on this bi-partite
graph, associated with the mapped source word embedding Wxs (i.e. in the target space). Note that all
k elements of NT (Wxs) are words from the target language. Similarly, let yt be the word in the target
language and NS(yt) be the neighborhood associated with a word yt of the target language. The mean
similarity of a source embedding xs to its target neighborhood is denoted as

rT (Wxs) =
1

k

∑
yt∈NT (Wxs )

dcos(Wxs , yt).

Similarly, we denote by rS(yt) the mean similarity of the target word yt to its neighborhood. These scores
are computed for all source and target word vectors using an efficient nearest neighbors implementation,
e.g., (Johnson et al., 2019). CSLS measure combines them into a similarity measure between mapped
source words and target words

CSLS(Wxs , yt) = 2dcos(Wxs , yt)− rT (Wxs)− rS(yt)

CSLS increases the similarity associated with isolated word vectors compared to iNN measure and
decreases the similarity of vectors lying in dense areas.

11https://github.com/juditacs/wikt2dict
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4.1.2 Results

In a translation or dictionary induction task, we check how many words are correctly translated by finding
the closest word vector in another language, using precision@1 measure, where we used pre-computed
fastText embeddings, trained on common-crawl corpora. Embeddings were in text format, where each
word is given a vector, i.e. we know the vectors in advance, they are not computed on the spot.

The results are shown in Table 1. The results are similar for both retrieval metrics, CSLS and NN
(1NN). In both cases, the vecmap mapping approach outperforms the MUSE approach in this task.
The difference between supervised and unsupervised methods strongly depends on the similarity of
languages in the mapped pair and on the quality of dictionaries. Unsurprisingly, unsupervised methods
perform strongly on similar languages, and poorly on distant languages, especially on the English-
Estonian language pair. In the Croatian-Slovenian pair, the poor quality of the dictionary results in poor
results for the supervised method. In MUSE approach, the supervised method is only slightly better
than the unsupervised method, while in vecmap approach the supervised method is even worse than
the unsupervised method. In the Estonian-Finnish language pair, the supervised and unsupervised
methods perform similarly; the MUSE supervised method performs better, while vecmap is better in an
unsupervised setting.

Table 1: Comparison of cross-lingual mapping methods performed on translation/dictionary induction task for non-
contextual fastText embeddings using iNN and CSLS metrics for translation retrieval. The result (preci-
sion@1 in %) of the best method for each language pair and for each retrieval metric is in bold.

Retrieval metric Mapping method en-sl hr-sl en-et et-fi
NN vecmap unsup 19.65 34.21 17.45 48.54
NN vecmap sup 30.21 22.37 35.85 46.60
NN MUSE unsup 13.54 28.72 9.14 40.59
NN MUSE sup 23.49 29.43 28.32 47.52
CSLS vecmap unsup 23.61 36.51 20.13 53.10
CSLS vecmap sup 33.14 26.32 36.64 51.46
CSLS MUSE unsup 16.15 29.79 11.11 46.53
CSLS MUSE sup 24.47 31.91 31.36 52.48

Concerning other existing evaluations of cross-lingual embeddings on this task, Doval et al. (2019)
tested supervised and unsupervised approaches of both vecmap and MUSE on a dictionary induction
task. They mapped English embeddings to several different languages (Spanish, Italian, German, Farsi,
Finnish, and Russian). They used embeddings trained on three different sources: Wikipedia, web cor-
pora, and Twitter. In our work, we used fastText embeddings calculated on common crawl corpora,
so below we summarize Doval et al. (2019) findings only for web corpora. In supervised approaches,
vecmap and MUSE perform similarly, each is better on about half of the language pairs, with no clear
divide. In unsupervised approaches, vecmap is slightly better. Doval et al. (2019) report negligible
difference between unsupervised and supervised methods, except on Finnish and Russian as target
languages, where supervised methods perform better. This contrasts with our findings, where unsuper-
vised methods perform well only on similar languages, but not on distant ones. We also found vecmap
consistently outperforming MUSE, but further testing is needed to confirm this finding.

Søgaard et al. (2018) tested MUSE unsupervised and supervised methods on English, Estonian, Finnish
and a few other languages. For the supervised method, they used a small dictionary, which included only
words that are identical in both languages. For Estonian-Finnish mapping, the unsupervised method
outperformed the supervised method. In all other language pairs, the supervised method outperformed
the supervised one. Notably, Søgaard et al. (2018) found that the unsupervised method performs poorly
(scoring nearly 0.0) on English-Finnish and English-Estonian pairs. This is in slight contrast with our
results, where unsupervised MUSE method performed much worse than other methods on English-
Estonian (and also English-Slovenian) pairs, but much better than 0.0 score. Since they tested the
results using various embeddings and confirmed the result in each case, we will further test our align-
ments with various dictionaries, since this is the only major difference between our approaches. We will
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report on these findings in the forthcoming deliverable D1.6 at M24.

4.2 Word analogy task

We evaluated cross-lingual mappings using an intrinsic evaluation approach based on our novel multilin-
gual culture-independent analogy datasets (Ulčar & Robnik-Šikonja, 2019b). In the cross-lingual setting
between two languages L1 and L2, the word analogy task (x is to y as a is to b) using a cross-lingual
dataset is composed by matching each relation in one language with each relation from same category
in the other language. An example of the composed cross-lingual dataset is shown in Table 2.

Table 2: An excerpt from the “city with river” category, showing two relations in English, two relations in Slovene
and four relation pairs formed from them in a cross-lingual English-Slovene analogy dataset.

Relations: English
Vienna Danube
Budapest Danube

Relations: Slovene
Budimpešta Donava
Kairo Nil

Formed pairs (English-Slovene)
Vienna Danube Budimpešta Donava
Vienna Danube Kairo Nil
Budapest Danube Budimpešta Donava
Budapest Danube Kairo Nil

Unfortunately, there are no existing intrinsic evaluation tasks for cross-lingual alignment of contextual
embeddings; for cross-lingual contextual mappings the word analogy task is not adequate as it only
contains words, without their context. We did, however, attempt to apply this task to a small number
of words in context. We tested word analogies with contextual ELMo embeddings. The test set for
contextual embeddings contained 65,000 words in a context. The embeddings were aligned using
our locally isomorphic version of vecmap which gives multiple embeddings (one for each Voronoi cell).
However, the coverage for the analogy task was low, only 10 analogies were tested and 2 of them
matched. The preparation of a larger dictionary that will include all words from the analogy tasks is in
progress.

Moreover, for intrinsic evaluation of cross-lingual contextual embeddings, we proposed a new dataset
prepared as part of the SemEval 2020 challenge, addressing a new task named Graded Word Sim-
ilarity in Context (GWSC); see D1.3 Initial context-dependent and dynamic embeddings technology for the
description.

4.2.1 Experimental setting

In summary, the word analogy task is explored in two settings:

Monolingual setting. The goal of the word analogy task in a monolingual scenario is to find a term y

for a given term x so that the relationship between x and y best resembles the given relationship
a : b. For example, let the word pair a : b be “Finland : Helsinki”. The task is to find the term y

corresponding to the relationship “Sweden : y”, with the expected answer being y = Stockholm.
Monolingually, we measure the performance of embeddings in the target language L2 after the
cross-lingual mapping from L1 (using all x, y , a, and b from the same language).
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Cross-lingual setting. When evaluating the embeddings in a cross-lingual scenario, one pair of related
words (a and b) is in one language and the other pair (x and y) from the same evaluation category
(e.g., family relations, counties and capitals) is in another language. For example, given the pair a :

b in English being “father : mother”, the task is to find the term y corresponding to the relationship
“brat (brother) : y” in Slovene. The expected answer being y = sestra (sister). Cross-lingually, we
measure the performance of embeddings, where the first two words in an analogy pair are from
the language L1 and we search for the equivalent relation between the words from the analogy
pair in language L2.

We again use precision@1 score, meaning that the expected answer must be the closest of all possible
words for the success. For both cases, we report the results on two language pairs, English-Slovenian
(en-sl) and Croatian-Slovenian (hr-sl).

