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1 Introduction
Deep neural networks are currently the most successful machine learning approach for textual data,
beating all other models in practically all language processing and understanding tasks (LeCun et al.,
2015; Zhang et al., 2015; Kim et al., 2016; Peters et al., 2018; Devlin et al., 2019). As an input, neu-
ral networks require numerical data. Text embeddings provide such an input, ensuring that relations
between words are reflected in the distances in numeric space. In this report, we investigate different
neural network architectures with the aim to adapt them to specifics of processing morphologically rich
languages addressed in the EMBEDDIA project.

The EMBEDDIA project aims to improve the cross-lingual transfer of language resources and trained
models using word embeddings and cross-lingual word embeddings. We presented the basic descrip-
tion of embeddings and cross-lingual embeddings in deliverable D1.1 Datasets, benchmarks and evaluation
metrics for cross-lingual word embeddings, with more details about embeddings and cross-lingual embed-
dings contained in deliverables D1.2 Initial cross-lingual and multilingual embeddings technology and D1.3
Initial context-dependent and dynamic embeddings technology. To make this document self-contained, we
first repeat some basic explanations in Section 1.1, which a reader acquainted with embeddings can
skip. Section 1.2 puts this report in the broader context of project objectives, outlines the specific aims
and contributions of this report in the context of task T1.3, and presents the report structure.

1.1 Introducing embeddings

To process text, neural networks require numerical representation of the given text (words, sentences,
documents), referred to as text embeddings. In this work we focus on word embeddings, which are
representations of words in numerical form, consisting of vectors of typically several hundred dimen-
sions. The vectors are used as an input to machine learning models; for complex language processing
tasks these are typically deep neural networks. The embedding vectors are obtained from specialized
learning tasks, based on neural networks, e.g., word2vec (Mikolov, Le, & Sutskever, 2013), GloVe (Pen-
nington et al., 2014), or FastText (Bojanowski et al., 2017). For training, the embedding algorithms use
large monolingual text collections (called corpora) to encode important information about word meaning
as distances between vectors. In order to enable downstream machine learning on text understanding
tasks, the embeddings shall preserve semantic relations between words, and this is true even across
languages.

Probably the best known word embeddings are produced by the word2vec method (Mikolov, Sutskever,
et al., 2013) which we use as a baseline. The problem with word2vec embeddings is their failure to
express polysemous words. During training of an embedding, all senses of a given word (e.g., paper
as a material, as a newspaper, as a scientific work, and as an exam) contribute relevant information
in proportion to their frequency in the training corpus. This causes the final vector to be placed some-
where in the weighted middle of all words’ meanings. Consequently, rare meanings of words are poorly
expressed with word2vec and the resulting vectors do not offer good semantic representations. For
example, none of the 50 closest vectors of the word paper is related to science1.

The idea of contextual embeddings is to generate a different vector for each context a word appears in
and the context is typically defined sentence-wise. To a large extent, this solves the problems with word
polysemy, i.e. the context of a sentence is typically enough to disambiguate different meanings of a
word for humans and so it is for the learning algorithms.

In our work, we mostly use, analyze, and improve upon currently the most successful approaches to
contextual word embeddings, ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019). Note that the
state-of-the-art in embeddings is rapidly progressing (for example, at the time the EMBEDDIA project
was conceived, the methods for training contextual embeddings were non-existent). It is therefore pos-
sible, that working methods will change during the project duration.

1A demo showing near vectors computed with word2vec from Google News corpus is availabe at http://bionlp-www.utu.fi/
wv_demo/.
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Modern word embedding spaces exhibit similar structures across languages, even when considering
distant language pairs like English and Vietnamese (Mikolov, Le, & Sutskever, 2013). This means
that embeddings independently produced from monolingual text resources can be aligned (Mikolov,
Le, & Sutskever, 2013), resulting in a common cross-lingual representation, called the cross-lingual
embedding, which allows for fast and effective integration of information in different languages.

1.2 Context of the deliverable

The objectives of workpackage WP1 of the EMBEDDIA project are to advance cross-lingual and context-
dependent word embeddings and test them with deep neural networks. The specific objectives of T1.3
are to advance deep learning technology for morphologically rich, less-resourced languages Slovene,
Croatian, Estonian, Lithuanian, Latvian, Russian, Finnish, and Swedish, as well as for English, i.e. the
nine languages addressed in EMBEDDIA.

This report describes the results of the work performed in T1.3 from the start of the task in M4 till M12.
The main contributions presented in this report (in the order of appearance) are as follows:

1. extensions of LSTM neural networks and current state-of-the-art model BERT with explicit mor-
phology (POS tags, suffixes, prefixes), described in Sections 3.2, 3.3, and 3.4;

2. evaluation of the proposed neural network extensions on a relevant named entity recognition task,
described in Section 4;

3. extensions of deep neural architectures for text processing with reliability scores, described in
Section 5 and in the appended paper by Miok et al. (2019), published in Proceedings of the
International Conference on Statistical Language and Speech Processing 2019.

The above contributions are slightly different from the ones anticipated in the EMBEDDIA project pro-
posal: at the time of proposal writing we namely anticipated that contextual embedding methods will
need to be developed from scratch. However, due to recently developed highly successful contextual
embedding approaches ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019), part of the original
EMBEDDIA objectives were already successfully achieved by AllenNLP and Google research groups,
which have huge amounts of resources available (AllenNLP developed ELMo and Google developed
BERT). Specifically, a variant of BERT, called multilingual BERT, was trained on 104 languages and
works well in cross-lingual setting with no need for any further cross-lingual alignments. BERT uses
subword input, which is very appropriate for morphologically rich languages (addressing also some of
the objectives of Task 1.3).

Given the described developments, we have in task T1.3 partially re-focused our research on the chal-
lenging remaining issues in deep neural network architectures. Consequently, we tried to adapt standard
LSTM (Long Short-Term Memory) deep neural networks as well as the state-of-the-art contextual neural
network architecture BERT for morphologically rich languages. We tried to enrich LSTM networks and
BERT with additional information on morphology: separately trained universal POS tags, separately
trained universal features, as well as suffixes and prefixes.

This report is split into further four sections. In Section 2 we shortly describe the most successful
architectures of deep-neural networks used in natural language processing. In Section 3, we describe
extensions to deep neural network architectures we tested in order to improve their performance on
morphologically rich languages. We present initial evaluation of the tested extensions in Section 4.
Section 5 presents the issue of prediction uncertainty estimation, proposing a novel methodology for
reliability assessment of neural classifiers’ predictions on textual data, tested on different hate speech
datasets. Availability of new resources produced in this work is discussed in Section 6. We present
conclusion about the tested extensions to deep neural networks in Section 7 where we also outline
plans for further work. Appendix A includes the paper by Miok et al. (2019), published in Proceedings
of the International Conference on Statistical Language and Speech Processing 2019.
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2 Deep neural networks
Deep learning (LeCun et al., 2015; Goodfellow et al., 2016) differs from other machine learning algo-
rithms by allowing computational models that are composed of multiple processing layers to learn rep-
resentations of data with multiple levels of abstraction. Deep learning methods have improved state-of-
the-art results on various tasks, such as visual object recognition, object detection, speech recognition,
machine translation, question answering, text classification and many others.

