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1 Introduction
The EMBEDDIA project aims to improve the cross-lingual transfer of language resources and trained
models using word embeddings and cross-lingual word embeddings. The objectives of workpackage
WP1 of the EMBEDDIA project are to advance cross-lingual and context-dependent word embeddings
and test them with deep neural networks. The results of this WP form a technological basis for other
WPs in the project, in particular WP3, WP4, and WP5 that work on concrete news media problems. To
demonstrate advancements, EMBEDDIA covers English and eight less-resourced languages: Croatian,
Estonian, Finnish, Latvian, Lithuanian, Russian, Slovene, and Swedish. The specific objectives of WP1
are as follows:

1. advance cross-lingual and multilingual word embeddings technology in T1.1,

2. advance context-dependent and dynamic embeddings technology in T1.2,

3. advance deep learning technology for morphologically rich, less-resourced languages in T1.3,

4. improve the interpretability of models and visualisation of results in T1.4,

5. collect and prepare datasets and benchmarks required to evaluate the developed technologies in
T1.5.

The difference between T1.1 and T1.2 is that T1.1 focuses on cross-lingual embeddings and cross-
lingual transfer of models, while T1.2 develops novel contextual and dynamic embeddings and novel
approaches for their evaluation.

This report describes the results of the work performed in T1.1 from M13 to M24 and is the final deliver-
able of this task. The initial work within T1.1 from M1 to M12 was reported and accepted as deliverable
D1.2 in M12. That work covered cross-lingual alignment of non-contextual embedding, while in this
report, we focus on cross-lingual alignment of contextual embeddings and the analysis of cross-lingual
model transfer in different areas.

Word embeddings are representations of words in numerical form, as vectors of typically several hun-
dred dimensions. The vectors are used as input to machine learning models; these are generally deep
neural networks for complex language processing tasks. The embedding vectors are obtained from spe-
cialized neural network-based embedding algorithms, e.g., word2vec (Mikolov et al., 2013) or fastText
(Bojanowski et al., 2017), or more recent contextual approaches such as ELMo (Peters et al., 2018) and
BERT (Devlin et al., 2019).

Modern word embedding spaces exhibit similar structures across languages, even when considering
distant language pairs like English and Vietnamese (Mikolov et al., 2013). This means that embeddings
independently produced from monolingual text resources can be aligned, resulting in a common cross-
lingual representation, called cross-lingual embeddings, which allows for fast and effective integration
of information in different languages. Cross-lingual approaches can be sorted into several groups. The
first group of methods uses monolingual embeddings with (an optional) help from bilingual dictionaries
to align the embeddings. The second group of approaches uses bilingually aligned (comparable or
even parallel) corpora for joint construction of embeddings in all involved languages. The third type of
approach is based on large pretrained multilingual masked language models such as BERT (Devlin et
al., 2019). The multilingual BERT is typically used as a starting model, which is fine-tuned for a particular
task without explicitly extracting embedding vectors.

While in previous work, reported in D1.2, we analyzed the most successful approaches to non-contextual
cross-lingual embeddings, in this report, we focus on improvements of cross-lingual mappings for mod-
ern contextual embeddings. Currently, the most successful approaches to cross-lingual mappings as-
sume that the embedding spaces in different languages are isomorphic (Artetxe et al., 2018b; Conneau
et al., 2018), which is generally not the case. Several researchers have observed that the monolingual
embedding spaces of two different languages are not completely isomorphic, which is especially true for
distant languages (Ormazabal et al., 2019; Søgaard et al., 2018). As a result, many of these methods
are unstable or unsuccessful when confronted with distant language pairs. We propose novel methods
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for isomorphic and non-isomorphic alignment of contextual embeddings, such as ELMo. For that pur-
pose, we first construct novel contextual mapping datasets based on parallel corpora and dictionaries.
In a novel non-isomorphic approach, we use generative adversarial networks (GANs) (Goodfellow et al.,
2014), that produce non-linear mappings between the embedding spaces. Additionally, we test several
different types of anchor points between languages, such as low- and high-quality dictionaries, named
entities, and linked entities obtained from multilingual lexicalized semantic network BabelNet (Navigli &
Ponzetto, 2012). As contextual embeddings such as ELMo became the essential NLP technologies,
their successful cross-lingual mappings, developed in T1.1, enable the cross-lingual lingual transfer of
text enrichment and keyword extraction technologies developed in WP2, transfer of comment filtering
models developed in WP3, and sentiment classification models developed in WP4.

As the second important aspect of cross-lingual technologies, we analyze the practical issue of cross-
lingual transfer of trained machine learning prediction models between languages. Using large datasets
of Twitter sentiment in 13 languages, we compare two practically important cross-lingual model transfer
approaches. The first one is based on mappings of words into a common vector space, as implemented
in the LASER library (Artetxe & Schwenk, 2019). The results show that there is a significant transfer
potential using the models trained on similar languages. The second approach to model transfer is
multilingual BERT model (Devlin et al., 2019), trained simultaneously on 104 languages, and its variants
trained on only three languages (Ulčar & Robnik-Šikonja, 2020). The results show that the variants of
multilingual BERT with fewer languages are the most successful. This work is relevant for WP3 and
WP4, as it shows the advantages and limits of cross-lingual models developed there, e.g., cross-lingual
opinion analysis in T3.1 and multilingual news linking in T4.1.

As the third contribution, we demonstrate the practical use of modern cross-lingual technologies, par-
ticularly cross-lingual use of contextual embeddings. As a testbed, we use an important problem from
linguistics, namely the detection of idiomatic expressions. Good coverage and accuracy of idiom detec-
tion and identification tools are important components of many NLP applications, such as word sense
disambiguation and machine translation. We show that deep neural networks using either ELMo or
BERT embeddings (produced in T1.2) perform much better than existing approaches and can detect
idiomatic word use even for idioms that were not present in the training set. We demonstrate the cross-
lingual transfer of developed models and show that contextual word embeddings can generalize to other
languages. This work is relevant for T1.2, as it demonstrates the cross-lingual aspect of monolingual
contextual embeddings (ELMo and BERT) developed there. Further, as idioms are an important as-
pect of creative language use, our approach can improve the work in T5.3 on creative language use for
multilingual news and headline generation.

The main contributions presented in this report (in the order of appearance) are as follows.

1. Development of a novel dataset and methods for cross-lingual alignment of contextual embeddings
based on isomorphic and non-isomorphic transformations, presented in Section 2 and the paper
by Ulčar & Robnik-Šikonja (2020), included in Appendix A.

2. Analysis of the cross-lingual transfer of prediction models, using Twitter sentiment prediction as
a use case, described in Section 3 and the paper by Robnik-Šikonja et al. (2020), included in
Appendix B.

3. Development of a novel contextual-embedding approach for detection of idiomatic expressions,
showing superior performance in monolingual and multilingual settings, as well as in cross-lingual
transfer, described in Section 4 and the paper by Škvorc et al. (2020), included in Appendix C.

Besides these contributions, the work in T1.1 has contributed to achievements reported in other work-
packages, in particular to improvements in contextual embeddings (T1.2), semantic enrichment (T2.1),
keyword extraction (T2.2), context and opinion analysis (T3.1), comment filtering (T3.2), cross-lingual
identification of sentiment (T4.3), and creative language use (T5.3). The produced resources are being
integrated into EMBEDDIA Media Assistant and ClowdFlows platform as contributions to WP6 and WP7,
respectively. The availability of new resources produced in this work is discussed in Section 6.
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2 Cross-lingual mappings of contextual text embed-
dings

This section reports on the work done in T1.1 on improvements in cross-lingual contextual mappings
between different languages. In deliverable D1.2, we already reported on the quality of different non-
contextual cross-lingual mappings. In this work, we propose several improvements to contextual cross-
lingual mappings. We first give background and overview of different approaches to cross-lingual em-
beddings in Section 2.1. In Section 2.2, we describe the improvements to cross-lingual mappings of
contextual embeddings and evaluate them in Section 2.3. We discuss the implications of the results in
Section 2.4.