4.2.2 Results

We report our findings on the word analogy task below.

For each language pair, we tested four different mapping methods (vecmap and MUSE in both super-
vised and unsupervised mode), and evaluated the mapping on four analogy datasets. On monolingual
analogy datasets (sl, en, hr) we evaluate the performance of the embeddings after applying the mapping
(i.e. we measure how much the mapping hurts the monolingual performance in L1). On cross-lingual
analogy datasets (en-sl, sl-en, hr-sl, sl-hr) we evaluate how good relations in language L1 match the
equivalent relations in language L2.

All methods perform comparably on monolingual datasets, without many differences between them
(Table 3). On cross-lingual datasets the vecmap approach outperforms MUSE on this task, except for
English monolingual experiment in English-Slovenian mapping, where MUSE has a slight edge. As
in the dictionary induction task, vecmap unsupervised method outperforms vecmap supervised task in
Croatian-Slovenian pair. In English-Slovenian pair the supvervised method gives better results.

Table 3: Comparison of cross-lingual mapping methods on the word analogy task, using non-contextual fastText
embeddings. The best result (precision@1 in %) for each language pair is in bold. For example, for en-sl
mapping and en dataset, we observed performance of English embeddings on English analogy dataset
after mapping the vectors to a common space with Slovenian vectors.

Mapped Analogy vecmap vecmap MUSE MUSE
pair dataset unsup sup unsup sup
en-sl sl 43.42 42.63 37.09 37.09
en-sl en 63.82 67.29 68.55 68.55
en-sl en-sl 29.98 34.88 19.17 24.79
en-sl sl-en 58.59 62.35 45.14 53.28
hr-sl sl 46.50 40.03 37.09 37.09
hr-sl hr 49.99 43.42 41.70 41.70
hr-sl hr-sl 42.58 32.92 30.63 32.22
hr-sl sl-hr 42.65 33.25 30.63 30.92

In related experiments, Brychcín et al. (2019) tested cross-lingual mapping methods on the cross-lingual
word analogy task in English, German, Italian, Spanish, Czech and Croatian. Authors were using
different analogy dataset with different categories, so the results are not directly comparable. However,
in all language pairs, where one of the languages was English, Brychcín et al. (2019) achieved much
better results on a dataset of type xx-en than en-xx. The results on Czech-Croatian and Croatian-Czech
datasets were similar, though. This agrees with our findings, where Slovene-Croatian and Croatian-
Slovene perform very similarly, while Slovenian-English scores much better than English-Slovenian.
Further, for many language pairs, they achieved better results on the cross-lingual dataset than on the
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monolingual dataset. In our tests, however, the results on monolingual datasets were always better than
the results on cross-lingual datasets.

4.3 Named entity recognition

For extrinsic evaluation of cross-lingual mappings (both non-contextual and contextual), we use an
adapted version of named entity recognition (NER) task, which is available for all EMBEDDIA languages.
Note that the datasets used and the purpose of NER task in this report is different from the NER task in
Deliverable D2.2. Initial cross-lingual semantic enrichment technology. In this report, we are only interested
in NER for comparison of different alignment methods and not to maximally improve the NE recognition
rate (e.g., we do not use any external information, fine-tuning of models etc).

NER is an information extraction task that seeks to locate and classify named entity mentions in un-
structured text into pre-defined categories such as the person names, organizations, locations, medical
codes, time expressions, quantities, monetary values, percentages, etc. The labels in the used NER
datasets are simplified to a common label set of three labels (person name, location, organization),
present in all the addressed working languages.

4.3.1 Experimental setting

We performed the NER task in three settings for each given language pair L1-L2.

1. For embeddings mapped from language L1 to language L2 (or both mapped into a common space),
the first setting was training the NER model on L1 train data and evaluating the model on L2 test
data.

2. The second setting was training the NER model on L2 train data and evaluating the model on L2

test data.

3. The third setting was training the NER model on L1 train data and evaluating the model on L1 test
data.

For all three settings, we compared mapping methods with a reference value. The reference values
allow for comparison with models without cross-lingual transfer, i.e. training and testing on instances
from the same language. It was obtained by training the prediction model on L2 train data and evaluating
on L2 test data for first and second setting, and by training on L1 train data and evaluating on L1 test data
for the third setting. In all reference value cases no mapping was applied.

4.3.2 Results

For the NER task, we embedded the text using fastText or ELMo embeddings. For languages other than
English we used pretrained high-quality ELMo models we created (Ulčar & Robnik-Šikonja, 2019a). For
ELMo embeddings, we used the average of its three layers. We trained a neural network consisting of a
single LSTM layer (using dropout), followed by a softmax layer. We trained the model for 5 epochs when
using fastText embeddings, and 3 epochs when using ELMo embeddings. The input of the network
were the embeddings, mapped using supervised and unsupervised methods provided by vecmap and
MUSE. The embeddings were not fine-tuned to the task. In the case of ELMo, we only used vecmap,
since it consistently outperformed MUSE methods on fastText embeddings (see Table 4)

• For unsupervised mapping, we followed the method of Schuster et al. (2019), briefly described in
Section 3, except the mapping method itself was unsupervised, i.e. we did not use a dictionary.

• For supervised method we used our approach described in Section 3.1, using the same wiktionary
dictionaries as in other tasks and OpenSubtitles parallel corpus12 (Lison & Tiedemann, 2016) from

12https://www.opensubtitles.org/.
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Table 4: Comparison of vecmap and MUSE supervised (sup) and unsupervised (unsup) methods for cross-lingual
mapping on non-contextual fastText embeddings performed on the NER task. The best result for each
training and evaluation language pair is in bold.

Mapped Training Evaluation vecmap vecmap MUSE MUSE
Setting pair language language unsup sup unsup sup

1 en-sl en sl 0.16 0.27 0.01 0.06
2 en-sl sl sl 0.76 0.75 0.69 0.69
3 en-sl en en 0.30 0.28 0.29 0.30
1 hr-sl hr sl 0.58 0.38 0.49 0.44
2 hr-sl sl sl 0.73 0.77 0.69 0.70
3 hr-sl hr hr 0.18 0.19 0.14 0.14
1 en-et en et 0.21 0.21 0.08 0.11
2 en-et et et 0.28 0.27 0.27 0.27
3 en-et en en 0.29 0.29 0.29 0.29
1 et-fi et fi 0.28 0.11 0.37 0.27
2 et-fi fi fi 0.69 0.70 0.69 0.69
3 et-fi et et 0.27 0.27 0.26 0.27

Opus web page13.

• We applied the cross-lingual mapping of the ELMo embeddings on the fly, after producing the
contextual embeddings of the dataset.

We present the results using the Macro F1 score, that is an average of F1 scores for each class we
are trying to predict, excluding the class O (other, i.e. not a named entity). The results of fastText
embeddings are shown in Table 4 and the results of ELMo embeddings in Table 5.

Table 5: Comparison of vecmap supervised (sup) and unsupervised (unsup) methods for cross-lingual mapping
on contextual ELMo embeddings performed on the NER task. The best result for each language pair is
in bold. The reference values (REF) represent the results on the evaluation data labeled on that line, but
with a model trained on the same language as evaluation data and with no mapping applied, as explained
in Section 4.3.

Mapped Train Eval vecmap vecmap
Setting pair language language unsup sup REF

1 en-sl en sl 0.01 0.59 0.67
2 en-sl sl sl 0.73 0.74 0.67
3 en-sl en en 0.45 0.46 0.43
1 hr-sl hr sl 0.03 0.66 0.67
2 hr-sl sl sl 0.75 0.77 0.67
3 hr-sl hr hr 0.54 0.51 0.53

The results of fastText embeddings confirm what we have already observed in previous tasks: the
vecmap methods, either supervised or unsupervised, outperform the MUSE methods. The results on
ELMo embeddings, however, are more diverse. Models trained on one language and evaluated on
another language perform very poorly when mapped with the unsupervised method and strongly when
mapped with the supervised method. That is especially true on Croatian-Slovenian pair, where training
on Croatian database, which is much smaller than Slovenian database, produces nearly identical results
to training on Slovenian database when both are evaluated on the Slovenian evaluation data. In a
monolingual setting (training and evaluating on the same language), all languages when mapped with
either method perform comparably to the unmapped embeddings or even slightly better.