Text is usually treated as a sequence by deep neural networks. Sequences can be of different length and
typically there is some dependency between different positions in a sequence (e.g., a verb in a sentence
may determine the subsequent choice of nouns). A standard choice of neural network architecture
for sequences are recurrent neural networks (RNN) which contain loops. By introducing backward
connections, the information from the previous processing steps persists in the network, effectively
allowing the network to memorize previous processing, which is well suited for sequences. RNNs are
very effective in processing speech, text, signals, and other sequential data. RNNs also introduce many
challenges, for example the convergence of learning to stable weights is much slower.

The most popular type of RNNs are Long Short Term Memory (LSTM) networks. LSTM networks allow
explicit control over which information is preserved and which one is forgotten. The network learns
behavior of its own weights (called cell weights) and the weights of three gates, the input, output, and
forget gate. These gates control the flow of information inside the LSTM neuron. The input gate controls
the flow of new values into the cell, the forget gate controls the persistence of values in the cell, and
the output gate controls which cell values participate in the computation of the output of the LSTM
neuron.

Recently, after the conception of the EMBEDDIA project, a new state-of-the-art deep neural network
approach to language modeling, contextual embeddings, and classification was introduced. BERT
(Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) generalises the idea
of language models to masked language models—inspired by cloze tests—which test the understand-
ing of a text by removing a certain portion of words that the participant is asked to replace. The masked
language model randomly masks some of the tokens from the input, and the task of the language model
is to predict the missing token based on its neighbourhood. BERT uses transformer architecture of
neural networks (Vaswani et al., 2017), which uses both left and right context in predicting the masked
word and further introduces the task of predicting whether two sentences appear in a sequence. The
input representation of BERT are sequences of tokens representing subword units. Some very common
words are kept as single tokens, others are split into subwords (e.g., common stems, prefixes, suffixes—
if needed down to a single letter tokens). The original BERT project offers pre-trained English, Chinese
and multilingual models; the latter is trained on 104 languages simultaneously. BERT has shown ex-
cellent performance on 11 NLP tasks: 8 from GLUE language understanding benchmark (Wang et al.,
2018), question answering, named entity recognition, and common-sense inference.

Rather than training an individual classifier for every classification task, which is resource and time
expensive, we use a pre-trained general BERT multilingual language model and fine-tune it on a specific
task. Fine-tuning a large pre-trained model to a specific similar similar task is useful and common in
modern NLP, because it allows extraction of textual features without development and lengthy training.
Frequently, this approach requires less task-specific data. During pre-training, BERT model learns
relations between sentences (entailment) and between tokens within a sentence. This knowledge is
then used during training on a specific down-stream task (Devlin et al., 2019). The use of BERT in a
token classification task only requires adding connections between its last hidden layer and new neurons
corresponding to the number of classes in the intended task. To classify a sequence, we usually apply
a pooling operation before the classification layer to reduce the sequence length dimension to one. The
fine-tuning process is applied to the whole network and all of the parameters of BERT and new class
specific weights are fine-tuned jointly to maximize the log-probability of the correct labels.
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3 Adaptations of neural networks for morphologi-
cally rich languages

In morphologically rich languages, the information about grammatical relations (e.g., subject, predicate,
object) is expressed in the morphology of words instead of in particles or relative positions of words.
State-of-the-art contextual embeddings like BERT (Devlin et al., 2019) already capture a lot of infor-
mation contained in morphology and work well for this kind of languages (Pires et al., 2019). As the
EMBEDDIA project was conceived before contextual embeddings were discovered, it proposed to di-
rectly inject morphological information into deep neural networks. In this report, we test this idea and
compare it with modern contextual embeddings, specifically with BERT. The comparison is done on
a downstream task of named entity recognition (NER), described in Section 4.1. We use an adapted
version of the NER task, which is probably the only realistic language understanding task available for
all EMBEDDIA languages. Note that the datasets used and the purpose of the NER task in this report is
different from the NER task in Deliverable D2.2. Initial cross-lingual semantic enrichment technology. In this
report, we are only interested in NER as a benchmark for inclusion of morphological information and not
to maximally improve the NE recognition rate (e.g., we do not use any external information, fine-tuning
of models etc).

In Section 3.1, we present two baseline models, LSTM with non-contextual embeddings, and BERT
contextual model whose last layer can be fine-tuned for a specific task. In Section 3.2, we describe a
neural architecture where we inject universal part-of-speech tags into the network. In Section 3.3, we
propose an architecture that also uses universal features, and in Section 3.4 we add explicit information
on word prefixes and suffixes to a network.

3.1 Baseline models

For evaluation purposes, we built two baseline models and compared them with adapted models. First,
we created a neural network that utilises pre-trained non-contextual fastText embeddings (Joulin et al.,
2016). The fastText embedding uses subword inputs that are suitable for morphologically rich lan-
guages. Besides the embeddings layer that used fastText embeddings of size 300, we utilised one
unidirectional LSTM layer with 256 LSTM units, and a final softmax classification layer, as illustrated in
Figure 1. We trained the LSTM and classification layer for each specific task using the batch size of
16.

Figure 1: The baseline neural network architecture using fastText embeddings and LSTM cells.

The second baseline model was a pre-trained cased multilingual BERT-Base model with added final
softmax classification layer. We fine-tuned the model for our task by back-propagating values through
the whole neural network, not just through the classification layer. This is similar to other token classifi-
cation tasks explained in (Devlin et al., 2019). The structure of the model is shown in Figure 2.
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Figure 2: The baseline neural network architecture using BERT for prediction.

For many NLP tasks, BERT-based models are much more successful than the models with classical
LSTM cells and non-contextual embeddings (Devlin et al., 2019). In our work, we enriched both ar-
chitectures. We modified the architecture of the LSTM neural network with fastText embeddings and
BERT-based model by adding additional morphological information.

3.2 Adding universal part-of-speech tags

Part-of-speech (POS) is a category of words with similar grammatical properties. POS tags are labels
of different word categories, e.g., nouns, verbs, adverbs, adjectives, etc. Universal part-of-speech tags
(uPOS tags) aim to standardise part-of-speech tagging (a process of assigning POS tags) across dif-
ferent languages. The uPOS tags we used, were obtained by automatically annotating each word with
models trained specifically for this task (Qi et al., 2019).

To the baseline LSTM network with fastText embeddings, as described above, we added uPos tags as
shown in Figure 3. We used up to 128 words per sentence. We concatenated the output of the LSTM
layer with shape of 128 X 256 with uPOS matrix of shape 128 X 15. We used this 128 X 271 matrix
as the input to two additional feed-forward layers of size 256 and the final classification layer. During
training, the fastText encoding was not modified, i.e. the corresponding layer was frozen.