2.1 Background and related work on cross-lingual embeddings

Word embeddings represent each word in a language as a vector in a high dimensional vector space so
that the relations between words in a language are reflected in their corresponding embeddings. Cross-
lingual embeddings attempt to map words represented as vectors from one vector space to the other so
that the vectors representing words with the same meaning in both languages are as close as possible.
Søgaard et al. (2019) present a detailed overview and classification of cross-lingual methods.

There are three groups of approaches to find cross-lingual mappings. The first group of approaches,
presented in Section 2.1.1, uses monolingual embeddings with the optional help from a bilingual dictio-
nary to align the embeddings. In this section, we only work with this group of cross-lingual approaches,
while the remaining two groups are analyzed in Section 3. The second group of approaches uses bilin-
gually aligned (comparable or even parallel) corpora for joint construction of embeddings in all involved
languages. The third type of approaches are based on large pretrained multilingual masked language
models such as BERT (Devlin et al., 2019). The multilingual BERT is typically used as a starting model,
which is fine-tuned for a particular task without explicitly extracting embedding vectors. For this reason,
our work on novel cross-lingual mappings is focused on the ELMo contextual embeddings, presented in
Section 2.1.2. At the same time, we use multilingual BERT models in Section 3 and Section 4.

2.1.1 Alignment of monolingual embeddings

Cross-lingual alignment methods take precomputed word embeddings for each language and align them
with the optional use of bilingual dictionaries. Two types of monolingual embedding alignment methods
exist. The first type of approaches map vectors representing words in one of the languages into the
other language’s vector space (and vice-versa). The second type of approaches maps embeddings
from both languages into a common vector space. The goal of both types of alignments is the same: the
embeddings for words with the same meaning must be as close as possible in the final vector space. A
comprehensive summary of existing approaches can be found in works by Artetxe et al. (2018a).

The open source implementation of the method described by Artetxe et al. (2018b,a), named vecmap1,
is able to align monolingual embeddings either using supervised, semi-supervised or unsupervised
approach.

The supervised approach requires using a large bilingual dictionary, which is used to match embeddings
of the same words. Then embeddings are aligned using the Moore-Penrose pseudo-inverse, which
minimizes the sum of squared Euclidean distances. The algorithm always converges but can be caught
in a local maximum when the initial solution is poor. To overcome this, several methods (stochastic
dictionary introduction, frequency-based vocabulary cutoff, etc.) are used that help the algorithm to
climb out of local maximums. A more detailed description of the algorithm is given in (Artetxe et al.,
2018b).

1https://github.com/artetxem/vecmap

7 of 114

https://github.com/artetxem/vecmap


ICT-29-2018 D1.6: Final cross-lingual embeddings

The semi-supervised approach uses a small initial seeding dictionary, while the unsupervised approach
is run without any bilingual information. The latter uses similarity matrices of both embeddings to build
an initial dictionary. This initial dictionary is usually of poor but sufficient quality for later processing.
After the initial dictionary (either by seeding dictionary or using similarity matrices) is built, the iterative
algorithm is applied. The algorithm first computes optimal mapping using the pseudo-inverse approach
for the given initial dictionary. Then optimal dictionary for the given embeddings is computed, and the
procedure is repeated with the new dictionary.

When constructing mappings between embedding spaces, a bilingual dictionary can help as its entries
can be used as anchors for the alignment map for supervised and semi-supervised approaches. How-
ever, lately, researchers have proposed approaches that do not require a bilingual dictionary but rely
on an adversarial approach (Conneau et al., 2018) or use the frequencies of the words (Artetxe et al.,
2018b) to find a required transformation. These are called unsupervised approaches.

The Facebook research project MUSE2 can find a cross-lingual map with the use of a bilingual dictionary
(supervised) or without one (unsupervised approach). The unsupervised approach works by using
adversarial training to find the starting linear mapping. A synthetic dictionary is extracted from this
mapping, which is used to fine-tune the starting mapping using the Procrustes approach, described in
detail by Conneau et al. (2018).

2.1.2 ELMo contextual embeddings

ELMo (Embeddings from Language Models) embedding (Peters et al., 2018) is an example of a state-of-
the-art pre-trained transfer learning model. The first layer is a CNN layer, which operates on a character
level. It is context-independent, so each word always gets the same embedding, regardless of its
context. It is followed by two biLM (bidirectional language model) layers. A biLM layer consists of
two concatenated LSTMs (Hochreiter & Schmidhuber, 1997) . In the first LSTM, we try to predict the
following word, based on the given past words, where each word is represented by the embeddings from
the CNN layer. In the second LSTM, we try to predict the preceding word based on the given following
words. It is equivalent to the first LSTM, just reading the text in reverse.

The actual embeddings are constructed from the internal states of a bidirectional LSTM neural network.
Higher-level layers capture context-dependent aspects, while lower-level layers capture aspects of syn-
tax (Peters et al., 2018). To train the ELMo network, one puts one sentence at a time on the input. The
representation of each word depends on the whole sentence, i.e. it reflects the contextual features of
the input text and thereby polysemy of words. For an explicit word representation, one can use only the
top layer. Still, more frequently, one combines all layers into a vector. The representation of a word or a
token tk at position k is composed from

Rk = {xLM
k ,
−→
h

LM

k,j ,
←−
h

LM

k,j | j = 1, ... , L} (1)

where L is the number of layers (ELMo uses L = 2), index j refers to the level of bidirectional LSTM
network, x is the initial token representation (either word or character embedding), and hLM denotes
hidden layers of forward or backward language model.

In NLP tasks, any set of these embeddings may be used; however, a weighted average is usually used.
The weights of the average are learned during the training of the model for the specific task. Additionally,
an entire ELMo model can be fine-tuned on a specific end task.

At the time of its introduction, ELMo has been shown to outperform previous pre-trained word embed-
dings like word2vec and GloVe on many NLP tasks, e.g., question answering, named entity extraction,
sentiment analysis, textual entailment, semantic role labeling, and coreference resolution (Peters et al.,
2018). Later, BERT models turned out to be even more successful on these tasks. However, concerning
the quality of extracted vectors, ELMo is often advantageous. The information it contains is condensed

2https://github.com/facebookresearch/MUSE
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in only three layers, while multilingual BERT uses 14 layers. This observation is confirmed in our exper-
iments, reported in Section 4. For that reason, we develop cross-lingual mappings suitable for ELMo
precomputed contextual models in Section 2.2. The actual implementations of ELMo models come from
our work in T1.2 (Ulčar & Robnik-Šikonja, 2020a), where we developed modern contextual embeddings
approaches (ELMo and BERT) for the languages covered in the EMBEDDIA project.

2.2 Improvements in contextual cross-lingual mapping approaches

Context-dependent models calculate a word embedding for each word’s occurrence; thus, a word gets
a different vector for each context. Mapping such vector spaces from different languages is not straight-
forward. Schuster et al. (2019) observed that vectors representing different occurrences of each word
form clusters. They averaged the vectors for each word occurrence so that each word was represented
with only one vector, a so-called anchor. They applied the same procedure to both languages and
aligned the anchors using the supervised or unsupervised method of MUSE (Conneau et al., 2018).
This method, however, comes with a loss of information. Many words have multiple meanings, which
can not be simply averaged. For example, the word »mouse« can mean a small rodent or a computer
input device. Context-dependent models correctly assign significantly different vectors to these two
meanings since they appear in different contexts. Further, a word in one language can be represented
with several different words (one for each meaning) in another language or vice versa. By averaging the
contextual embedding vectors, we lose these distinctions in meaning.

We propose two new methods that take different contexts and word meanings into account. Both meth-
ods require a different type of contextual mapping datasets that maps not only words but also their
contexts. We describe the creation of such novel datasets in Section 2.2.1. The first novel contextual
mapping approach, described in Section 2.2.2, requires these datasets but still uses the monolingual
embedding mapping methods (described in Section 2.1.1) for alignment of contextual embeddings. The
second cross-lingual contextual mapping approach, described in Section 2.2.3, uses the same contex-
tual datasets but drops the assumption that the aligned spaces are isomorphic; it uses GANs to form
a non-linear transformation between contextual embeddings. The quality of cross-lingual mappings de-
pends on the quality and size of dictionaries used to create contextual cross-lingual mapping datasets.
High-quality dictionaries are nonexistent or not freely available for many language pairs, especially for
low resourced languages. For that reason, in Section 2.2.4, we present how other sources of potentially
useful alignment points, such as linked named entities and multilingual semantic network BabelNet, can
be employed in contextual cross-lingual mappings.