13http://opus.nlpl.eu
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5 Graph-based language comparison
This section describes an approach, not anticipated in the EMBEDDIA proposal, but related to cross-
lingual alignments. While this approach is not based on embeddings, it is relevant to the EMBEDDIA
project as it may help to detect similar languages where the unsupervised cross-lingual embeddings
could perform especially well. Modeling relations between languages can namely offer understanding
of language characteristics and uncover similarities and differences between languages. This can help
in understanding of language development over time and in improving cross-lingual natural language
processing techniques.

A detailed description of the proposed approach to language similarity detection is contained in the
appended paper published in Proceedings of the Statistical Language and Speech Processing (SLSP)
2019 conference (Škrlj & Pollak, 2019). In the paper we propose a novel approach to representing
textual data as a directed, weighted network by the proposed text2net algorithm. Once presented as
a network, computation of fast, network-topological metrics (such as metrics for network community
structure) can be used for cross-lingual comparisons. We build networks from texts of nine selected
languages contained in a large parallel corpus. On the constructed networks, we apply eight network
topology metrics and use the results to interpret the relations between the languages. Community-
based metrics, such as clustering coefficient, capture well-known differences between the languages,
while others can be seen as novel opportunities for linguistic studies. The proposed method works on
large corpora consisting of hundreds of thousands of aligned sentences even on an off-the-shelf laptop
computer.

6 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
ELMo embeddings hdl.handle.net/11356/1277 Public (GPL v3)

Word analogy dataset hdl.handle.net/11356/1261 Public (CC-BY-SA)
Crosslingual NER github.com/EMBEDDIA/crosslingual-NER To become public∗

Vecmap changes github.com/EMBEDDIA/vecmap-changes To become public∗

∗ Resources marked here as “To become public” are available only within the consortium while under
development and/or associated with work yet to be published. They will be released publicly when the
associated work is completed and published.

Parts of this work are also described in detail in the following publications, which are attached to this
deliverable as appendices:

Citation Status Appendix
Ulčar, M., Robnik-Šikonja, M. (2019b). Multilingual
culture-independent word analogy datasets. arXiv preprint
arXiv:1911.10038.

Submitted
(LREC 2020),
available online

Appendix A

Škrlj, B., Pollak, S. (2019). Language comparison via net-
work topology. In Proceedings of the international conference
on statistical language and speech processing SLSP 2019 (pp.
112–123). Springer.

Published Appendix B

7 Conclusions and further work
We have analyzed the existing cross-lingual embeddings approaches that map between monolingual
embeddings. The results on all three analyzed tasks, dictionary induction, word analogy, and named en-
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tity recognition, show that the vecmap approach (supervised or unsupervised) is superior to the MUSE
approach for both non-contextual and contextual embeddings. These findings are in agreement with
recent results of Vulić et al. (2019), who also find the unsupervised mapping approaches inferior to at
least weakly supervised approaches and attribute the reason to low quality of anchor points.

In further work, we will expand cross-lingual mappings in two directions: obtaining better anchor points
for contextual embeddings and improving methods which drop the assumption of isomorphic monolin-
gual embeddings in different languages. For the first direction, we are preparing much larger datasets
of word-aligned sentences, which will provide high-quality anchor points for alignment of contextual em-
beddings. To avoid the assumption of isomorphic monolingual embeddings for different languages, we
are going to continue our research on locally isomorphic transformations. These directions are in line
with the recent findings that the assumption about isomorphism of embeddings in different languages
leads to large errors for weakly related languages (Ormazabal et al., 2019). Dropping this assumption
may lead to reasonable improvements as shown by the non-isomorphic method of Zhang et al. (2019).
Further, we will expand the set of experiments to more languages, larger dictionaries, and more combi-
nations of mapping methods, to more reliably contrast our findings with the results of Doval et al. (2019),
Søgaard et al. (2018), and Brychcín et al. (2019).

However, we also have to take into account recent ever larger, ever more computationally demanding,
and ever more successful language models, multilingual language models, and cross-lingual models
(BERT, multilingual BERT and T5 by Google, UniLM by Microsoft, GPT-2 by OpenAI, Megatron by
Nvidia, XLM and XLM-R by Facebook). Their recent results in text understanding and cross-lingual
transfer show that it is essential to train huge neural network models on enormously large text collections
and train them on many languages with absurd number of GPUs for a very long time. For example, at
the time of this writing, a brand new state-of-the-art multilingual language model XLM-R (Conneau et
al., 2019) uses 550 million neural network parameters, 2TB of training text from 100 languages, and
was trained using 500 32GB-Nvidia-V100 GPUs for months. A single development cycle of any of the
above mentioned models costs hundreds of thousands of Euros and is out of reach for most academic
researchers. Nevertheless, as some of these models are publicly available, and can be fine-tuned and
improved for specific languages and tasks, we will further investigate this path as one of the research
directions (currently, we are working with multilingual BERT in the context of Tasks 1.2 and 1.3).
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Abstract
In text processing, deep neural networks mostly use word embeddings as an input. Embeddings have to ensure that relations between
words are reflected through distances in a high-dimensional numeric space. To compare the quality of different text embeddings,
typically, we use benchmark datasets. We present a collection of such datasets for the word analogy task in nine languages: Croatian,
English, Estonian, Finnish, Latvian, Lithuanian, Russian, Slovenian, and Swedish. We redesigned the original monolingual analogy task
to be culturally independent and also constructed cross-lingual analogy datasets for the involved languages. We present basic statistics
of the created datasets and their initial evaluation using fastText embeddings.

Keywords: word embeddings, analogy task, evaluation, less-resourced languages

1. Introduction
As an input, neural networks require numerical data.
Text embeddings provide such an input, ensuring that
relations between words are reflected in the dis-
tances in high-dimensional numeric space. There are
many distinct models producing embedding vectors, us-
ing different specialized learning tasks, e.g., word2vec
(Mikolov et al., 2013b), GloVe (Pennington et al., 2014),
and FastText (Bojanowski et al., 2017). For training, the
embeddings algorithms use large monolingual corpora that
encode important information about word meaning as dis-
tances between vectors. In order to enable downstream ma-
chine learning on text understanding tasks, the embeddings
shall preserve semantic relations between words, and this is
true even across languages.
To compare the quality of different text embeddings, typi-
cally we use benchmark datasets. In this work, we present a
collection of such datasets for the word analogy task in nine
languages: Croatian, English, Estonian, Finnish, Latvian,
Lithuanian, Russian, Slovenian, and Swedish. To make the
datasets sensible for all languages, we designed the analogy
task to be culturally independent.
The word analogy task was popularized by
Mikolov et al. (2013c). The goal is to find a term y
for a given term x so that the relationship between x and
y best resembles the given relationship a : b. There are
two main groups of categories: semantic and syntactic. To
illustrate a semantic relationship, consider for example that
the word pair a : b is given as “Finland : Helsinki”. The
task is to find the term y corresponding to the relationship
“Sweden : y”, with the expected answer being y =
Stockholm. In syntactic categories, the two words in a
pair have a common stem (in some cases even the same
lemma), with all the pairs in a given category having the
same morphological relationship. For example, given the
word pair “long : longer”, we see that we have an adjective
in its base form and the same adjective in a comparative
form. The task is then to find the term y corresponding to
the relationship “dark : y”, with the expected answer being
y = darker, i.e. a comparative form of the adjective dark.

In the vector space, the analogy task is transformed into
vector arithmetic and we search for nearest neighbours, i.e.
we compute the distance between vectors: d(vec(Finland),
vec(Helsinki)) and search for word y which would give the
closest result in distance d(vec(Sweden), vec(y)). In our
dataset, the analogies are already pre-specified, so we are
measuring how close are the given pairs.
The paper is split into further four sections. In Sec-
tion 2., we describe the analogy task, its origin, culture-
independent design, structure, and how it can be used as
a benchmark for evaluation of embeddings in monolingual
and cross-lingual setting. In Section 3., we present the cre-
ation of the actual monolingual and cross-lingual datasets
and the process of their adaptation to all involved lan-
guages. We present statistics and initial evaluations of the
produced datasets in Section 4.. Conclusion and plans for
further work are described in Section 5..