Figure 3 illustrates adding uPos tags to the LSTM or BERT model. As an input to BERT, we used maxi-
mally 128 tokens (number of byte-pair encoding segments in a sentence). All tokens beyond that were
discarded. BERT penultimate layer has a shape of 128 X 768 (disregarding batches). We concatenated
this matrix with another one of shape 128 X 15, that contained data about uPOS tags. uPOS matrix was
created by embedding class of each uPOS word to a vector of length 15. If a word was split into multiple
tokens, we used the same uPOS embedding for each part. Concatenated matrix of size 128 X 783
was than passed to two additional feed-forward layers of size 768 and the final classification layer, as
visualised in Figure 3. We used this architecture for fine-tuning all layers of the model on NER datasets
in three morphologically rich languages: Slovene, Estonian and Finnish.

3.3 Adding universal features

Universal features contain information about additional grammatical and lexical properties of words, not
covered by uPOS tags, e.g., a grammatical tense, number, declination, conjugation, etc. We covered
23 additional features. Each word only has one uPOS tag, but may have multiple additional features.
We added these features by concatenating them with uPOS tags and the corresponing architecture, as
shown in Figure 4. Each feature class was embedded to a vector of length 15. When concatenating
additional data with for example LSTM, the concatenated matrix consisted of LSTM layer output (128 X
256), uPOS matrix (128 X 15) and 23 additional features each represented by another 128 X 15 matrix,
making it an overall shape of 128 X 616. The BERT-based model was extended in the same way. Again,
this architecture was tested on three morphologically-rich languages: Slovene, Estonian and Finnish.
The additional features were obtained from neural models specifically trained for the task of universal
features (Qi et al., 2019).
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Figure 3: Neural network architecture based on either BERT multilingual model or LSTM model with fastText em-
beddings. The model includes uPOS tags.

Figure 4: Neural network architecture based on either BERT multilingual model or LSTM model with fastText em-
beddings. The architecture includes uPOS tags and universal features.

3.4 Adding prefixes and suffixes

For many morphologically-rich languages, including Slavic, Baltic and Finnish, the majority of morpho-
logical information is contained in prefixes and suffixes of the words. To test if explicit inclusion of this
information can help in neural network classifiers, we obtained lists of prefixes and suffixes for Slovene.
We iterated over all words in sentences and checked if they began with a prefix or ended with a suffix
on the list. We used this information in our input to neural networks in the same way as uPOS tags and
universal features. The problem with this approach is that a word may begin with the letters that make
up a prefix or end with letters that make up a suffix, without these letters actually forming a prefix or
suffix (e.g., in Slovene ”pri” is a frequent prefix, but does not play a role of prefix in the word ”prizma”).
We added prefixes and suffixes in the same way as uPOS and universal features. The only difference
was that instead of embedding prefixes and suffixes into embedding of length 15, we embedded them
into the vector of length 30. The reason for this are more possible classes to which words might belong
(78 prefixes and 331 suffixes).
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4 Initial evaluation
We evaluated the proposed architectures with injected additional morphological information using the
NER task on Slovene, Estonian, and Finnish. We first shortly repeat the description of the NER data
set from D1.1 Datasets, benchmarks and evaluation metrics for cross-lingual word embeddings, followed by the
results.

4.1 The NER dataset

We test the proposed architectures on a popular downstream task of Named Entity Recognition (NER).
NER is an information extraction task that seeks to locate and classify named entity mentions in un-
structured text into pre-defined categories such as the person names, organizations, locations, medical
codes, time expressions, quantities, monetary values, percentages, etc.

We obtained labelled datasets for all EMBEDDIA languages. The details of these datasets are pre-
sented in Table 1. The NER datasets for EMBEDDIA languages in Table 1 vary in the used label sets,
some using more specific labels than others, like job, nicknames etc.

The labels of the NER datasets used in this report are simplified to a common label set of three labels,
present in all the addressed working languages, i.e. there are only three labels (LOC, ORG, and PER) in
the intersection of all label sets. Due to this diversity in annotations and to make comparison sensible
across languages, we trimmed labels in all datasets down to these three classes. Each word in NER
datasets is annotated with either named entity label or OTHR (the tag used for all words that are not
annotated named entities).

Table 1: The collected datasets for NER task and their properties: number of sentences, number of tagged words,
availability, and link to the corpus location.

Language Corpus Sentences Tags Avail. Location
Croatian hr500k 25000 29000 public link
English CoNLL-2003 NER 21000 44000 public link
Estonian Estonian NER corpus 14000 21000 public link
Finnish FiNER data 14500 17000 public link
Latvian LV Tagger train data 10000 11500 public link
Lithuanian TildeNER 5500 7000 limited link
Russian factRuEval-2016 5000 9500 public link
Slovene2 ssj500k 9500 9500 public link
Swedish Swedish NER 8500 7500 public link

4.2 Results of adding explicit morphological information to neural
networks on the NER task

We compared the baseline models, described in Section 3.1, with LSTM and BERT-based models in-
jected with additional morphological information, described in Sections 3.2, 3.3, and 3.4. As the process
of fine-tuning BERT-based models with additional information or to a specific task requires considerable
computational resources (GPU power), we limited the number of experiments and languages. Never-
theless, we believe that the results can be generalised to all EMBEDDIA languages as we are using the
multilingual BERT model as a baseline that is trained on all the EMBEDDIA languages.

As the evaluation metrics we used precision, recall and F1 score. We calculated each metric for each
named entity class (ORG, LOC, and PER) and calculated weighted average per metric to produce the

2The Slovene ssj500k originally contains more sentences, but only 9500 are annotated with NER data.
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Table 2: An example of calculating the weighted results. The weighted precision pw is calculated as pw = (pORG ·
nORG + pLOC · nLOC + pPER · nPER/(nORG + nLOC + nPER), where plabel is precision of a given label (ORG,
LOC, or PER), and nlabel is the number of instances with the given label. In our example, pw is calculated
as pw = (0.6572 ∗ 358 + 0.8387 ∗ 115 + 0.7360 ∗ 227)/700 = 0.7126.

Label Precision Recall F1 score nlabel
ORG 0.6572 0.7123 0.6836 358
LOC 0.8387 0.9043 0.8703 115
PER 0.7360 0.8106 0.7715 227
weighted / total 0.7126 0.7757 0.7428 700

final results, which are shown in the results tables. The weighted averages use frequencies of class
values in each dataset as the weights. An example of calculated results is shown in Table 2. Note that
the we followed the standard approach in NER evaluation and ignored the tag OTHR, which was used
for all words that are not annotated named entities, i.e. we only focused on the named entities. All
models were evaluated using 11-fold cross-validation3.

For each of the three analyzed morphologically rich languages (Slovene, Estonian, and Finnish), we
trained eight different models on the NER dataset.

• fastText + LSTM is a LSTM network that uses fastText non-contextual embeddings.

• fastText + LSTM + 2FFL is a LSTM network, similar to fastText + LSTM with additional two feed forward
layers at the end.

• fastText + LSTM + 2FFL + uPOS models uses architecture similar to fastText + LSTM + 2FFL with
additional information about uPOS tags.