2.2.1 Novel cross-lingual contextual dataset

The main obstacle to form a cross-lingual mapping between contextual embeddings is that a word in one
language is represented with several different words (one for each meaning) in another language. We
propose two novel methods for the alignment of contextual embeddings based on the idea of matching
contexts in different languages. For that, we require two resources: a sentence aligned parallel corpus
of the two involved languages and their bilingual dictionary. The dictionary alone is not sufficient, as the
words are not given in the context; therefore, it cannot help for alignment of contextual embeddings. The
parallel corpus alone is also not sufficient as the alignment is on the level of paragraphs or sentences
and not on the level of words. By combining both resources, we take a translation pair from the dictionary
and find sentences in the parallel corpus, with one word from the pair present in the sentence of the first
language and the second word from the translation pair present in the second language sentence. As a
result, we get matching words in matching contexts (sentences).

We used the OpenSubtitles parallel corpus3 (Lison & Tiedemann, 2016) from the Opus web page4 for
each pair of languages that we evaluated. The dictionaries we used are bilingual dictionaries extracted

3https://www.opensubtitles.org/.
4http://opus.nlpl.eu
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from wiktionary, using wikt2dict5 tool (Acs, 2014). We extracted dictionaries for each EMBEDDIA lan-
guage paired with English and the following language pairs of similar languages: Croatian-Slovenian,
Estonian-Finnish, and Latvian-Lithuanian. For the language pairs not involving English, we created two
different dictionaries, a direct bilingual dictionary and a dictionary created with triangulation via English.
Dictionaries created with triangulation have more entries but are of worse quality than direct dictionaries.
After the extraction, we manually cleaned the dictionaries using filters, such as removing accent marks
on vowels from languages that do not use them (e.g., Slovenian) and removing extra non-alphabetical
characters, like brackets, colon, and hash. We limited the dictionaries to entries with single-word terms
in both languages. The sizes of the obtained dictionaries and parallel corpora used are displayed in
Table 1. Additionally, to test the impact the quality and size of a dictionary have, we used a proprietary
high-quality human-made Oxford English-Slovene dictionary for that pair of languages.

Table 1: The sizes of dictionaries and parallel corpora used in the creation of a dataset for contextual mappings,
as well as the size of the resulting dataset for alignment of ELMo embeddings (see Section 2.2.2). The
languages are represented with their international language codes ISO 639-1. The sizes of dictionaries
are reported in the number of pairs, the sizes of parallel corpora in the number of matching contexts, and
the sizes of resulting datasets in the number of matched words in matched sentence pairs. The Type
column describes the dictionary creation approach: “direct“ means that the dictionary was created directly
from wiktionary, “triang“ means that the dictionary was created from wiktionary using triangulation via
English, and “OES“ stands for the Oxford English-Slovene dictionary.

Language pair Type Bilingual dictionary Parallel corpus ELMo dataset
en-et direct 11 022 12 486 898 77 800
en-fi direct 89 307 27 281 566 283 000
en-hr direct 3448 35 131 729 44 800
en-lt direct 13 960 1 415 961 62 800
en-lv direct 10 224 519 553 43 800
en-ru direct 103 850 25 910 105 363 800
en-sl direct 9634 19 641 457 89 800
en-sl OES 182 787 19 641 457 294 318
en-sv direct 51 961 17 660 152 270 000
et-fi direct 2191 9 504 879 12 800
et-fi triang 43 313 9 504 879 78 200
hr-sl direct 266 15 636 933 3400
hr-sl triang 3669 15 636 933 31 600
lt-lv direct 2478 219 617 11 200
lt-lv triang 14 545 219 617 28 200

2.2.2 Novel contextual cross-lingual isomorphic mappings

The first method we propose for computation of cross-lingual mappings between contextual embeddings
is still based on the assumption that the aligned spaces are largely isomorphic. With a large enough
collection of words in matching contexts (as described above in Section 2.2.1), we compute their con-
textual embedding vectors and align them with any of the non-contextual mapping methods, either with
vecmap library (Artetxe et al., 2018a), which showed the best performance in our experiments, reported
in deliverable D1.2, or MUSE library (Conneau et al., 2018), which only aligns target vectors and is
therefore computationally more efficient as discussed later. To test this approach, we work with ELMo
contextual embeddings due to their advantage over BERT concerning extracted vectors, as explained
in Section 2.1. The ELMo model is shortly presented in Section 2.1.2.

Recently, a similar approach was proposed by Aldarmaki & Diab (2019) but did not use large contextual
datasets based on high-quality dictionaries as we did. Instead, they extracted a dictionary of contextu-
alized words from the parallel corpora by first applying word-level alignments using Fast Align approach

5https://github.com/juditacs/wikt2dict
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(Dyer et al., 2013). They then calculated the ELMo contextual embeddings for both aligned sentences
and extracted a dictionary from the aligned words that have a one-to-one alignment (i.e. they excluded
phrasal alignments). Aldarmaki & Diab (2019) tested their approach only on similar languages (En-
glish, German, Spanish) and showed good results in sentence translation retrieval task, where they
measured the accuracy of retrieving the correct translation from the target side of a test parallel corpus
using nearest neighbor search and cosine similarity.

In our isomorphic method for alignment of ELMo contextual embeddings, called ELMoVM (ELMo with
VecMap) or ELMoMU (ELMo with MUSE), we approached the creation of the contextual mapping
dataset in two ways, one for contextual ELMo layers and the second for the non-contextual ELMo layer.
For contextual ELMo layers, we lemmatized the parallel corpora using the Stanza tool (Qi et al., 2020).
We then processed each corpus context by context. For each context, we calculated the embeddings
of the non-lemmatized corpus. We then checked for each word of the lemmatized context if its pair from
the bilingual dictionary appears in the same lemmatized context of the other language. When such a
match was found, the two words’ IDs and their ELMo embeddings were added to the list of anchors.
The reason for the lemmatization is that the bilingual dictionaries predominantly contain lemmas of the
words. Note that we still use the non-lemmatized corpus in the computation of embeddings to get the
correct contexts. In creating the contextual mapping dataset, we considered at most 20 different con-
texts of each lemma to not overwhelm the dataset with frequent words (such as stop words). The size
of the created dataset is displayed in the right-most column of Table 1.

The first of the three ELMo layers is non-contextual, so we used a different approach for vectors from
that layer. We first calculated embeddings for each pair of words in the bilingual dictionary. We used
that as our list of anchors. We split the created datasets of anchor lists into the training and testing part.
The training part takes 98.5% of the whole dataset for each language pair, and the testing part takes
1.5%. These datasets were used to map one vector space to another, allowing us to map one word with
multiple meanings in one language to multiple words in another language.

We used the computed bilingually aligned contextual embedding pairs as an input to methods that align
two monolingual embeddings (Section 2.1.1). To get the cross-lingual alignment, we used the vecmap
supervised method (Artetxe et al., 2018a) or MUSE supervised method (Conneau et al., 2018).

2.2.3 Novel contextual cross-lingual non-isomorphic mapping with GANs

As several researchers have observed, the monolingual embedding spaces of two different languages
are not completely isomorphic, which is especially true for distant languages (Ormazabal et al., 2019).
This causes error in methods which assume isomorphism of embedding spaces, including commonly
used vecmap and MUSE methods.

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) are a type of neural networks con-
sisting of two connected neural models, a generator and a discriminator. The two models are trained
simultaneously via an adversarial process. The discriminator attempts to discern whether the data
passed to its input is real or fake (i.e. artificially generated). At the same time, the generator attempts to
generate artificial data, which can fool the discriminator. GANs play a zero-sum game, where a success
of the discriminator means a failure of the generator and vice versa. By simultaneously training both
networks, they both improve. GANs are mostly used on images, where the described process can lead
to compelling new generated images.