2. Analogy task for embedding evaluations
We composed the analogy tasks involving nine languages:
Slovenian, Croatian, Estonian, Finnish, Latvian, Lithua-
nian, Russian, Swedish, and English. The work is based
on the English dataset by Mikolov et al. (2013a)1. Due to
English- and US-centered bias of this dataset, we removed
some categories and added or changed some of the others
as described below. Our dataset was first written in Slovene
language and then translated to other languages as ex-
plained in Section 3.3.. Following Mikolov et al. (2013a),
we limit the analogies to single word terms, for example
“New Zealand” is not a valid term for a country, since it
consists of two words. Note that due to language differ-
ences, the produced datasets are not aligned across lan-
guages.
To assure consistency and allow the use of the datasets
in cross-lingual analogies (described in section 2.1.), our
datasets (even the English one) are somewhat different from
the one by (Mikolov et al., 2013a). We removed or edited
some categories and added new ones to avoid or limit
English-centric bias in the following way.

1http://download.tensorflow.org/data/questions-words.txt



• We merged two categories dealing with countries and
their capitals (”common capital cities” and ”all capital
cities”) into one category.

• We changed ”city in US state” category to ”city in
country” and used mostly European countries with a
better chance to appear in the corpora of respective
languages.

• We removed the category ”currency”, as only a hand-
ful of currencies are present in news and text corpora
with sufficient frequency.

• We added two new semantic categories, ”animals” and
”city with river” described below.

• We added a syntactic category comparing noun case
relationships.

The resulting analogy tasks are composed of 15 categories:
5 semantic and 10 syntactic/morphological. The categories
contained in our datasets are the following:

capitals and countries, capital cities in relation to coun-
tries, e.g., Paris : France,

family, a male family member in relation to an equivalent
female member, e.g., brother : sister,

city in country, a non-capital city in relation to the coun-
try of that city, e.g., Frankfurt : Germany,

animals, species/subspecies in relation to their
genus/familia, following colloquial terminology
and relations, not biological, e.g., salmon : fish,

city with river, a city in relation to the river flowing
through it, e.g., London : Thames,

adjective to adverb, an adverb in relation to the adjective
it is formed from, e.g., quiet : quietly,

opposite adjective, the morphologically derived opposite
adjective in relation to the base form, e.g., just : unjust,
or honest : dishonest,

comparative adjective, the comparative form of adjective
in relation to the base form, e.g., long : longer,

superlative adjective, the superlative form of adjective in
relation to the base form, e.g., long : longest,

verb to verbal noun, noun formed from verb in infinitive
form, e.g., to sit : sitting; in Estonian and Finnish -
da infinitive and first infinitive forms are used respec-
tively; in Swedish present participle that functions as
noun is used in place of verbal noun,

country to nationality of its inhabitants, e.g., Albania :
Albanians,

singular to plural, singular form of a noun in relation to
the plural form of the noun, e.g., computer : comput-
ers; indefinite singular and definite plural are used in
Swedish,

genitive to dative, a genitive noun case in relation to the
dative noun case in respective languages, e.g. in
Slovene ceste : cesti, singular is used for all words,
except ”human” (or equivalent in other languages),
which appears in both singular and plural; in Finnish
and Estonian, dative has been replaced with the alla-
tive case, the category is not applicable to Swedish and
English,

present to past, 3rd person singular verb in present tense
in relation to 3rd person singular verb in past tense,
e.g., goes : went; in Slovene, Croatian and Russian the
masculine gender past tense is used, in other languages
the ”simple” past tense/preterite is used,

present to other tense, 3rd person singular verb in present
tense in relation to the 3rd person singular verb in
various tenses, e.g., goes : gone; the other tense
in Slovene, Croatian and Russian is feminine gen-
der past tense, in Finnish, Estonian and English it is
present/past perfect participle, in Swedish it is supine,
in Latvian and Lithuanian it is future tense.

2.1. Cross-lingual analogies
Cross-lingual word embeddings have two or more lan-
guages in the same semantic vector space. Cross-
lingual word analogy task has been proposed by
Brychcı́n et al. (2019) as an intrinsic evaluation of cross-
lingual embeddings. Following their work, we compose
cross-lingual analogy datasets, so that one pair of related
words is in one language and the other pair from the same
category is in another language. For example, given the re-
lationship in English father : mother, the task is to find the
term y corresponding to the relationship brat (brother) : y
in Slovene. The expected answer being y = sestra (sister).
We limited the cross-lingual analogies to the categories that
all our languages have in common, i.e. excluding the last
three named categories: genitive to dative, present to past
and present to other tense.

3. Creation of datasets
Once the relations forming the analogies were prepared,
we used them to form the actual monolingual and cross-
lingual datasets. The process consisted of three steps. In
Sections 3.1. and 3.2., we describe the creation of mono-
lingual and cross-lingual datasets from the relations, and
in Section 3.3., we explain the translation procedure which
lead to creation of datasets in all involved languages.

3.1. Compiling monolingual dataset
The actual construction of the analogy dataset started by
forming baseline relations for each category. First, we man-
ually wrote the relations one per line, where each relation
consists of two words. In the family category, an example
of such a relation is “father, mother”. Next we combined
all relations in each category with one another and wrote
them in pairs, e.g., “father, mother, brother, sister” If a pair
of relations share a common word, such a pair is excluded
from the database. An example of forming relation pairs is
shown in Table 1.



Table 1: An excerpt from the “city with river” category,
showing four relations and five relation pairs formed from
them. The first two listed relations do not form a pair with
each other, because they share a common word (Danube).

Relations
Vienna Danube
Budapest Danube
Cairo Nile
Paris Seine

Formed pairs
Vienna Danube Cairo Nile
Vienna Danube Paris Seine
Budapest Danube Cairo Nile
Budapest Danube Paris Seine
Cairo Nile Paris Seine

3.2. Cross-lingual datasets

Cross-lingual analogies described in Section 2.1. are com-
piled in a similar manner. Consider a language pairL1−L2.
From the same one-relation-per-line files shown in the up-
per part of Table 1, we combine all relations in a category
in such a way that one relation from language L1 and one
relation from language L2 form a pair. L1 relations are on
the left-hand side, and L2 relations are on the right-hand
side. An example of forming cross-lingual relation pairs is
shown in Table 2 for English-Slovene language pair. The
same rules for excluding pairs with common words apply,
except that we do not consider translations of the same term
as the same word, e.g., “Nile” (in English) and “Nil” (its
Slovene equivalent) in the same entry are allowed, but us-
ing “Nile” twice is disallowed.

Table 2: An excerpt from the “city with river” category,
showing two relations in English, two relations in Slovene
and four relation pairs formed from them in a crosslingual
English-Slovene analogy dataset.