• fastText + LSTM + 2FFL + uPOS + feats uses information about feats as well as uPOS.

• BERT is a neural network model that takes weights from the BERT multilingual model and is fine-
tuned for the NER task.

• BERT + uPOS use BERT multilingual model and uPOS tags. It differs from BERT model by also
utilising two feed-forward layers.

• BERT + uPOS + feats models uses BERT multilingual model, uPOS tags, and universal features.

• BERT + uPOS + feats + fixes uses explicit information on prefixes and suffixes within the model using
uPOS tags and universal features. Note, that due to availability of prefixes and suffixes this model
was trained only for the Slovenian language.

For each model and language, we used 10 epochs of fine-tuning BERT for NER task and 50 epochs for
training the LSTM with fastText We have chosen the parameters for our training in a preliminary testing
on a Slovene dataset with the aim to balance the performance and computation times. The results for
Slovene, Estonian, and Finnish are presented in Tables 3, 4, 5, respectively.

We confirmed our hypothesis that additional morphological information can improve results of non-
contextual embeddings, as fastText + LSTM + 2FFL + uPOS + feats model outperformed fastText + LSTM
across multiple languages. We included model fastText + LSTM + 2FFL to test whether improvements
might be a result of two additional feed forward layers, but this was not the case. The results show that
LSTM networks with fastText embeddings are not competitive with BERT-based models in none of the
tested languages, which confirms the advantage of using contextual embeddings.

In general, adding uPOS tags, universal features, and prefixes/suffixes does not improve the results
over the baseline BERT model (though, the results are slightly improved for the Sovenian language).
To confirm this, we performed the t-test on cross-validation folds of different models. The test results

3The unusual choice of 11- instead of more common 10-fold cross-validation is a consequence of a typo in the initial evaluation
script and does affect the results.
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Table 3: Results for different models on NER task in the Slovene language. The result of the best model for each
measure is in bold.

Model Precision Recall F1 score
fastText + LSTM 0.6494 0.6321 0.6389
fastText + LSTM + 2FFL 0.6393 0.6664 0.6509
fastText + LSTM + 2FFL + uPOS 0.6712 0.6900 0.6785
fastText + LSTM + 2FFL + uPOS + feats 0.6594 0.6797 0.6657
BERT 0.8332 0.8516 0.8415
BERT + uPOS 0.8318 0.8495 0.8400
BERT + uPOS + feats 0.8411 0.8526 0.8458
BERT + uPOS + feats + fixes 0.8372 0.8526 0.8438

Table 4: Results for different models on NER task in the Estonian language. The result of the best model for each
measure is in bold.

Model Precision Recall F1 score
fastText + LSTM 0.7089 0.7170 0.7108
fastText + LSTM + 2FFL 0.7062 0.7225 0.7108
fastText + LSTM + 2FFL + uPOS 0.7045 0.7391 0.7192
fastText + LSTM + 2FFL + uPOS + feats 0.7074 0.7422 0.7222
BERT 0.8713 0.8829 0.8765
BERT + uPOS 0.8681 0.8822 0.8746
BERT + uPOS + feats 0.8680 0.8760 0.8715

Table 5: Results for different models on NER task in the Finnish language. The result of the best model for each
measure is in bold.

Model Precision Recall F1 score
fastText + LSTM 0.7706 0.8027 0.7855
fastText + LSTM + 2FFL 0.7642 0.8304 0.7948
fastText + LSTM + 2FFL + uPOS 0.7833 0.8327 0.8062
fastText + LSTM + 2FFL + uPOS + feats 0.7917 0.8256 0.8071
BERT 0.9242 0.9261 0.9247
BERT + uPOS 0.9192 0.9183 0.9183
BERT + uPOS + feats 0.9184 0.9197 0.9186

show that we cannot reject the null hypothesis of identical average scores between all BERT based
models, but we can reject (at p = 0.01) the hypothesis of equal performance of BERT models and LSTM
models with fastText embeddings. We hypothesise that BERT-based models have already captured the
information about the morphology of the words.

5 Prediction Uncertainty Estimation
One of the shortcomings of standard deep neural networks is that they do not provide information on
reliability of predictions. Recent works on combining probabilistic Bayesian inference and neural network
methodology attracted much attention in the scientific community (Myshkov & Julier, 2016). The main
reason is the ability of probabilistic neural networks to quantify trustworthiness of predicted results. This
information can be important, especially in tasks were decision making plays an important role (Miok,
2018).

The areas which can significantly benefit from prediction uncertainty estimation are text classification
tasks which trigger specific actions. In the context of the EMBEDDIA project, this includes hate speech

12 of 30



ICT-29-2018 D1.4: Initial deep networks

detection in user generated contents, frequently encountered in the media industry. Here, reliable re-
sults are needed to remove harmful contents and possibly ban malicious users without preventing the
freedom of speech. In order to assess the uncertainty of the predicted values, the neural networks
require a Bayesian framework.

Bayesian neural network (BNN) methodology provide reliability scores by probabilistic interpretation of
model parameters. Apart from prediction uncertainty estimation, BNNs offer robustness to overfitting
and can be efficiently trained on small data sets (Kucukelbir et al., 2017). However, neural networks
that apply Bayesian inference can be computationally expensive, especially the ones with the complex,
deep architectures. Our work is based on Monte Carlo Dropout (MCD) method proposed by Gal &
Ghahramani (2016). The idea of this approach is to capture prediction uncertainty using the dropout as
a regularization technique (Srivastava et al., 2014). The approach drops some randomly selected nodes
from the neural network during the training process. Dropout increases the robustness of networks and
prevents overfitting. Different variants of dropout improved classification results in various areas (Baldi
& Sadowski, 2013). Gal & Ghahramani (2016) exploited the interpretation of dropout as a Bayesian
approximation and proposed a Monte Carlo dropout (MCD) approach to estimate the prediction uncer-
tainty.

In this work, we analyze the applicability of Monte Carlo dropout in assessing the predictive uncertainty.
While the complete description of the proposed approach is contained in the appended paper by Miok
et al. (2019), published in the Proceedings of the Statistical Language and Speech Processing (SLSP)
2019 conference, this section provides a brief overview of this work. Our main goal was to propose
a novel methodology for reliability assessment of neural classifiers’ predictions on textual data, and
test it on different hate speech datasets. For a given text we provide a probabilistic assessment of
the prediction uncertainty and illustrate it in a comprehensible visual form. The outline of the used
methodology is presented in Figure 5.
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Figure 5: The diagram of the proposed methodology.

In the prediction phase, we used LSTM models with Monte Carlo dropout for reliability assesmnet and
showed that in hate speech classification their performance is comparable to the best competing ap-
proaches using word embeddings and superior using sentence embeddings. Our study also showed
that pre-trained sentence embeddings outperform even state-of-the-art contextual word embeddings
and can be recommended as a suitable representation for this task.