Following the success of GANs in neural machine translation (Yang et al., 2018) and unsupervised
cross-lingual alignment (Conneau et al., 2018; Fu et al., 2020), we propose a novel supervised non-
linear mapping method using bidirectional GANs. We based our contextual alignment method, called
ELMo-GAN, on the model of Fu et al. (2020). Contrary to Fu et al. (2020), who only used their method
with non-contextual fastText embeddings (Bojanowski et al., 2017) to align sentences, we align contex-
tual ELMo embeddings (Peters et al., 2018), which is only possible by constructing a special contextual
mapping datasets, described in Section 2.2.1.
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As illustrated in Figure 1, the mapping GAN comprises the generator module and discriminator module.
The generator module contains two generators that map vectors from one vector space to the other.
Specifically, for a pair of languages L1 and L2, one generator will map from L1 to L2, and the second
will map from L2 to L1. Discriminator module contains two discriminators. The first discriminator tries
to predict whether a given pair of vectors represent the same token, i.e. if the first vector represents
the word x in L1 and the second vector represents the translation of the word x in L2. The second
discriminator attempts to learn the difference between the direction of mapping. For a given pair of
vectors, it predicts whether they are a vector from L1 and its mapping to L2 or a vector from L2 and its
mapping to L1.
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Figure 1: The schema of the GAN, proposed by Fu et al. (2020) for sentence alignment. The image is taken from
that source.

Compared to the ABSent model by Fu et al. (2020), in ELMo-GAN, we increased the sizes of all the
hidden layers in generators and discriminators. We also significantly lowered the learning rate as we
achieved poor results with the learning rate used by (Fu et al., 2020). Both generators have the same
architecture: the input layer is followed by three fully connected feed-forward layers of sizes 2048, 4096,
and 2048. We used the ReLU activation function for all three layers and added a batch normalization
layer between each fully connected layer. The output layer has the same size as the input layer. It
uses hyperbolic tangent as the activation function so that the output is between −1 and +1. Both
discriminators also have the same architecture. We first concatenate the two input vectors, then feed
them to three consecutive fully connected feed-forward layers with leaky ReLU (α = 0.2). The output
layer is a single neuron with the sigmoid activation.

We jointly trained the generator and discriminator modules using the parallel ELMo vectors datasets,
described in Section 2.2.1. We trained ELMoGAN with the batch size of 256, Adam optimizer with
learning rate 2× 10−5, and learning rate decay 10−5. For each language pair, we trained three mapping
models, one for each of the ELMo layers. For all three models, we used the same settings.

We produced two different versions of the ELMoGAN, based on the number of iterations the model was
trained for. The first version (ELMoGAN-10k) was trained for a fixed number of 10 000 iterations for each
layer of each language pair. The second version (ELMoGAN-O) was trained for the number of iterations
that gave the best result in the dictionary induction task, using the evaluation dictionary from Section
2.2.1. This choice was determined in our preliminary tests on unrelated NER tasks. As our experiments
on the dependency parsing task show, these choices might not be general enough and require different
settings and evaluation tasks for other problems.

2.2.4 Mapping with additional anchor points

Anchors, connecting identical points in cross-lingual mappings between two languages, are selected
from bilingual dictionaries. The majority of high-quality bilingual dictionaries are proprietary and, in
some cases, do not exist at all, especially for less-resourced languages and geographically distant
regions. We explored several alternatives to dictionaries, which can be used as anchor points in cross-
lingual mappings: named entities (NE) obtained via named entity recognition (NER) in collaboration with
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T2.1, and connections between different entities contained in the BabelNet semantic network. Ideally,
we could also obtain anchor points from the named entity linking (NEL) task. Unfortunately, our initial
attempts to obtain reasonably good anchor points for EMBEDDIA languages with NEL in collaboration
with T2.1 did not produce satisfactory results, so we leave this research direction for further work. Below
we describe NE anchors obtained from NER and BabelNet.

NER prediction models exist for many languages, as the NER task is one of the standard NLP tasks.
To obtain anchor points for cross-lingual alignment of contextual embeddings, we must find matching
NEs in the same context. Following the methodology described in Section 2.2.1, we attempt to do so
via parallel corpora. There exist multiple aligned parallel multilingual corpora; in our experiments we
used MultiParaCraawl and ParaCrawl6 corpora available on the Opus website7. In collaboration with
T2.1, we used NER algorithms, described in delivery D2.5, to annotate the parallel corpora in different
languages. We annotate each language in a bilingual pair with its corresponding monolingual NER
prediction model. To obtain anchor points, we match named entities between the languages in the
given pair on a sentence level. If matching sentences in both languages contain a single NE with the
same label, we consider them to be translations of one another and store them as anchor points. The
dictionary we form contains NEs matched in this way.

BabelNet is a semantic network connecting concepts and named entities (Navigli & Ponzetto, 2012) in
284 different languages. BabelNet was created by automatically extracting connections from multiple
sources such as WordNet, Wikipedia, OmegaWiki, Wiktionary, etc. We use BabelNet connections to ex-
tract bilingual translations of different entities and form a dictionary of anchoring points from them.

Manual inspection shows that NER and BabelNet dictionaries of anchor points contain many errors. We
believe their quality is inappropriate for human usage. Still, we test if the information they contain is
of sufficient quality to improve cross-lingual alignment. We compare the sizes of different dictionaries,
corpora sizes for each language pair, and sizes of the resulting contextual dataset for ELMo embeddings’
alignment in Table 2. To give a reference point, besides the automatically harvested dictionaries, we also
present the size of human-made proprietary Oxford English-Slovene dictionary (OES).

Table 2: The sizes of anchor point dictionaries, number of sentences in parallel corpora, and sizes of the resulting
contextual datasets for alignment of ELMo embeddings (see Section 2.2.2 for the methodology). The Type
column labels the type of dictionary: BNd stands for BabelNet dictionary, NERd for dictionary extracted
with NER from parallel corpora, and OES for human-made Oxford English-Slovene dictionary.

Language pair Type Bilingual dictionary Parallel corpus ELMo dataset
hr-sl BNd 80 309 271 415 125 600
hr-sl NERd 24 708 271 415 32 000
en-hr BNd 117 682 1 861 590 226 000
en-hr NERd 22 480 1 861 590 39 400
en-sl OES 182 786 1 406 645 275 000
en-sl BNd 105 974 1 406 645 222 400
en-sl NERd 15 844 1 406 645 27 800

2.3 Cross-lingual mappings evaluation and results

We evaluated the proposed cross-lingual embedding approaches on two downstream NLP tasks: named
entity recognition (NER) and dependency parsing (DP). We report results separately for each of the two
tasks, NER in Section 2.3.1 and DP in Section 2.3.2.

We use three evaluation settings for each downstream task: comparison of novel contextual mapping
techniques, the impact of dictionary type, and the analysis of the dictionary size concerning the quality
of embeddings.

6https://paracrawl.eu/
7http://opus.nlpl.eu/

13 of 114

https://paracrawl.eu/
http://opus.nlpl.eu/


ICT-29-2018 D1.6: Final cross-lingual embeddings

In the comparison of novel contextual mapping techniques, we evaluate the new cross-lingual mapping
methods against three baselines: two existing mapping methods, vecmap and MUSE, and direct learn-
ing on target language without cross-lingual transfer. In the dictionary type analysis setting, we compare
our new augmented dictionaries against one baseline: direct learning on target language without cross-
lingual transfer.

As contextual embeddings, we use ELMo embeddings (Peters et al., 2018), computed in T1.2 for EM-
BEDDIA languages (Ulčar & Robnik-Šikonja, 2020a). We did not include explicit BERT vectors in this
comparison as multilingual BERT is inherently multilingual and does not need an explicit alignment.
The vectors we extract from BERT are of lower quality than ELMo, as our experiments in Section 4
show.

2.3.1 Named entity recognition

NER is an information extraction task that seeks to locate and classify NE mentions in unstructured text
into pre-defined categories such as the person names, organizations, locations, medical codes, time
expressions, quantities, monetary values, percentages, etc. The labels in the used NER datasets are
simplified to a common label set of four labels present in all the addressed working languages. These
labels are person, location, organization, and other. The Other label encompasses all named entities
that do not fall in one of the three mentioned classes, as well as all the tokens that are not named
entities. The datasets used in the NER task in this report are shown in Table 3 and described in detail
in deliverable D1.1. These datasets are different from the standard NER task (e.g., used in WP2 and
deliverables D2.2 and D2.5). We are only interested in NER for comparing different alignment methods
and not to maximally improve the NER performance (e.g., we do not use any external information,
fine-tuning of models, etc.).