Relations: English
Vienna Danube
Budapest Danube

Relations: Slovene
Budimpešta Donava
Kairo Nil

Formed pairs (English-Slovene)
Vienna Danube Budimpešta Donava
Vienna Danube Kairo Nil
Budapest Danube Budimpešta Donava
Budapest Danube Kairo Nil

3.3. Translation procedure
When the first dataset in Slovene was formed, we translated
it into other languages (including English). We used vari-
ous tools to help us translate Slovenian dataset to the other
languages. For the geographic data, i.e. names of countries,
cities and rivers, we used the titles of equivalent Wikipedia
articles or data from Wikipedia lists, such as the list of cap-
ital cities. If an entity had a name consisting of more than
one word in another language, it was either skipped or re-
placed by another entity with subjectively similar location
and/or importance. The same was done in cases where we
would have a relation of type “x : x”, which is nonsen-
sical. For example, in Lithuanian Algeria and its capital
Algiers are both called “Alžyras”. So we replaced it with
“Damaskas : Sirija” (in English this would correspond to
“Damascus : Syria”).
For non-geographic words, we mostly used Babelnet2 and
Wiktionary3 to find the translations. In the latter, we mostly
relied on conjugation and declination tables of our key
words. Wiktionary was also used for finding new exam-
ples for relations in syntactical categories, to replace those
for which a translation was either impossible or could not
be found. This was most often the case in all the categories
operating with adjectives. An example of an impossible
translation is the Slovene relation ”drag : dražji”. Its En-
glish translation is ”expensive : more expensive”. Since we
are limited to single-word terms, we discarded that trans-
lation and replaced such a relation with another one, with
either a similar meaning ”costly : costlier”, or a completely
different one, like ”high : higher”, provided it does not al-
ready appear in the dataset.
English and Swedish languages do not have noun cases or
rather only have genitive case (in addition to nominative) in
a very limited sense. We decided to exclude the “genitive
to dative” category for these two languages. Further more,
while Finnish and Estonian have many noun cases, none of
those cases is dative. We exchanged dative in this category
with allative case, which mostly covers the same role.
For two categories, “city with river” and in a smaller part
“city in country” we intentionally varied the entries across
languages more than in other categories, where it was only
done so out of necessity. We felt certain relations are too
locally specific to frequently (or at all) appear in other lan-
guage corpora. We removed most of such relations in other
languages and tried to replace them with other relations
more geographically local to that language, in order to keep
the number of different countries or rivers high. Majority
of the relations in these two categories is still the same for
all languages.
The translated relations were checked by native speakers of
each language and corrected where deemed necessary.

4. Statistics and evaluation
In this section, we first present relevant statistics of the cre-
ated datasets, followed by their evaluation using fastText
embeddings.

2https://babelnet.org/
3https://wiktionary.org



4.1. Statistics
The original English analogy dataset by
Mikolov et al. (2013a) contains 19,544 relations, but
uses slightly different categories to our datasets. As
explained above, we translated the Slovene dataset into all
other languages to keep datasets similar across languages,
especially for the use in cross-lingual analogy tasks. The
number of obtained analogy pairs in monolingual datasets
is between 18,000 to 20,000 per language. The exact
numbers differ from language to language based on the
validity of categories and availability of sensible examples
in each category. The exact numbers for all languages are
shown in Table 3.

Table 3: The sizes of the constructed monolingual word
analogy datasets expressed as numbers of pairs for each
language.

Language Size
Croatian 19416
English 18530
Estonian 18372
Finnish 19462
Latvian 20138
Lithuanian 20022
Russian 19976
Slovene 19918
Swedish 18480

The number of pairs in cross-lingual datasets is smaller,
because some categories were omitted. We created cross-
lingual datasets for all 72 language pairs. The exact sizes
of datasets for a few selected pairs are shown in Table 4.

Table 4: The sizes of a few constructed cross-lingual word
analogy datasets expressed as numbers of pairs for each
language.

Language pair Size
Croatian-English 17667
Croatian-Slovene 17449
English-Slovene 17964
Estonian-Finnish 16809
Estonian-Slovene 17110
Finnish-Swedish 17600
Latvian-Lithuanian 18056

Not all categories are equally represented, some have much
more relation pairs than others. We tried to downplay the
importance of the category “capitals and countries”, which
is very prominent in the dataset by Mikolov et al. (2013a),
however, it is still by far the largest category in our dataset.
Some categories are necessarily small, like “family”, since
the number of terms for family members is relatively small.
That is especially true for languages from northern Eu-
rope, so we also included plural terms and some non-family
members in that category, like a relation “king : queen”.
The number of analogy pairs per category (averaged over

all languages) is shown in Table 5.

Table 5: Average size in number of pairs for each category
in the monolingual word analogy datasets.

Category Average size
Capitals and countries 5701
Family 482
City in country 2880
Animals 1440
City with river 701
Adjective to adverb 873
Opposite adjective 498
Comparative adjective 866
Superlative adjective 823
Verb to verbal noun 415
Country to nationality 924
Singular to plural 1519
Genitive to dative 1356
Present to past 607
Present to other tense 601

4.2. Evaluation
We evaluated the analogy datasets using the fastText
(Bojanowski et al., 2017) embeddings4. The fastText em-
beddings use subword inputs which are suitable also for
morphologically rich languages, we are working on. We
limited the evaluation to the first 200,000 word vectors
(i.e. 200,000 most frequent tokens) from the embeddings
of each language. Not all analogy pairs can be evaluated
in that way, since some words do not appear among the
first 200,000 words. The amount of pairs that are covered
(i.e. all four words from the analogy are among the most
frequent 200,000 words) for each language is shown in the
Table 6.

Table 6: Percentage of constructed analogy pairs covered
by the first 200,000 word vectors from common crawl fast-
Text embeddings.

Language Coverage (%)
Croatian 81.67
English 97.05
Estonian 82.56
Finnish 63.97
Latvian 73.60
Lithuanian 77.66
Russian 62.53
Slovene 86.70
Swedish 82.44

We evaluated the relations that are completely contained in
the first 200,000 fastText vectors. Given a pair of relations
“a : b ≈ c : d”, we searched for the closest word vector to
the vector b − a + c. We report the number of times the

4https://fasttext.cc/



closest word vector was vector of the word d. The results
for all languages per category are shown in Table 7.
The results show that not all relations are recognized with
the same accuracy across languages, the differences being
large and surprising in some cases. This hints that there
is a considerable space for improvement in construction of
word embeddings.

5. Conclusion
We prepared word analogy datasets for nine languages:
Croatian, English, Estonian, Finnish, Latvian, Lithuanian,
Russian, Slovenian, and Swedish. The datasets are suitable
for evaluation of monolingual embeddings as well as cross-
lingual mappings. We describe the choice of 15 categories,
5 semantic and 10 syntactic, and an effort to make them lan-
guage and culture independent. While the resulting datasets
in nine languages are not aligned, they are nevertheless
compatible enough to allow creation of cross-lingual anal-
ogy tasks for all 72 language pairs. We present basic statis-
tics of the created datasets and their initial evaluation using
fastText embeddings. The results indicate large differences
across languages and categories, and show that there is a
substantial room for improvement in creation of word em-
beddings that would better represent relations present in the
language as distances in vector spaces.
As further challenge we see creation of similar intrinsic
tasks for the evaluation of contextual embeddings.
The datasets of word analogy tasks for all nine languages
and all language combinations will be deposited to Clarin
repository5 by the time of the final version of this paper.
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Table 7: FastText evaluation scores in % of correctly predicted relation pairs, i.e. how often was the vector d the closest to
the vector b− a+ c, given a relation pair a : b ≈ c : d.

Category sl en hr et fi lv lt sv ru
capital 28.13 95.23 34.9 43.33 79.09 45.9 53.75 88.38 81.26
family 38.77 92.03 52.94 51.84 67.14 54.39 54.78 68.1 62.09
city in country 45.44 89.92 47.21 46.34 85.31 56.66 63.25 90.18 95.26
animals 1.13 11.72 0.85 0.6 22.5 1.93 1.43 10.88 18.44
city-river 5.92 44.81 3.8 9.19 14.81 2.96 8.33 30.91 14.36
adjective-adverb 37.93 31.69 36.15 51.98 64.83 53.22 60.58 84.33 29.31
opposite 55.3 57.89 62.73 52.38 52.22 72.73 75.26 21.9 0
comparative 33.62 96.88 40.6 72.36 84.77 73.93 57.23 78.82 41.88
superlative 26.28 97.31 24.89 31.37 75.69 18.75 62.45 51.08 51.92
verbal noun 70 82.37 64.74 93.27 98.57 76.05 69.85 44.58 57.14
nationality 34.92 56.56 54.1 54.5 81.58 46.75 53.85 82.67 93.51
singular-plural 33.54 94.2 36.77 74.29 92.14 42.38 52.55 44.76 57.35
gentitive-dative 30.02 N/A 33.69 73.55 64.67 45.06 37.75 N/A 41.8
present-past 56.32 76.5 66.02 90.5 86.36 79.17 71.56 97.23 81.05
present-other 59.09 32.55 66.08 69.83 86.58 72.38 74.29 90.94 82.63
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Abstract. Modeling relations between languages can offer understand-
ing of language characteristics and uncover similarities and differences
between languages. Automated methods applied to large textual corpora
can be seen as opportunities for novel statistical studies of language de-
velopment over time, as well as for improving cross-lingual natural lan-
guage processing techniques. In this work, we first propose how to rep-
resent textual data as a directed, weighted network by the text2net al-
gorithm. We next explore how various fast, network-topological metrics,
such as network community structure, can be used for cross-lingual com-
parisons. In our experiments, we employ eight different network topology
metrics, and empirically showcase on a parallel corpus, how the methods
can be used for modeling the relations between nine selected languages.
We demonstrate that the proposed method scales to large corpora con-
sisting of hundreds of thousands of aligned sentences on an of-the-shelf
laptop. We observe that on the one hand properties such as communi-
ties, capture some of the known differences between the languages, while
others can be seen as novel opportunities for linguistic studies.