The main contributions of the work are:

• investigation of prediction uncertainty assessment in the area of text classification,

• implementation of hate speech detection with reliability output,

• evaluation of different contextual embedding approaches in the area of hate speech,

• a novel visualisation of prediction uncertainty and errors of classification models.
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6 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
Morphological BERT github.com/EMBEDDIA/morphological-BERT To become public∗

Morphological fastText github.com/EMBEDDIA/morphological-fasttext To become public∗

Hate speech prediction github.com/EMBEDDIA/Hate-Speech-Prediction-Uncertainty Public (MIT)
∗ Resources marked here as “To become public” are available only within the consortium while under
development and/or associated with work yet to be published. They will be released publicly when the
associated work is completed and published.

Parts of this work are also described in detail in the following publications, which are attached to this
deliverable as appendices:

Citation Status Appendix
Miok, K., Nguyen-Doan, D., Škrlj, B., Zaharie, D., Robnik-Šikonja, M.
(2019). Prediction uncertainty estimation for hate speech classification.
In Proceedings of the international conference on statistical language
and speech processing SLSP 2019 (pp. 286–298). Springer.

Published Appendix A

7 Conclusions and further work
Most of the standard neural network architectures for language processing are adapted to English. As
morphologically rich languages might require different inputs and explicit information about morphology,
we tested adding such information to i) the standard deep neural network approach with LSTM cells
using non-contextual fast embeddings, and ii) the state-of-the-art contextual multilingual model BERT.
Both models were combined with additional morphological information: separately trained universal
POS tags, separately trained universal features, as well as prefixes and suffixes. We tested the modi-
fied architectures on the named entity recognition problem using three morphologically rich languages:
Slovene, Estonian, and Finnish.

We showed that combining non-contextual embeddings with additional morphological information did
improve the results over the baseline LSTM model with fastText. However, usage of BERT multilin-
gual model together with universal part-of-speech tags, universal features, and prefixes/suffixes has not
shown any advantage over the baseline BERT model. We believe that the baseline BERT model already
captures all the necessary morphological information for the NER task.

We presented the first successful approach to assessment of prediction uncertainty in hate speech
classification. Our approach uses LSTM model with Monte Carlo dropout and shows performance
comparable to the best competing approaches using word embeddings and superior performance using
sentence embeddings. Our study shows that pre-trained sentence embeddings outperform even state-
of-the-art contextual word embeddings and can be recommended as a suitable representation for this
task. We demonstrate that reliability of predictions and errors of the models can be comprehensively
visualized.

We see a possible path to improvements in the performance of a classifier by improving the BERT
model, in particular in its training on larger corpora specific to a given language (at the moment we
are using a pre-trained BERT multilingual model, trained on Wikipedia corpora from 104 languages).
We have already taken the first steps in this direction, but due to long training times of BERT models
(over a month for each language), the results are not yet available at the time of this report. Other
possible improvements include adding additional morphological information to the attention mechanism
of BERT while training the baseline models instead of concatenating this data with pre-trained models.
We could also introduce additional language information to neural networks, in particular dependency
relations.
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Prediction uncertainty estimation is rarely implemented for text classification and other NLP tasks, hence
our future work will also go in this direction. While cross-lingual embeddings possibly open new oppor-
tunities to share data sets and models between languages, the evaluation in rare languages is difficult,
therefore the assessment of predictive reliability for such problems might be an auxiliary evaluation
approach. In this context, we also plan to investigate convolutional neural networks and transformer
networks with probabilistic interpretation.
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Abstract. As a result of social network popularity, in recent years, hate speech
phenomenon has significantly increased. Due to its harmful effect on minority
groups as well as on large communities, there is a pressing need for hate speech
detection and filtering. However, automatic approaches shall not jeopardize free
speech, so they shall accompany their decisions with explanations and assessment
of uncertainty. Thus, there is a need for predictive machine learning models that
not only detect hate speech but also help users understand when texts cross the
line and become unacceptable.
The reliability of predictions is usually not addressed in text classification. We fill
this gap by proposing the adaptation of deep neural networks that can efficiently
estimate prediction uncertainty. To reliably detect hate speech, we use Monte
Carlo dropout regularization, which mimics Bayesian inference within neural
networks. We evaluate our approach using different text embedding methods. We
visualize the reliability of results with a novel technique that aids in understanding
the classification reliability and errors.

Keywords: prediction uncertainty estimation, hate speech classification, Monte
Carlo dropout method, visualization of classification errors

1 Introduction

Hate speech represents written or oral communication that in any way discredits a
person or a group based on characteristics such as race, color, ethnicity, gender, sexual
orientation, nationality, or religion [35]. Hate speech targets disadvantaged social groups
and harms them both directly and indirectly [33]. Social networks like Twitter and
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Facebook, where hate speech frequently occurs, receive many critics for not doing
enough to deal with it. As the connection between hate speech and the actual hate crimes
is high [4], the importance of detecting and managing hate speech is not questionable.
Early identification of users who promote such kind of communication can prevent an
escalation from speech to action. However, automatic hate speech detection is difficult,
especially when the text does not contain explicit hate speech keywords. Lexical detection
methods tend to have low precision because, during classification, they do not take into
account the contextual information those messages carry [11]. Recently, contextual word
and sentence embedding methods capture semantic and syntactic relation among the
words and improve prediction accuracy.

Recent works on combining probabilistic Bayesian inference and neural network
methodology attracted much attention in the scientific community [23]. The main reason
is the ability of probabilistic neural networks to quantify trustworthiness of predicted
results. This information can be important, especially in tasks were decision making
plays an important role [22]. The areas which can significantly benefit from prediction
uncertainty estimation are text classification tasks which trigger specific actions. Hate
speech detection is an example of a task where reliable results are needed to remove
harmful contents and possibly ban malicious users without preventing the freedom of
speech. In order to assess the uncertainty of the predicted values, the neural networks
require a Bayesian framework. On the other hand, Srivastava et al. [32] proposed a
regularization approach, called dropout, which has a considerable impact on the general-
ization ability of neural networks. The approach drops some randomly selected nodes
from the neural network during the training process. Dropout increases the robustness of
networks and prevents overfitting. Different variants of dropout improved classification
results in various areas [1]. Gal and Ghahramani [14] exploited the interpretation of
dropout as a Bayesian approximation and proposed a Monte Carlo dropout (MCD) ap-
proach to estimate the prediction uncertainty. In this paper, we analyze the applicability
of Monte Carlo dropout in assessing the predictive uncertainty.

Our main goal is to accurately and reliably classify different forms of text as hate
or non-hate speech, giving a probabilistic assessment of the prediction uncertainty in
a comprehensible visual form. We also investigate the ability of deep neural network
methods to provide good prediction accuracy on small textual data sets. The outline of
the proposed methodology is presented in Figure 1.

Our main contributions are:

– investigation of prediction uncertainty assessment to the area of text classification,
– implementation of hate speech detection with reliability output,
– evaluation of different contextual embedding approaches in the area of hate speech,
– a novel visualization of prediction uncertainty and errors of classification models.