Table 3: The collected datasets for NER task and their properties: number of sentences, number of tagged words,
availability, and link to the corpus location).

Language Corpus Sentences Tags Avail. Location
Croatian hr500k 25000 29000 public link
English CoNLL-2003 NER 21000 44000 public link
Estonian Estonian NER corpus 14000 21000 public link
Finnish FiNER data 14500 17000 public link
Latvian LV Tagger train data 10000 11500 public link
Lithuanian TildeNER 5476 7024 limited NA
Russian factRuEval-2016 5000 9500 public link
Slovene8 ssj500k 9500 9500 public link
Swedish Swedish NER 8500 7500 public link

We present the results using the Macro F1 score, that is an average of F1 scores for each class we are
trying to predict, excluding the class Other (i.e. not a named entity).

We use three evaluation scenarios: comparison of novel contextual cross-lingual mapping techniques,
the impact of dictionary type, and the impact of the dictionary size on the quality of embeddings. We
report specific settings and results for each of the scenarios below.

Comparison of novel contextual cross-lingual mapping techniques

We compare two types of methods for cross-lingual mappings of contextual embeddings. The ELMoVM
and ELMoMU methods, presented in Section 2.2.2, assume the existence of isomorphic translation

8The Slovene ssj500k originally contains more sentences, but only 9500 are annotated with NER data.
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between mapping spaces and use vecmap and MUSE linear translators, respectively, to compute the
mapping between two ELMo monolingual embeddings. The ELMoGAN method, presented in 2.2.3,
does not assume isomorphism and uses non-linear transformation using GANs. We test two variants
of ELMoGAN, the first one, called ELMOGAN-10k, was trained for 10 000 iterations for each layer of
each language pair. The second version, called ELMoGAN-O, was trained for the number of iterations
that gave the best result in the dictionary induction task, using the evaluation dictionary from Section
2.2.1.

For each method and each of the tested languages, we construct a prediction model for the NER task
in the source language. The prediction model is then evaluated on the target language dataset, using
target language ELMo embeddings, mapped to the source language vector space. We report the results
in Table 4.

Table 4: Comparison of different methods for cross-lingual mapping of contextual ELMo embeddings, evaluated on
the NER task. The best result (Macro F1 score) for each language pair is in bold. The reference score
“reference“ represents a direct learning on the target language without cross-lingual transfer.

Source. Target. Dictionary ELMoVM ELMoGAN-O ELMoGAN-10k ELMoMU Reference
English Croatian direct 0.385 0.279 0.345 0.024 0.810
English Estonian direct 0.554 0.682 0.737 0.284 0.895
English Finnish direct 0.672 0.708 0.788 0.229 0.922
English Latvian direct 0.499 0.650 0.630 0.216 0.818
English Lithuanian direct 0.498 0.476 0.575 0.208 0.755
English Slovenian direct 0.548 0.588 0.664 0.060 0.850
English Swedish direct 0.786 0.686 0.797 0.568 0.852
Croatian Slovenian direct 0.387 0.279 0.250 0.418 0.850
Croatian Slovenian triangular 0.731 0.365 0.420 0.592 0.850
Estonian Finnish direct 0.517 0.288 0.302 0.278 0.922
Estonian Finnish triangular 0.779 0.705 0.677 0.296 0.922
Finnish Estonian direct 0.477 0.263 0.331 0.506 0.895
Finnish Estonian triangular 0.581 0.563 0.595 0.549 0.895
Latvian Lithuanian direct 0.423 0.376 0.367 0.345 0.755
Latvian Lithuanian triangular 0.569 0.632 0.637 0.378 0.755
Lithuanian Latvian direct 0.263 0.305 0.318 0.604 0.818
Lithuanian Latvian triangular 0.359 0.691 0.713 0.710 0.818
Slovenian Croatian direct 0.361 0.260 0.328 0.485 0.810
Slovenian Croatian triangular 0.566 0.490 0.427 0.518 0.810

The upper part of Table 4 shows a typical cross-lingual transfer learning scenario, where the model is
transferred from resource-rich language (English) to less-resourced languages. In this case, the non-
isomorphic ELMoGAN methods, in particular the ELMoGAN-10k variant, are superior to isomorphic
ELMoVM and ELMoMU approaches. In this scenario, ELMoGAN-10k is always the best or close to the
best mapping approach. This is not always the case in the lower part of Table 4, which shows the second
most important cross-lingual transfer scenario: transfer between similar languages. In this scenario,
ELMoGAN is the best in three language pairs. Isomorphic ELMoVM and ELMoMU perform best in nine
language pairs (5 times ELMoVM and four times ELMoMU). We hypothesize that the reason for the
better performance of isomorphic mappings is the similarity of tested language pairs and less violation
of isomorphism assumption the ELMoVM and ELMoMU method make. The results of the ELMoMU
method support this hypothesis. While ELMoMU performs worst in most cases of transfer from English,
the performance gap is smaller for transfer between similar languages. For similar languages, ELMoMU
is sometimes the best method, but the results of ELMoMU fluctuate greatly between language pairs. The
second possible factor explaining the results is the quality of the dictionaries, which are in general better
for combinations involving English. In particular, dictionaries obtained by triangulation via English are of
poor quality, and non-isomorphic translation might be more affected by imprecise anchor points.

In general, even the best cross-lingual prediction models lag behind the reference model without cross-
lingual transfer. The differences in Macro F1 score are small for some languages (e.g., 5.5% for English-
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Swedish), but they are significantly larger for most of the languages. Compared to cross-lingual trans-
fer with variants of multilingual BERT, described in Section 3, this indicates that ELMo, while useful
for explicit extraction of embedding vectors, is less competitive with BERT in the model transfer, es-
pecially if we take into account that it requires additional effort for preparation of contextual mapping
datasets.

Using NER and BabelNet as anchor points

We analyze how different anchor points impact the quality of cross-lingual mappings. We use two
sources of anchor points: NER and BabelNet. To analyze the quality of cross-lingual contextual map-
pings, we use ELMo-VM mappings, i.e. standard supervised non-isomorphic mappings provided by
vecmap library applied to ELMo embeddings. We use the MultiParaCrawl and ParaCrawl corpora to
extract matching contextual sentences for ELMo alignment, instead of OpenSubtitles as in the experi-
ment above. The reason for this is that we use NEs as anchor points, and in previous experiments, we
noticed that the OpenSubtitles corpus does not have enough realistic NEs with the organization label.
While this was not an issue in the previous experiment, it is of significant importance when these points
are to become anchor points.

We use the following dictionaries, described in Section 2.2.4: high-quality human-made Oxford English-
Slovene dictionary (OES), available only for the English - Slovene language pair, BabelNet dictionary
extracted from BabelNet (BNd), and NER dictionary extracted from MultiParaCrawl and ParaCrawl cor-
pora (NERd). The results are contained in Table 5.

In this experiment, we compare all combinations of three languages: Croatian (hr), Slovene (sl), and
English (en). We performed the cross-lingual transfer for the NER task for each given language pair L1-
L2 by training the NER model on L1 train data and evaluating it on L2 test data. We compared mapping
methods with a reference value obtained via direct learning (direct) and the default value (default) for
all three dictionaries. The reference values allow comparison with models without cross-lingual transfer,
i.e. training and testing on instances from the same language, without mapping. The default F1 value is
obtained using the majority classifier for each label in the Macro F1 score for each target language.

Table 5: Impact of different dictionaries as sources of anchoring points on the NER task, measured with the macro
F1 score. We use ELMoVM mapping method. The best non-reference result for each language pair is in
bold. OES stands for human made Oxford English-Slovene dictionary, BNd for BabelNet dictionary, NERd
for dictionary extracted from NER applied to parallel corpora, “direct“ for direct learning on the target
language without cross-lingual transfer, and “default“ for the default F1 value calculated on the target
language.