Keywords: Computational typology · cross-linguistic variation · net-
work theory · language modeling · comparative linguistics · graphs ·
language representation

1 Introduction and related work

Understanding cross-linguistic variation has for long been one of the foci of lin-
guistics, addressed by researchers in comparative linguistics, linguistic typology
and others, who are motivated by comparison of languages for genetic or typo-
logical classification, as well as many other theoretical or applied tasks. Com-
parative linguistics seeks to identify and elucidate genetic relationships between
languages and hence to identify language families [26]. From a different angle,
linguistic typology compares languages to learn how different languages are, to
see how far these differences may go, and to find out what generalizations can
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be made regarding cross-linguistic variation on different levels of language struc-
ture and aims at mapping the languages into types [6]. The availability of large
electronic text collections, and especially large parallel corpora, have offered
new possibilities for computational methodologies that are developed to capture
cross-linguistic variation. This work falls under computational typology [13,1],
an emerging field with the goal of understanding of the differences between lan-
guages via computational (quantitative) measures. Recent studies already offer
novel insights into the inner structure of languages with respect to various se-
quence fingerprint comparison metrics, such as for example the Jaccard measure,
the intra edit distance and many other boolean distances [21]. Such comparisons
represent e.g., sentences as vectors, and evaluate their similarity using plethora
of possible metrics. Albeit useful, vector-based representation of words, sentences
or broader context does not necessarily capture the context relevant to the task
at hand and the overall structure of a text collection. Word or sentence embed-
dings, which recently serve as the language representation workhorse, are not
trivial to compare across languages, and can be expensive to train for new lan-
guages and language pairs (e.g., BERT [8]). Further, such embeddings can be
very general, possibly problematic for use on smaller data sets and are dependent
on input sequence length.

In recent years, several novel approaches to computational typography have
been applied. For example, Bjerva et al. [2] compared different languages based
on distance metrics computed on universal dependency trees [19]. They discuss
whether such language representations can model geographical, structural or
family distances between languages. Their work shows how a two layer LSTM
neural network [12] represents the language in a structural manner, as the embed-
dings mostly correlate with structural properties of a language. Their main focus
is thus on explaining the structural properties of neural network word embed-
dings. Algebraic topology was also successfully used to study syntax properties
by Port et al. [20]. Similar efforts of statistical modelling of language distances
were previously presented in e.g., [14] who used Kolmogorov complexity metrics.

In contrast, we propose a different approach to modeling language data. The
work is inspired by ideas of node representation as seen in contemporary geo-
metric and manifold learning [10] and the premises of computational network
theory, which studies the properties of interconnected systems, found within vir-
tually every field of science [27]. Various granularities of a given network can
be explored using approaches for community detection, node ranking, anomaly
identification and similar [9,15,5]. We demonstrate that especially information
flow-based community detection [7] offers interesting results, as it directly sim-
ulates information transfer across a given corpus. In the proposed approach, we
thus model a corpus (language) as a single network, exposing the obtained repre-
sentation to powerful network-based approaches, which can be used for language
comparison (as demonstrated in this work), but also for e.g., keyword extraction
(cf. [4] who used TopicRank) and potentially also for representation learning and
end-to-end classification tasks.
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The purpose of this work is twofold. First, we explore how a text can be
transformed into a network with minimal loss of information. We believe that
this powerful and computationally efficient text representation that we name
text2net, standing for text-to-network transformation, can be used for many new
tasks. Next, we show how the obtained networks can be used for cross-lingual
analysis across nine languages (36 language pairs).

This work is structured as follows. In Section 2 we introduce the networks and
the proposed text2net algorithm. Next, we discuss network-topological metrics
(Section 3) that we use for the language comparison experiment in Section 4.
The results are presented in Section 5, followed by discussion and conclusions in
Section 6.

2 Network-based text representation

First, we discuss the notion of networks, and next present our text2net approach.

2.1 Networks

We first formally define the type of networks considered in this work.

Definition 1 (Network). A network is an object consisting of nodes, connected
by arcs (directed) and /or edges (undirected). In this work we focus on directed
networks, where we denote with G = (N,A) a network G, consisting of a set of
nodes N and a set of arcs A ⊆ N ×N (ordered pairs).

Such simple networks are not necessarily informative enough for complex,
real world data. Hence, we exploit the notion of weighted directed networks.

Definition 2 (Directed weighted network). A directed weighted network
is defined as a directed network with additional, real-valued weights assigned to
arcs.

Note that assigning weights to arcs has two immediate consequences: arcs can
easily be pruned (using a threshold), and further, algorithms, which exploit arc
weights can be used. We continue to discuss how a given text is first transformed
into a directed weighted network G.

2.2 text2net algorithm

Given a corpus T , we discuss the mapping text2net : T → G. As text is sequen-
tial, the approach captures global word neighborhood, proceeding as follows:

1. Text is first tokenized and optionally stemming, lemmatization and other
preprocessing techniques are applied to reduce the space of words.
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2. text2net traverses each input sequence of tokens (e.g., words, or lemmas or
stems depending on Step 1), and for each token (node) stores its successor as
a new node connected with the outbound arc. This step can be understood
as breaking the the text into triplets, where two consecutive words are con-
nected via a directed arc (therefore preserving the sequential information).

3. During construction of such triplets, arcs commonly repeat, as words often
appear in same order. Such repetitions are represented as arc weights. Weight
assignment can depend on the arc type. For this purpose, we introduce a
mapping ρ(a)→ R; a ∈ A (A is the set of arcs), a mapping which assigns a
real value to a given arc with respect to that arc’s properties.

4. Result is a weighted, directed network representing weighted token co-occurrence.

The algorithm can thus formally be stated as given in Algorithm 1. The key
idea is to incrementally construct a network based on text, while traversing the
corpus only once (after potential selected preprocessing steps).

We next discuss the text2net’s computational complexity. To analyze it, we
assume the following: the text corpus T is comprised of s sentences. In terms
of space, the complexity can be divided into two main parts. First, the memory
needed to store the sentence being currently processed and the memory for
storing the network. As the sentences can be processed in small batches, we
focus on the spatial complexity of the token network. Let the corpus consist of t
tokens. In the worst case, all tokens are interconnected and the spatial complexity
is quadratic O(t2). Due to Zipf’s law networks are notably smaller as each word
is (mostly) connected only with a small subset of the whole vocabulary (heavy
tailed node degree distribution). The approach is thus both spatially, as well as
computationally efficient, and can easily scale to corpora comprised of hundreds
of thousands of sentences.

In terms of hyperparameters, the following options are available (offering
enough flexibility to model different aspects of a language, rendering text2net
suitable as the initial step of multiple down-stream learning tasks):

– minimum sentence length considered for network construction (ts),
– minimum token length (tl),
– optional word transformation (e.g., lemmatisation) (f),
– optional stopwords or punctuation to be removed (σ),
– arc weight assignment function (ρ) (e.g., co-occurrence frequency),
– a threshold for arc prunning based on weights (θ).