The paper consists of six sections. In Section 2, we present related works on hate speech
detection, prediction uncertainty assessment in text classification context, and visualiza-
tion of uncertainty. In Section 3, we propose the methodology for uncertainty assessment
using dropout within neural network models, as well as our novel visualization of pre-
diction uncertainty. Section 4 presents the data sets and the experimental scenario. We
discuss the obtained results in Section 5 and present conclusions and ideas for further
work in Section 6.
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2 Related Work

We shortly present the related work in three areas which constitute the core of our
approach: hate speech detection, recurrent neural networks with Monte Carlo dropout for
assessment of prediction uncertainty in text classification, and visualization of predictive
uncertainty.

2.1 Hate Speech Detection

Techniques used for hate speech detection are mostly based on supervised learning. The
most frequently used classifier is the Support Vector Machines (SVM) method [30].
Recently, deep neural networks, especially recurrent neural network language models
[20], became very popular. Recent studies compare (deep) neural networks [28,9,12]
with the classical machine learning methods.

Our experiments investigate embeddings and neural network architectures that can
achieve superior predictive performance to SVM or logistic regression models. More
specifically, our interest is to explore the performance of MCD neural networks applied
to the hate speech detection task.

2.2 Prediction Uncertainty in Text Classification

Recurrent neural networks (RNNs) are a popular choice in text mining. The dropout
technique was first introduced to RNNs in 2013 [34] but further research revealed neg-
ative impact of dropout in RNNs, especially within language modeling. For example,
the dropout in RNNs employed on a handwriting recognition task, disrupted the ability
of recurrent layers to effectively model sequences [25]. The dropout was successfully
applied to language modeling by [36] who applied it only on fully connected layers.
The then state-of-the-art results were explained with the fact that by using the dropout,
much deeper neural networks can be constructed without danger of overfitting. Gal and
Ghahramani [15] implemented the variational inference based dropout which can also
regularize recurrent layers. Additionally, they provide a solution for dropout within word
embeddings. The method mimics Bayesian inference by combining probabilistic parame-
ter interpretation and deep RNNs. Authors introduce the idea of augmenting probabilistic
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Fig. 1. The diagram of the proposed methodology.
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RNN models with the prediction uncertainty estimation. Recent works further investigate
how to estimate prediction uncertainty within different data frameworks using RNNs
[37]. Some of the first investigation of probabilistic properties of SVM prediction is
described in the work of Platt [26]. Also, investigation how Bayes by Backprop (BBB)
method can be applied to RNNs was done by [13].

Our work combines the existing MCD methodology with the latest contextual em-
bedding techniques and applies them to hate speech classification task. The aim is to
obtain high quality predictions coupled with reliability scores as means to understand
the circumstances of hate speech.

2.3 Prediction Uncertainty Visualization in Text Classification

Visualizations help humans in making decisions, e.g., select a driving route, evacuate
before a hurricane strikes, or identify optimal methods for allocating business resources.
One of the first attempts to obtain and visualize latent space of predicted outcomes was
the work of Berger et al. [2]. Prediction values were also visualized in geo-spatial re-
search on hurricane tracks [10,29]. Importance of visualization for prediction uncertainty
estimation in the context of decision making was discussed in [18,17].

We are not aware of any work on prediction uncertainty visualization for text classifi-
cation or hate speech detection. We present visualization of tweets in a two dimensional
latent space that can reveal relationship between analyzed texts.

3 Deep Learning with Uncertainty Assessment

Deep learning received significant attention in both NLP and other machine learning
applications. However, standard deep neural networks do not provide information on
reliability of predictions. Bayesian neural network (BNN) methodology can overcome
this issue by probabilistic interpretation of model parameters. Apart from prediction
uncertainty estimation, BNNs offer robustness to overfitting and can be efficiently trained
on small data sets [16]. However, neural networks that apply Bayesian inference can be
computationally expensive, especially the ones with the complex, deep architectures.
Our work is based on Monte Carlo Dropout (MCD) method proposed by [14]. The idea
of this approach is to capture prediction uncertainty using the dropout as a regularization
technique.

In contrast to classical RNNs, Long Short-term Memory (LSTM) neural networks
introduce additional gates within the neural units. There are two sources of information
for specific instance t that flows through all the gates: input values xt and recurrent
values that come from the previous instance ht−1. Initial attempts to introduce dropout
within the recurrent connections were not successful, reporting that dropout brakes the
correlation among the input values. Gal and Ghahramani [15] solve this issue using
predefined dropout mask which is the same at each time step. This opens the possibility
to perform dropout during each forward pass through the LSTM network, estimating the
whole distribution for each of the parameters. Parameters’ posterior distributions that
are approximated with such a network structure, q(ω), is used in constructing posterior
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predictive distribution of new instances y∗:

p(y∗|x∗, D) ≈
∫
p
(
y∗|fω(x∗)

)
q(ω)dω, (1)

where p
(
y∗|fω(x∗)

)
denotes the likelihood function. In the regression tasks, this proba-

bility is summarized by reporting the means and standard deviations while for classifica-
tion tasks the mean probability is calculated as:

1

K

K∑

k=1

p(y∗|x∗, ω̂k) (2)

where ω̂k ∼ q(ω). Thus, collecting information in K dropout passes throughout the
network during the training phase is used in the testing phase to generate (sample) K
predicted values for each of the test instance. The benefit of such results is not only to
obtain more accurate prediction estimations but also the possibility to visualize the test
instances within the generated outcome space.

3.1 Prediction Uncertainty Visualization

For each test instance, the neural network outputs a vector of probability estimates
corresponding to the samples generated through Monte Carlo dropout. This creates an
opportunity to visualize the variability of individual predictions. With the proposed
visualization, we show the correctness and reliability of individual predictions, including
false positive results that can be just as informative as correctly predicted ones. The
creation of visualizations consists of the following five steps, elaborated below.

1. Projection of the vector of probability estimates into a two dimensional vector space.
2. Point coloring according to the mean probabilities computed by the network.
3. Determining point shapes based on correctness of individual predictions (four

possible shapes).
4. Labeling points with respect to individual documents.
5. Kernel density estimation of the projected space — this step attempts to summarize

the instance-level samples obtained by the MCD neural network.

As the MCD neural network produces hundreds of probability samples for each target
instance, it is not feasible to directly visualize such a multi-dimensional space. To solve
this, we leverage the recently introduced UMAP algorithm [19], which projects the
input d dimensional data into a s-dimensional (in our case s = 2) representation by
using computational insights from the manifold theory. The result of this step is a two
dimensional matrix, where each of the two dimensions represents a latent dimension
into which the input samples were projected, and each row represents a text document.

In the next step, we overlay the obtained representation with other relevant informa-
tion, obtained during sampling. Individual points (documents) are assigned the mean
probabilities of samples, thus representing the reliability of individual predictions. We
discretize the [0, 1] probability interval into four bins of equal size for readability pur-
poses. Next, we shape individual points according to the correctness of predictions. We
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take into account four possible outcomes (TP - true positives, FP - false positives, TN -
true negatives, FN - false negatives).