Mapped Train Eval
pair language language OES BNd NERd direct default
hr-sl hr sl / 0.8150 0.7545 0.8387 0.0303
hr-sl sl hr / 0.6187 0.5668 0.8181 0.0353
en-hr en hr / 0.5276 0.3705 0.8181 0.0353
en-hr hr en / 0.6273 0.5198 0.9291 0.0812
en-sl en sl 0.6998 0.4410 0.3812 0.8387 0.0303
en-sl sl en 0.6283 0.6285 0.4887 0.9291 0.0812

Results show that the size of the dictionary matters. In most cases, we obtain the best results by
using the largest dictionary, i.e. the BabelNet dictionary of anchoring points. The exception is the
English-Slovene experiment, where in some cases, the smaller BabelNet dictionary slightly outperforms
the human-made OES dictionary. As expected, our models produce much higher macro F1 scores
than default value and lower than direct learning. Nevertheless, the results show that the contextual
cross-lingual mappings can be successfully trained from automatically generated dictionaries. For the
Croatian-Slovene language pair, the difference between the transferred model and directly trained is
surprisingly low (2%). How to obtain similarly low scores for other languages remains an open ques-
tion.
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Size of the anchoring dataset

In our last experiment, we systematically test the impact of the dictionary size (and resulting contex-
tual mapping dataset) on cross-lingual transfer performance. For this experiment, we use our largest
dictionary, the manually created proprietary Oxford English-Slovene dictionary, as the source of anchor-
ing points. As the parallel corpus, we use OpenSubtitles. We vary the size of the contextual mapping
dataset from 1000 to 100 000. For comparison, with the first experiment in this section, we also gener-
ated a dataset with the same size as the one made with the low-quality dictionary from Wiktionary. We
used the ELMoGAN-10k mapping method, as this was the most successful method on English-Slovene
language pair. The results are presented in Figure 2.

Figure 2 & Table 6: Comparison of different sizes of cross-lingual contextual datasets based on different dictionar-
ies used for cross-lingual mapping of contextual ELMo embeddings, evaluated on the NER
task. LQsize represents the size of the dataset based on the low quality dictionary (89 800
entries). The mapping method used was ELMoGAN-10k.
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Again, the results show that the size of the cross-lingual contextual dataset matters. The macro F1 score
steadily rises, and even 100 000 is not the upper limit, as the results in Table 5 show for the full size of
the dataset based on the OES dictionary (294 318 entries).

2.3.2 Dependency parsing

To make the results more general and not specific only to the NER task, we evaluate the proposed
contextual cross-lingual mappings on the dependency parsing (DP) task. Similarly to the NER task
(Section 2.3.1), we are only interested in using the task for comparison of different mapping methods
and not to improve the parsing performance maximally.

The dependency parsing task constructs a dependency tree of a given sentence. In DP, all the words
in a sentence are arranged into a hierarchical tree based on their semantic dependencies. Each word
has at most one parent node, and only the root word has no parent. A word can have multiple chil-
dren nodes. In addition to predicting the structure of the tree, the task is also to label the hierarchical
dependencies.

As the dependency parsing architecture, we use the SuPar tool by Yu Zhang9, which is based on the
deep biaffine attention (Dozat & Manning, 2017). We modified the SuPar tool to accept ELMo embed-
dings on the input; specifically, we used the concatenation of the three ELMo layers. The modified

9https://github.com/yzhangcs/parser
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code is available as one of the associated outputs, listed in Section 6. We trained the parser for 10
epochs, using datasets in nine languages (Croatian, English, Estonian, Finnish, Latvian, Lithuanian,
Russian, Slovene, and Swedish). The datasets are obtained from the Universal Dependencies (Nivre et
al., 2020). The number of sentences and tokens is shown in Table 7.

We use two evaluation metrics in the dependency parsing task, the mean of unlabeled and labelled
attachment scores (UAS and LAS) on the test set. The UAS and LAS are standard accuracy metrics in
DP. The UAS score is defined as the proportion of tokens that are assigned the correct syntactic head,
while the LAS score is the proportion of tokens that are assigned the correct syntactic head as well as
the dependency label (Jurafsky & Martin, 2009).

We evaluated the trained parsers in a cross-lingual manner, using four cross-lingual mapping ap-
proaches: ELMoVM, ELMoMU, ELMoGAN-O, and ELMo-GAN-10k, described in Section 2.2.3.

Table 7: Dependency parsing datasets and their properties: the treebank, number of sentences, number of tokens,
and information about the size of the split.

Language Treebank Tokens Sentences Train Validation Test
Croatian SET 199409 9010 6914 960 1136
English EWT 254855 16622 12543 2002 2077
Estonian EDT 438171 30972 24633 3125 3214
Finnish TDT 202697 15135 12216 1364 1555
Latvian LVTB 220536 13643 10156 1664 1823
Lithuanian ALKSNIS 70051 3642 2341 617 684
Russian GSD 98000 5030 3850 579 601
Slovene SSJ 140670 8000 6478 734 788
Swedish Talbanken 96858 6026 4303 504 1219

Comparison of novel contextual cross-lingual mapping techniques

Similarly to the NER task, we construct a prediction model for the DP task in the source language for
each tested mapping method and each of the tested languages. The prediction model is then evalu-
ated on the target language dataset, using target language ELMo embeddings, mapped to the source
language vector space. We report the results in Table 8.

The ELMo-VM mapping method outperforms both ELMoGAN methods on all language pairs in this
task. Larger dictionaries, created with triangulation, performed better than smaller direct dictionaries,
despite the triangulated dictionaries being of worse quality. Language pairs with similar languages
performed better than when the training language was English. The exception is the evaluation on
Latvian, where the model trained on English performed better than the model trained on Lithuanian.
For evaluation on Lithuanian, both models, trained on English and Latvian, outperform the Lithuanian
model. This indicates a poorly trained Lithuanian model, which explains the aforementioned exception
in the evaluation of Latvian. The poor Lithuanian model can be partially explained by the small size of
the Lithuanian treebank dataset, as seen in Table 7.

The ELMoMU method is stable on the DP task, which is not the case on the NER task. ELMoMU
performs on par with ELMo-VM on a few language pairs. Still, its results lie somewhere between ELMo-
VM and ELMoGAN on average.

A downside of the ELMo-VM mapping method is that we have to train a model on the downstream
task for each pair of mapped languages. This weakness is due to the use of vecmap alignment, which
changes embedding vectors of both languages in the process of their mapping. The vecmap method
first normalizes all word vectors of a language pair. Then it calculates the mapping matrix, which maps
vectors from one language to the other language. Finally, it reweighs both sets of vectors. Because
both the target and source language vectors are changed with this method, we have to train a depen-
dency parsing model for each language pair. In contrast to that, for the ELMoGAN method, we trained
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Table 8: Comparison of different contextual cross-lingual mapping methods on dependency parsing task. Results
are reported as unlabeled attachments score (UAS) and labeled attachment score (LAS). “Direct“ stands
for direct learning on the target (ie. eval.) language without cross-lingual transfer