3 Considered network topology metrics

In this section we discuss the selected metrics that we applied to directed weighted
networks. The metrics vary in their degree of computational complexity.

Number of nodes. The number of nodes present in a given network.
Number of edges. The number of edges in a given network.
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InfoMap communities. The InfoMap algorithm [22] is based on the idea of
minimal description length of the walks performed by a random walker
traversing the network. It obtains a network partition by minimizing the
description lengths of random walks, thus uncovering dense regions of a net-
work, which represent communities. Once converged, InfoMap yields the set
of a given network’s nodes N partitioned into a set of partitions which po-
tentially represent functional modules of a given network.

Average node degree. How many in- and out connections a node has on av-
erage. For this metric, networks were considered as undirected. See below:

AvgDeg =
1

|N |
∑

n∈N
degin(n) + degout(n)

.
Network density. The network density represents the percentage of theoreti-

cally possible edges. This metric is defined as:

Density =
|A|

|N |(|N | − 1)
;

where |A| is the number of arcs and |N | is the number of nodes. This measure
represents more coarse-grained clustering of a network.

Clustering coefficient. This coefficient is defined as the geometric average of
the subnetwork edge weights:

ClusCoef =
1

|N |
∑

u∈N

(
1

deg(u)(deg(u)− 1))

∑

vw

3
√

(ŵuvŵuwŵvw

)
;

Algorithm 1: text2net algorithm.

Data: Text corpus T (of documents d1 . . . dn), empty weighted network G
Parameters : Minimum number of tokens per sentence ts, Minimum token

length tl, word transformation function f , stopwords σ, weight
prunning threshold θ, frequency weight function ρ

Result: A weighted network G
1 for d ∈ T do
2 orderedTokens := getTokens(d, tl,ts,f ,σ); . Get token sequence.

3 for qi ∈ orderedTokens do
4 arc := (qi,qi+1); . Construct an arc.

5 addToNetwork(G, arc); . Construct the network.

6 if arc ∈ current set of arcs of G then
7 update arc’s weight via ρ; . Update weights.

8 end

9 end

10 end
11 G := prunenetwork(G,θ); . Prune the network.

12 return G
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here, ŵvw for example represents the weight of the arc between nodes v
and w. The deg(u) corresponds to the u-th node’s degree. Intuitively, this
coefficient represents the number of closed node triplets w.r.t. number of
all possible triplets. The higher the number, the more densely connected
(clustered) the network. See [3] for detailed description of the metrics above.

4 Language comparison experiments

In this section we discuss the empirical evaluation setting, where we investigated
how the proposed network-based text representation and network-topology met-
rics can be used for the task of language comparison. We use the parallel corpus
(i.e., corpus of aligned sentences across different languages) from the DGT cor-
pus, i.e. Directorate-General for Translation translation memory, provided by
Joint Research Centre and available in OPUS [25]. We selected nine different
languages: EN – English, ES – Spanish, ET – Estonian, FI – Finish, LV – Lat-
vian, NL – Dutch, PR – Portugese, SI – Slovene, SK – Slovak, covering languages
from different historical origins and language families: Romance languages (PT,
ES), Balto-Slavic languages including Slavic (SI, SK) and Baltic (LV) language
examples, Germanic langauges (EN, NL), as well as Finnic languages from Uralic
family (FI, ET). The selected languages have also different typological charac-
teristics. For example in terms of morphological typology, EN can be considered
as mostly analytic, while majority of others are synthetic languages, where for
example FI is considered as agglutinative, while Slavic languages are fusional as
they are highly inflected.

The goal of the paper was to use the network topology metrics for langauge
comparison. We considered all the pairs between the selected languages, resulting
in 36 comparisons for each network-based metric. From the parallel corpus we
sampled 100,000 sentences for each language, resulting in 900,000 sentences,
which match across languages.

From each language, we constructed a network using text2net with following
parameters: the minimum number of tokens per sentence (ts) was set to 3, the
minimum length of a given token (tl) to 1, the word transformation function
transformed words to lower-case, no lemmatisation was used, and punctuation
was removed. We defined ρ(arc) = 1.

We compared the pairs of languages as follows. For each of the two languages,
we transformed the text into a network. The discussed network topology metrics
were computed for each of the two networks. Differences between the metrics’
values are reported in tabular form (Table 1), as well as visualized as heatmaps
(Figure 1). In the latter, the cells are colored according to the absolute difference
in a given metric for readability purposes. Thus, the final result of the consid-
ered analysis are differences in a selected network topology metric. The selected
results were further visualized in Figure 2.

We used NLTK [16] for preprocessing, Py3plex [23], NetworkX [11], Cy-
toscape [24] for network analysis and visualizatino and Pandas for numeric com-
parisions [17]. Full code is available at: https://github.com/SkBlaz/language-comparisons.
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While we do not have full linguistic hypotheses about the expected mapping
of the linguistic characteristics and the topological metrics, we believe that the
network-based comparisons should show differences between the languages. For
example, the number of nodes might capture linguistic properties, such as inflec-
tional morphology, where we could expect that morphologically rich languages
would have more nodes. Number of edges might capture linguistic properties,
such as the flexibility of the word order. The other measures are less intuitive
and will be further investigated in future work. However, we believe that more
complex the language (including aspects of morphology richness and word order
flexibility), the richer the corresponding network’s structure, while the number
of connected components might offer insights into general dispersity of a given
language, and could pinpoint grammatical differences if studied in more detail.
Also clustering coefficient might be dependent on how fixed is the word order of
a given language. None of the above has been systematically investigated, and
the hypothesis is, that differences between languages will have high variability
and show already known, as well as novel groupings of the languages.

5 Results

In this section we present the results of cross-lingual comparison. The inter-
language differences in tabular format are given in Table 1. The measures given
in the table are the differences in: #Nodes — the number of nodes, #Edges — the
number of edges, Mean degree — mean node degree, Density — network density
as defined in Section 3, MaxCom — maximum community size, MeanCom —
mean community size, both computed using InfoMap communities, Clustering
— clustering coefficient and CC — the number of connected components. The
differences in the table are presented in L2-L1 absolute differences, while for
nodes and edges we also present the differences as relative percentages of the
e.g., number of nodes of the second language w.r.t the number of nodes of the
first language4. It can be observed that some language pairs differ substantially
even if only node counts are considered, where EN-FI is the pair with the largest
difference, which is not surprising. English is for example an analytical language,
while Finnish agglutinative with very rich morphology. Further, some of the
metrics indicate groupings, which can be further investigated using heatmaps
and direct visualization of language-language links.

From heatmaps shown in Figure 1, where colors of individual cells represent
differences between a given metric’s values across languages, we can make several
interesting observations. Based on Num. of nodes, FI and ET are very similar,
and the most different to other languages. Both are agglutinative languages
and part of the Uralic language family. In terms of Num. of edges, the largest
differences are between ET and EN, while the most similar are LV and FI; in
pairwise comparison with EN, we can see that PT, ES and NL have similar

4 For nodes Ndiff = 100·|N2|
|N1| , and for edges Ediff = 100·|E2|

|E1| ; the first language’s values
are compared against the second language’s values.
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(a) Maximum community size (b) Mean community size (c) Density

(d) Average degree (e) Connected components (f) Clustering coefficient

(g) Num. Nodes (h) Num. Edges

Fig. 1: Pairwise language comparison via various network-topological metrics.
Cells represent the absolute differences between metrics of individual text-
derived networks. Red regions represent very different networks,and blue very
similar ones.

statistics, which are all languages from Germanic (NL) or Romanic family. We
believe that some measures could also indicate groupings based on morphological
or other typological properties beyond the currently known ones. For example,
Max. community size on one hand points FI and ET as very different, as well
as SI and SK (where in both pairs the two languages are belonging to the same
language family), but on the other hand PT and ES are very similar. Further,
Clustering coefficient yields insights into context structure and similar properties
of groupings of basic semantic units, such as words, where high similarity between
ES and PT, as well as SI and SK can be observed. Finally, the number of
connected components offers insights into general dispersity of a given language,
and could pinpoint grammatical differences if studied in more detail. Again, we
see the most remarkable differences between EN and FI and ET, but also FI
and SI, while Romanic and Germanic languages are more similar. There are
many open questions. E.g., which linguistic phenomena make EN-FI being quite
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different in Average degree, while FI-NL are relatively similar (despite EN and
NL being in the same language group)?