As the obtained two dimensional projection represents an approximation of the initial
sample space, we compute the kernel density estimation in this subspace and thereby
outline the main neural network’s predictions. We use two dimensional Gaussian kernels
for this task.

The obtained estimations are plotted alongside individual predictions and represent
densities of the neural network’s focus, which can be inspected from the point of view
of correctness and reliability.

4 Experimental Setting

We first present the data sets used for the evaluation of the proposed approach, followed
by the experimental scenario. The results are presented in Section 5.

4.1 Hate Speech Data Sets

We use three data sets related to the hate speech.

1 - HatEval data set is taken from the SemEval task ”Multilingual detection of hate
speech against immigrants and women in Twitter (hatEval)1”. The competition was
organized for two languages, Spanish and English; we only processed the English data
set. The data set consists of 100 tweets labeled as 1 (hate speech) or 0 (not hate speech).

2 - YouToxic data set is a manually labeled text toxicity data, originally containing
1000 comments crawled from YouTube videos about the Ferguson unrest in 20142. Apart
from the main label describing if the comment is hate speech, there are several other
labels characterizing each comment, e.g., if it is a threat, provocative, racist, sexist, etc.
(not used in our study). There are 138 comments labeled as a hate speech and 862 as
non-hate speech. We produced a data set of 300 comments using all 138 hate speech
comments and randomly sampled 162 non-hate speech comments.

3 - OffensiveTweets data set3 originates in a study regarding hate speech detection
and the problem of offensive language [11]. Our data set consists of 3000 tweets. We
took 1430 tweets labeled as hate speech and randomly sampled 1670 tweets from the
collection of remaining 23 353 tweets.

1 https://competitions.codalab.org/competitions/19935
2 https://zenodo.org/record/2586669#.XJiS8ChKi70
3 https://github.com/t-davidson/hate-speech-and-offensive-language
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Data Preprocessing Social media text use specific language and contain syntactic and
grammar errors. Hence, in order to get correct and clean text data we applied different
prepossessing techniques without removing text documents based on the length. The
pipeline for cleaning the data was as follows:

– Noise removal: user-names, email address, multiple dots, and hyper-links are con-
sidered irrelevant and are removed.

– Common typos are corrected and typical contractions and hash-tags are expanded.
– Stop words are removed and the words are lemmatized.

4.2 Experimental Scenario

We use logistic regression (LR) and Support Vector Machines (SVM) from the scikit-
learn library [5] as the baseline classification models. As a baseline RNN, the LSTM
network from the Keras library was applied [8]. Both LSTM and MCD LSTM networks
consist of an embedding layer, LSTM layer, and a fully connected layer within the
Word2Vec and ELMo embeddings. The embedding layer was not used in TF-IDF and
Universal Sentence encoding.

To tune the parameters of LR (i.e. liblinear and lbfgs for the solver functions and the
number of component C from 0.01 to 100) and SVM (i.e. the rbf for the kernel function,
the number of components C from 0.01 to 100 and the gamma γ values from 0.01 to
100), we utilized the random search approach [3] implemented in scikit-learn. In order
to obtain best architectures for the LSTM and MCD LSTM models, various number of
units, batch size, dropout rates and so on were fine-tuned.

5 Evaluation and Results

We first describe experiments comparing different word representations, followed by
sentence embeddings, and finally the visualization of predictive uncertainty.

5.1 Word Embedding

In the first set of experiments, we represented the text with word embeddings (sparse
TF-IDF [31] or dense word2vec [21], and ELMo [24]). We utilise the gensim library
[27] for word2vec model, the scikit-learn for TFIDF, and the ELMo pretrained model
from TensorFlow Hub4. We compared different classification models using these word
embeddings. The results are presented in Table 1.

The architecture of LSTM and MCD LSTM neural networks contains an embedding
layer, LSTM layer, and fully-connected layer (i.e. dense layer) for word2vec and ELMo
word embeddings. In LSTM, the recurrent dropout is applied to the units for linear
transformation of the recurrent state and the classical dropout is used for the units with
the linear transformation of the inputs. The number of units, recurrent dropout, and
dropout probabilities for LSTM layer were obtained by fine-tuning (i.e. we used 512, 0.2
and 0.5 for word2vec and TF-IDF, 1024, 0.5, and 0.2 for ELMo in the experiments with

4 https://tfhub.dev/google/elmo/2
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MCD LSTM architecture). The search ranges for hyper parameter tuning are described
in Table 2.

Table 1. Comparison of classification accuracy (with standard deviation in brackets) for word
embeddings, computed using 5-fold cross-validation. All the results are expressed in percentages
and the best ones for each data set are in bold.

HatEval YouToxic OffensiveTweets
Model TF-IDF W2V ELMo TF-IDF W2V ELMo TF-IDF W2V ELMo
Logistic Regression 68.0 [2.4] 54.0 [13.6] 62.0 [6.8] 69.3 [3.0] 54.0 [3.0] 76.6 [6.1] 77.2 [1.1] 68.0 [2.4] 75.6 [1.2]
SVM 63.0 [5.1] 66.0 [3.7] 62.0 [12.9] 70.6 [4.2] 55.0 [3.4] 73.3 [5.5] 77.0 [0.7] 59.6 [1.5] 73.0 [1.9]
LSTM 69.0 [7.3] 67.0 [6.8] 66.0 [12.4] 66.6 [2.3] 59.3 [4.6] 74.3 [2.7] 73.4 [0.8] 75.0 [1.7] 74.7 [1.9]
MCD LSTM 67.0 [10.8] 69.0 [6.6] 67.0 [9.8] 66.0 [3.7] 59.3 [3.8] 75.3 [5.5] 71.1 [1.6] 72.0 [1.6] 75.2 [0.9]

Table 2. Hyper-parameters for LSTM and MCD LSTM models

Name Parameter type Values
Optimizers Categorical Adam, rmsprop
Batch size Discrete 4 to 128, step=4
Activation function Categorical tanh, relu and linear
Number of epochs Discrete 10 to 100, step=5
Number of units Discrete 128, 256, 512, or 1024
Dropout rate Float 0.1 to 0.8, step=0.05

The classification accuracy for HatEval data set is reported in the Table 1 (left). The
difference between logistic regression and the two LSTM models indicates accuracy
improvement once the recurrent layers are introduced. On the other hand, as the ELMo
embedding already uses the LSTM layer to take into account semantic relationship
among the words, no notable difference between logistic regression and LSTM models
can be observed using this embedding.

Results for YouToxic and OffensiveTweets data sets are presented in Table 1 (middle)
and (right), respectively. Similarly to the HatEval data set, there is a difference between
the logistic regression and the two LSTM models using the word2vec embeddings. For
all data sets, the results with ELMo embeddings are similar across the four classifiers.