Train Eval. ELMoVM ELMoGAN-O ELMO-GAN-10k ELMoMU Direct
lang. lang. Dict. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
en hr direct 73.96% 60.53% 69.75% 50.20% 65.66% 38.95% 71.01% 54.89% 91.74% 85.84%
en et direct 62.08% 40.62% 52.75% 30.05% 43.48% 22.97% 58.76% 34.07% 89.54% 85.45%
en fi direct 64.40% 45.32% 49.41% 29.35% 42.54% 22.69% 55.03% 37.61% 90.83% 86.86%
en lv direct 77.84% 65.97% 68.43% 46.09% 67.30% 38.38% 76.26% 63.45% 88.85% 82.82%
en lt direct 67.92% 39.62% 56.60% 30.19% 62.26% 24.53% 66.04% 37.74% 55.05% 24.39%
en ru direct 72.00% 16.62% 66.46% 9.23% 61.85% 8.31% / / 89.33% 83.54%
en sl direct 79.01% 59.84% 68.38% 48.87% 64.98% 44.86% 77.18% 56.53% 93.70% 91.39%
en sv direct 82.08% 72.74% 74.45% 60.39% 75.14% 60.69% 82.17% 72.78% 89.70% 85.07%
hr sl direct 85.47% 72.70% 54.06% 34.17% 55.34% 32.77% 83.45% 69.08% 93.70% 91.39%
hr sl triang 87.70% 76.51% 73.23% 60.95% 70.86% 54.62% 87.70% 76.40% 93.70% 91.39%
et fi direct 79.14% 66.09% 52.97% 34.25% 49.68% 28.37% 76.66% 60.01% 90.83% 86.86%
et fi triang 80.94% 67.35% 54.91% 31.94% 54.40% 26.91% 76.96% 63.37% 90.83% 86.86%
fi et direct 75.81% 57.32% 54.23% 34.19% 54.64% 32.90% 74.96% 58.14% 89.54% 85.45%
fi et triang 79.04% 61.86% 61.19% 39.46% 56.41% 32.58% 76.74% 60.27% 89.54% 85.45%
lv lt direct 72.38% 51.43% 64.76% 45.71% 61.90% 35.24% 67.62% 50.48% 55.05% 24.39%
lv lt triang 75.24% 50.48% 68.57% 39.05% 69.52% 34.29% 74.29% 53.33% 55.05% 24.39%
lt lv direct 63.68% 25.88% 43.46% 11.99% 52.43% 13.54% 61.05% 18.87% 88.85% 82.82%
lt lv triang 61.86% 25.94% 43.13% 9.23% 52.43% 13.68% 57.95% 17.45% 88.85% 82.82%
sl hr direct 77.89% 62.58% 49.36% 29.93% 51.01% 32.03% 72.87% 55.70% 91.74% 85.84%
sl hr triang 81.32% 67.51% 75.02% 56.90% 69.78% 48.94% 78.63% 63.96% 91.74% 85.84%

the English model on English data without any additional mapping and only applied mappings to each
language during evaluation. For ELmoVM, we had to train eight different English models on English
data, one for each mapped language (the English vectors change with every language in the pair). The
computed changes are applied during the evaluation of the models. This considerably slows down the
procedure. We tested four alternative approaches: 1) we removed the normalization performed during
the evaluation, 2) we removed the normalization during the mapping matrix calculation and evaluation,
3) we added the normalization during the evaluation but did not use it during the calculation of mapping
matrix, and 4) we used the normalization both during the evaluation and mapping matrix calculation.
None of the approaches was successful, so we omit the results and leave the topic for further investiga-
tion.

Using NER and BabelNet as anchor points

To test the impact of different anchor points on the DP task, we use the same settings as in 2.3.1,
Results are presented in Table 9.

Table 9: Impact of different dictionaries as sources of anchoring points on the DP task, measured with LAS and
UAS scores. We use the ELMoVM mapping method. The best non-reference result for each language pair
is in bold. OES stands for human-made Oxford English-Slovene dictionary, BNd for BabelNet dictionary,
NERd for dictionary extracted from NER applied to parallel corpora, “direct“ for direct learning on the
target language without cross-lingual transfer, and “default“ for the default scores calculated on the target
language.

Train Eval OSE OSE BNd BNd NERd NERd direct direct default default
lang. lang. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

hr sl / / 66.42% 50.34% 65.97% 50.13% 93.73% 91.37% 5.69% 0.75%
sl hr / / 84.68% 70.19% 84.66% 70.64% 91.64% 85.73% 4.51% 0.55%
en hr / / 72.81% 47.05% 70.55% 42.69% 91.64% 85.73% 4.51% 0.55%
hr en / / 42.77% 13.50% 43.62% 12.70% 92.00% 88.73% 6.52% 0.76%
en sl 43.85% 17.24% 41.15% 15.67% 36.98% 12.57% 93.73% 91.37% 5.69% 0.75%
sl en 41.90% 11.41% 41.68% 10.80% 42.90% 13.76% 92.00% 88.73% 6.52% 0.76%
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Oxford English-Slovene dictionary, BabelNet dictionary, and NER dictionary produce similar results on
the DP task for most language pairs. Some notable exceptions are the English-Croatian test, where
BabelNet anchors show 2.26% UAS and 4.36% LAS improvement over NER anchors; in the English-
Slovene test, the usage of high-quality dictionary outperforms BabelNet anchors, which produce better
results than NER anchors, all by margins larger than 2.5% in case of UAS and 1.5% in case of LAS.
Correlation between the dictionary’s size and the accuracy on the DP task is visible in some tests, but
not in all. This means that in some cases, a lower quality dictionary may provide just as much value as a
higher quality dictionary. Our models produce much higher scores than the default models. In the case
of the Slovene-Croatian pair, the accuracy is close to direct learning. We can conclude that cross-lingual
mapping of models is feasible also for DP tasks, especially for close languages.

The size of the anchoring dataset

Using the same settings as in 2.3.1, we analyse the impact of the dictionary size on the quality of
cross-lingual DP prediction models. The results are in Figure 3.

Figure 3 & Table 10: Comparison of different sizes of cross-lingual contextual datasets based on different dictio-
naries used for cross-lingual mapping of contextual ELMo embeddings, evaluated on the DP
task. LQsize represents the size of the dataset based on the low quality dictionary (89 800
entries). We used the ELMoGAN-10k mapping method.
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Train lang. Eval. lang. size UAS LAS
English Slovenian 1k 51.13% 12.94%
English Slovenian 2k 64.85% 39.24%
English Slovenian 5k 62.72% 47.17%
English Slovenian 10k 64.37% 34.89%
English Slovenian 20k 62.06% 36.45%
English Slovenian 50k 59.63% 37.41%
English Slovenian 100k 60.89% 36.89%
English Slovenian LQsize 60.58% 34.84%
Slovenian English 1k 55.14% 31.87%
Slovenian English 2k 59.89% 36.41%
Slovenian English 5k 62.66% 42.27%
Slovenian English 10k 62.81% 42.85%
Slovenian English 20k 64.09% 44.53%
Slovenian English 50k 63.45% 43.93%
Slovenian English 100k 63.39% 41.50%
Slovenian English LQsize 63.30% 40.45%

Using different sizes of Oxford English-Slovene dictionary shows that larger size does not correlate with
better accuracy scores. When trained on English and evaluated on Slovenian, the dictionary of size 2000

performed best, measured by UAS, while the dictionary of size 5000 performed best, measured by LAS.
In the opposite language direction, training on Slovene and evaluating on English, the dictionary with
size 20 000 performed best. From all the experiments performed with this dictionary (see Table 3), we
can see that increasing the dictionary size up to a certain point improves the performance of mapping.
Further increasing the size of the dictionary worsens results.

2.4 Discussion on cross-lingual contextual mappings

The contextual cross-lingual isomorphic mapping ELMoVM has proved to be successful and robust.
While it sometimes lags behind non-isomorphic mappings, it does not require fine-tuned hyper-parameters.
Due to its use of vecmap mapping, its weakness is a requirement to train a new model on a downstream
task for each pair of source and target languages. Therefore, this approach is not well-scalable in
scenarios where support for the massive cross-lingual transfer of trained models is desired. The iso-
morphic ELMoMU mapping seems much less stable and successful, but this observation is task and
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language-dependent.

Contextual cross-lingual non-isomorphic mapping ELMoGAN is sensitive to the values of training pa-
rameters, mostly the learning rate and the number of iterations but may bring superior performance
compared to isomorphic mappings. To find a set of well-performing hyperparameters, this method has
to be carefully fine-tuned for each task, e.g., the ELMoGAN method outperformed ELMoVM on the NER
task but performed worse on the DP task. As this approach is not sufficiently mature, there are still open
questions on the methodology for choosing the right number of iterations for each task. The dictionary
induction task, we currently use internally, works well for the NER task but seems inappropriate for the
dependency parsing task where greater emphasis is on the language’s syntactic properties (and not so
much on the words as in the NER task).

The work presented in Section 2 is described in full in (Ulčar & Robnik-Šikonja, 2020), attached here as
Appendix A.