Clustering coefficient is also shown in an alternative visualisation, i.e. in a col-
ored network in Figure 2. Here, we consider Clustering coefficient metric, where
we adjust the color so that it represents only very similar languages (low absolute
difference in the selected metric). We selected this metric, as the heatmap yielded
the most block-alike structure, indicating strong connections between subsets of
languages. We can see that Balto-Slavic and Finnic languages group together,
while Germanic and Romanic form another group. Finally, we visualized the
English corpus network in Figure 3. Colored parts of the network correspond
to individual communities. It can be observed that especially the central part
of the network contains some well defined structures (blue and red). The figure
also demonstrates, why various network-topological metrics were considered, as
from the structure alone, no clear insights can be obtained at such scale.

Table 1: Differences between selected network-topology metrics across languages.
The values are computed as L2-L1, or reported as L2 relative to L1.

Language pair #Nodes #Edges Mean degree Density (·10−4) MaxCom MeanCom Clustering CC Ndiff (%) Ediff (%)

en-es 10232 15251 -1.34 -0.18 11100 538.53 -0.00 5 110.90 101.71
en-et 108986 539449 -2.85 -0.62 -72382 -6578.80 -0.19 14 233.53 187.45
en-fi 117623 474376 -3.96 -0.65 114803 649.71 -0.20 12 249.01 179.60
en-lv 53162 464366 1.02 -0.34 48411 -1208.95 -0.14 8 164.35 177.99
en-nl 30786 99189 -2.30 -0.36 30839 836.35 0.06 2 138.10 115.73
en-pt 10778 56039 -0.51 -0.14 10249 -366.93 0.02 4 113.07 107.48
en-sk 59715 425657 -0.22 -0.41 60709 2757.51 -0.12 6 174.20 172.24
en-sl 46764 337421 -0.11 -0.34 -68833 -5693.41 -0.09 4 156.30 154.82
es-et 97822 518349 -1.62 -0.35 -80506 -5877.34 -0.19 7 210.57 184.29
es-fi 110493 479001 -2.70 -0.49 108672 1004.91 -0.20 6 224.53 176.58
es-lv 42062 442253 2.34 -0.16 42066 2382.83 -0.14 3 148.20 174.99
es-nl 21501 88846 -1.04 -0.20 21235 1433.40 0.06 -2 124.52 113.78
es-pt 971 43922 0.84 0.04 1232 1922.25 0.02 -2 101.96 105.67
es-sk 49382 406578 0.99 -0.20 49740 4703.95 -0.12 1 157.08 169.34
es-sl 36317 321960 1.17 -0.18 36362 6935.34 -0.10 -3 140.94 152.21
et-fi 10262 -68268 -1.32 -0.05 183810 7318.28 -0.01 5 106.63 95.82
et-lv -57119 -80883 4.01 0.29 -51457 1237.71 0.05 -5 70.38 94.95
et-nl -75247 -424500 0.50 0.24 -69698 -1081.51 0.25 -7 59.14 61.74
et-pt -96441 -471464 2.45 0.49 81260 8871.81 0.21 -9 48.42 57.34
et-sk -47901 -109523 2.56 0.20 -40340 5107.84 0.07 -7 74.60 91.89
et-sl -61594 -194218 2.80 0.27 117767 15563.93 0.08 -11 66.93 82.60
fi-lv -66730 -11261 5.33 0.34 -72108 -2285.02 0.06 -8 66.00 99.10
fi-nl -89718 -393774 1.71 0.30 -89284 -3638.18 0.26 -5 55.46 64.44
fi-pt -110479 -439797 3.60 0.54 -111720 -6939.93 0.22 -7 45.41 59.84
fi-sk -59295 -46799 3.96 0.26 -182908 -6349.16 0.08 -10 69.96 95.90
fi-sl -72939 -134593 4.11 0.32 -71835 8022.41 0.11 -13 62.77 86.20
lv-nl -19634 -354516 -3.52 -0.05 -18654 -318.15 0.20 -2 84.02 65.02
lv-pt -41716 -402441 -1.46 0.21 -36193 4468.15 0.16 -6 68.80 60.39
lv-sk 7581 -34478 -1.38 -0.08 -123658 -7706.36 0.02 -5 105.99 96.77
lv-sl -5810 -122602 -1.21 -0.03 1014 7032.05 0.05 -6 95.10 86.99
nl-pt -20143 -43781 1.86 0.24 -19930 -314.52 -0.04 -1 81.88 92.87
nl-sk 27385 314730 2.09 -0.04 27329 1161.44 -0.19 3 126.14 148.83
nl-sl 13810 230590 2.32 0.03 7637 -2267.56 -0.16 -3 113.18 133.78
pt-sk 48780 361817 0.12 -0.29 47881 1201.90 -0.15 5 154.06 160.25
pt-sl 35260 275981 0.32 -0.22 35831 6622.65 -0.12 0 138.23 144.05
sk-sl -13637 -85421 0.23 0.07 -130809 -9182.12 0.03 -3 89.73 89.89
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Fig. 2: Language network based on the Clustering coeff. The red links are present
after the threshold of 10−3 was applied. Gray links represent connections that
are not present given the applied threshold. We can see two groups, one formed
by Balto-Slavic and Finnic languages, the other by Germanic and Romanic.

6 Discussion and conclusions

In this work, our aim was to provide one of the first large-scale comparisons
of languages based on corpus-derived networks. To the best of our knowledge,
the use of network topologies on sequence-based token networks are novel and
it is not yet known to what characteristics the network topologies correspond.
Second, we investigated whether the difference in some metrics correspond known
relationships between languages, or represent novel language groupings.

We have shown that the proposed network-based text representation offers a
pallete of novel opportunities for language comparison. Commonly, methods op-
erate on sequence level, and are as such limited to one dimensional interactions
with respect to a given token. In this work we attempted to lift this constraint
by introducing richer, global word neighborhood. We were able to cast the lan-
guage comparison problem to comparing network topology metrics, for which we
show can be informative for genetic and typographic comparisons. For example,
the Slovene and Slovak languages appear to have very similar global network
structure, indicating comparison using communities picks up some form of evo-
lutionary language distance. In this work we explored only very simple language
networks by performing virtually no preprocessing. We believe a similar idea
could be used to form networks from lemmatized text or even Universal Depen-
dency Tags, potentially opening another dimension.

Overall, we identified the clustering coefficient as the metric, which, when
further inspected, yielded some of the well known language-language relation-
ships, such as for example high similarity between Spanish and Portugese, as well
as Slovenian and Slovak languages. Similar observation was made when commu-
nity structure was compared. We believe such results demonstrate network-based
language comparison represents a promising venue for scalable and more infor-
mative studies of how languages, and text in general, relate to each other.
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Fig. 3: Visualization of the English DGT subcorpus. This network was con-
structed using the proposed text2net algorithm, where each link corresponds to
the followed by relation between a given pair of word tokens. Clustering emerges,
indicating the presence of meso-scale topological structures in such networks.
Different colors correspond to different communities detected using InfoMap.

In future, we will closer connect the interpretation of network topological fea-
tures with linguistic properties, also by single language metrics. Also, we believe
that document-level classification tasks can benefit from exploiting the inner
document structure (e.g., the Graph Aggregator framework could be leveraged
instead of/in addition to conventional RNN-based approaches). The added value
of graph-based similarity for classification was demonstrated e.g., in [18] for psy-
chosis classification from speech graphs. We also believe that our cross-language
analysis, could be indicative for the expected quality of cross-lingual represen-
tations. Last but not least, we plan to perform additional experiments to see
if the results are stable, leading to similar findings of other corpora genres and
corpora of other sizes, and also using comparable not only parallel data.
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