5.2 Sentence Embedding

In the second set of experiments, we compared different classifiers using sentence
embeddings [6] as the representation. Table 3 (left) displays results for HatEval. We
can notice improvements in classification accuracy for all classifiers compared to the
word embedding representation in Table 1. The best model for this small data set is
MCD LSTM. For larger YouToxic and OffensiveTweets data sets, all the models perform
comparably. Apart from the prediction accuracy the four models were compared using
precision, recall and F1 score [7].
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We use the Universal Sentence Encoder module5 to encode the data. The architecture
of LSTM and MCD LSTM contains a LSTM layer and dense layer. With MCD LSTM
architecture in the experiments, the number of neurons, recurrent dropout and dropout
value for LSTM is 1024, 0.75 and 0.5, respectively. The dense layer has the same number
of units as LSTM layer, and the applied dropout rate is 0.5. The hyper-parameters used
to tune the LSTM and MCD LSTM models are presented in the Table 2.

Table 3. Comparison of predictive models using sentence embeddings. We present average
classification accuracy, precision, recall and F1 score (and standard deviations), computed using
5-fold cross-validation. All the results are expressed in percentages and the best accuracies are in
bold.

HatEval YouToxic OffensiveTweets
Model Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
LR 66.0 [12.4] 67.3 [15.3] 65.2 [15.9] 65.2 [13.1] 77.3 [4.1] 74.3 [7.3] 77.3 [3.6] 75.7 [5.3] 80.8 [1.0] 79.6 [1.9] 84.9 [1.2] 82.2 [1.1]
SVM 67.0 [12.1] 68.2 [15.2] 65.0 [15.8] 65.8 [13.3] 77.3 [6.2] 72.6 [8.6] 80.7 [7.4] 76.3 [7.6] 80.7 [1.3] 78.6 [2.0] 86.7 [1.0] 82.4 [1.2]
LSTM 70.0 [8.4] 70.8 [11.0] 63.1 [17.5] 66.2 [14.4] 76.6 [8.6] 73.4 [11.2] 79.2 [8.0] 75.8 [8.6] 80.7 [1.6] 82.8 [2.1] 79.7 [2.3] 81.1 [1.5]
MCD LSTM 74.0 [10.7] 73.4 [12.7] 78.4 [13.6] 74.9 [10.0] 78.7 [5.8] 74.7 [9.2] 80.9 [6.5] 77.5 [7.4] 81.0 [1.2] 81.5 [1.8] 82.5 [2.7] 81.9 [1.3]

5.3 Visualizing Predictive Uncertainty

In Figure 2 we present a new way of visualizing dependencies among the test tweets. The
relations are result of applaing the MCD LSTM network to the HetEval data set. This
allows further inspection of the results as well as interpretation of correct and incorrect
predictions. To improve comprehensibility of predictions and errors, each point in the
visualization is labeled with a unique identifier, making the point tractable to the original
document, given in Table 4.

Fig. 2. Visualization of individual predictions along with their probability ranges. The numeric
labels besides each point correspond to individual tweets, summarized in Table 4. The size of
the points corresponds to the neural network’s mean probability for a given prediction. True
positives are marked with circles, true negatives with crosses, false positives with squares, and
false negatives as pluses.

5 https://tfhub.dev/google/universal-sentence-encoder-large/3
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Table 4. Test documents (one fold) used for the visualization in Figure 2.

Index (see Figure 2) — Corresponding text
0 — ok if you fu***** said leave block me. but dm me first i am gonna kick your ass. shut the f*** up you
1 — wow mo c*** got hard. want to pull your panties down, push you against these door and let you feel my c*** deep in your wet p****
2 — no i said hope. i hope you women learn your place! sitdowninthekitchen
3 — so this b**** blocked me but check her pinned tweet out, she is accusing men of rape on tumblr with . . .
4 — this is not rape, or anything like it. this a crude pass. this is not ’rape culture.’ it is w**** culture.
5 — rape is bad but alota h*** be lying bout that s*** women are crazy dawg & will f*** ya life up be careful
6 — lol. they did not applaud a rape threat .how long are you going to ride that s***?
7 — you had a great chance to show everyone that youre not a c*** on tv tonight and you f***** it up.
8 — lmao!!! stuff i say. some stuff be so damn funny.especially when it comes to illegal immigrants who are full fledged criminals coming to america . . .
9 — the german government pays for 3 week vacation for refugees to go home -
10 — burundian refugees should go home!
11 — no benefits to any immigrants !! come here &amp; make it on your own, or go back home !!
12 — illegal aliens waiting for first class msc container-shippping in antwerpen stop immigration
13 — sick barstewards! this is what happens when we put up the refugees welcome signs! they not only rape our wives or girlfriends . . .
14 — i am not forcing anyone. i am just putting out my view. people believe it or not is their prerogative.even if a single person agree with me . . .
15 — tajikistani charged with beating new york university professor to death another animal./
16 — child prostitution: feds break up mexico-to-queens sex trafficking ring via . . .
17 — home office guilty of a serious breach of the duty of candour and cooperation regarding children entitled to enter uk. where did these children go? . . .
18 — p.s why do you not pay unemployed people who do endless hours of voluntary work they do that to give something to the community
19 — seriously, amy and cindy are bffs, i know that for sure. hmm, mmm.

As Figure 2 shows, the tweets are grouped into two clusters. According to the kernel
density isometric lines, two centers are identified: the tweets assigned lower probability
of being hate speech and the tweets with higher probability of being hate speech. Let us
focus on the wrongly classified tweets and their positions in the graph (tweets 8, 16 and
18). While for tweets 8 and 18 the classifier wasn’t certain and a mistake seems possible
according to the plot, the tweet 16 was predicted to be hate speech with high probability.
Analyzing the words that form this tweet, we notice that not only that most of them often
do appear in the hate speech but also this combination of the words used together is very
characteristic for the offensive language.

Our short demonstration shows the utility of the proposed visualization which can
identify different types of errors and helps to explain weaknesses in the classifier or
wrongly labeled data.

6 Conclusions

We present the first successful approach to assessment of prediction uncertainty in
hate speech classification. Our approach uses LSTM model with Monte Carlo dropout
and shows performance comparable to the best competing approaches using word
embeddings and superior performance using sentence embeddings. We demonstrate that
reliability of predictions and errors of the models can be comprehensively visualized.
Further, our study shows that pretrained sentence embeddings outperform even state-of-
the-art contextual word embeddings and can be recommended as a suitable representation
for this task. The full Python code is publicly available 6.

As persons spreading hate speech might be banned, penalized, or monitored not
to put their threats into actions, prediction uncertainty is an important component of
decision making and can help humans observers avoid false positives and false negatives.
Visualization of prediction uncertainty can provide better understanding of the textual

6 https://github.com/KristianMiok/Hate-Speech-Prediction-Uncertainty
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context within which the hate speech appear. Plotting the tweets that are incorrectly
classified and inspecting them can identify the words that trigger wrong classifications.

Prediction uncertainty estimation is rarely implemented for text classification and
other NLP tasks, hence our future work will go in this direction. A recent emergence
of cross-lingual embeddings possibly opens new opportunities to share data sets and
models between languages. As evaluation in rare languages is difficult, the assessment
of predictive reliability for such problems might be an auxiliary evaluation approach. In
this context, we also plan to investigate convolutional neural networks with probabilistic
interpretation.
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