3 Cross-lingual model transfer for sentiment predic-
tion

As the second aspect of cross-lingual technologies (besides embedding mappings), we analyze an
important practical issue of cross-lingual transfer of trained machine learning prediction models between
languages. As the example task, we take the practically important task of sentiment prediction. Text
annotation is a costly and lengthy operation, with relatively low inter-annotator agreement (Mozetič et al.,
2016). Large annotated datasets are costly to produce and, therefore, rare, especially for low-resourced
languages. The transfer of already trained models or datasets from other languages would be useful.
It would increase the ability to study different text-related phenomena for many more languages than
possible today.

Using a large dataset of Twitter sentiment in 13 languages, we compare two practically important ap-
proaches to cross-lingual transfer of trained sentiment prediction models. The first is based on mappings
of words into a common vector space, as implemented in the LASER library (Artetxe & Schwenk, 2019),
and the second approach is the multilingual BERT model (Devlin et al., 2019). We test two variants
of the latter approach, the original mBERT, trained simultaneously on 104 languages, and its variants
trained on only three languages (Ulčar & Robnik-Šikonja, 2020). The initial version of this work, in the
form of a conference paper by Robnik-Šikonja et al. (2020), was reported in D3.2 in the context of user-
generated contents and cross-lingual model transfer with LASER library; in this report, we extend this
work with the cross-lingual transfer of prediction models with different variants of multilingual BERT. The
full description is drafted as a journal publication, available in Appendix B.

Our study’s advantage over other studies in the cross-lingual transfer of sentiment prediction models
(Wehrmann et al., 2017) are large comparably annotated datasets in 13 different languages, which
gives credibility and general validity to our findings. Due to the size of the datasets, we can reliably test
both direct transfer between languages (called zero-shot transfer) as well as transfer with sufficient data
available for fine-tuning in the target language. The results show a relatively low decrease in predictive
performance when transferring trained sentiment prediction models between languages, and superior
performance of multilingual BERT models, especially those covering fewer languages. Additionally,
we analyse the quality of representations for the Twitter sentiment classification (without cross-lingual
transfer). We compare the common vector space for several languages constructed by the LASER
library, multilingual BERT, and traditional bag-of-words approach.

This section is divided into five parts. In Section 3.1, we present the background information on the
tested cross-lingual technologies, LASER and multilingual BERT. In Section 3.2, we present a large
collection of tweets from 13 languages used in the empirical evaluation, the evaluation metrics, and
implementation details of our deep neural network prediction models. Section 3.3 contains the experi-
ments on cross-lingual transfer of models and Section 3.4 compares the embedding spaces of LASER,
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BERT, and bag-of-words. In Section 3.5, we discuss the results and their implications.

3.1 Cross-lingual transfer technologies

As mentioned in Section 2.1, there are three groups of approaches to find cross-lingual mappings.
In Section 2.2, we analyzed the first group of approaches that uses monolingual embeddings with the
optional help from a bilingual dictionary to align the embeddings. In this section, we compare the second
and third group of cross-lingual transfer technologies. The second group of approaches, presented in
Section 3.1.1, uses bilingually aligned (comparable or even parallel) corpora for joint construction of
embeddings in all involved languages. The third approach is based on large pretrained multilingual
masked language models such as BERT (Devlin et al., 2019), presented in Section 3.1.2.

3.1.1 Projecting into a common vector space

To construct a common vector space for all involved languages, we require a large aligned bilingual
or multilingual parallel corpus. The constructed embeddings must map the same words in different
languages as close as possible in the common vector space. The availability and quality of alignments
in the training set corpus may present an obstacle. While Wikipedia, subtitles, and translation memories
are good sources of aligned texts for large languages, less-resourced languages are not well-presented
and building embeddings for such languages is a challenge.

LASER10 (Language-Agnostic SEntence Representations) is a Facebook research project focusing on
joint sentence representation for many languages (Artetxe & Schwenk, 2019). Similarly to machine
translation architectures, it uses an encoder-decoder architecture. The encoder is trained on large par-
allel corpora, translating a sentence in any language or script to a parallel sentence in either English or
Spanish (whichever exists in the parallel corpus), thereby forming a joint representation of entire sen-
tences in many languages in a shared vector space. The project focused on scaling to many languages;
currently, the encoder supports 93 different languages, including all EMBEDDIA languages. The result-
ing joint embedding can be transformed back into a sentence using a decoder for the specific language.
This allows training a classifier working on data from just one language and use it on any language
supported by LASER.

3.1.2 BERT contextual model

BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019) generalises the
idea of language models to masked language models—inspired by cloze (i.e. gap filling) tests—which
test the understanding of a text by removing a certain portion of words that the participant is asked to
fill in. The masked language model randomly masks some of the tokens from the input. The task of the
language model is to predict the missing token based on its neighbourhood. BERT uses transformer
architecture of neural networks (Vaswani et al., 2017), which uses both left and right context in pre-
dicting the masked word and further introduces the task of predicting whether two sentences appear in
a sequence. The input representation of BERT are sequences of tokens representing subword units.
The result of pre-trained tokenization is that some common words are kept as single tokens. In con-
trast, others are split into subwords (e.g., common stems, prefixes, suffixes—if needed down to single
letter tokens). The original BERT project offers pre-trained English, Chinese, and multilingual models;
the latter, called mBERT, is trained on 104 languages simultaneously. BERT has shown excellent per-
formance on 11 NLP tasks: 8 from GLUE language understanding benchmark (Wang et al., 2018),
question answering, named entity recognition, and common-sense inference.

Recently, a new type of multilingual BERT models emerged that reduce the number of languages in
multilingual models. CroSloEngual BERT (Ulčar & Robnik-Šikonja, 2020), built in T1.2, uses Croatian,

10https://github.com/facebookresearch/LASER
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Slovene (two similar less-resourced languages from the same language family), and English. The main
reasons for this choice are to represent each language better and keep sensible sub-word vocabulary,
as shown by Virtanen et al. (2019). CroSloEngual BERT was trained using Wikipedia for English text,
the Gigafida corpus for Slovene text, and a combination of hrWaC (Ljubešić & Erjavec, 2011), articles
from the Styria media group, and Riznica corpora (Ćavar & Rončević, 2012) for Croatian text. This model
is built with the cross-lingual transfer of prediction models in mind. It uses the same architecture and is
fine-tuned in the same way as mBERT. By including English, we expect that the CroSloEngual model
will enable a better transfer of existing prediction models from English to Croatian and Slovene.

3.2 Datasets and experimental settings

In this section, we present the evaluation metrics, experimental data, and implementation details of the
used neural prediction models.

3.2.1 Evaluation metrics

Following Mozetič et al. (2016) we report F1 score which takes positive and negative sentiment into
account, and classification accuracy CA. F1(c) score for class value c is the harmonic mean of precision
p and recall r for the given class c, where the precision is defined as the proportion of correctly classified
instances from the instances predicted to be from the class c, and the recall is the proportion of correctly
classified instances actually from the class c.

F1(c) =
2pc rc
pc + rc

.

The F1 score returns values from [0, 1] interval, where 1 means perfect classification and 0 completely
wrong predictions. We use F1 score averaged over positive (+) and negative (−) sentiment class:

F1 =
F1(+) + F1(−)

2
.

As the sentiment labels are ordered, the neutral sentiment label is implicitly taken into account in
F1.

The classification accuracy CA is defined as the ratio of correctly predicted tweets Nc to all the tweets
N:

CA =
Nc

N

3.2.2 Datasets

We use a corpus of Twitter sentiment datasets (Mozetič et al., 2016), consisting of 15 languages, with
over 1.6 million annotated tweets. The languages covered are Albanian, Bosnian, Bulgarian, Croatian,
English, German, Hungarian, Polish, Portuguese, Russian, Serbian, Slovak, Slovene, Spanish, and
Swedish. The authors studied the annotators’ agreement on the labelled tweets. They discovered that
the SVM classifier achieves a significantly lower score for some languages (English, Russian, Slovak)
than the annotators. This hints that there might be room for improvement for these languages using a
better classification model or larger training set.

We cleaned the above datasets by removing the duplicated tweets, weblinks, and hashtags. Due to the
low quality of sentiment annotations indicated by low self-agreement and low inter-annotator agreement,
we removed Albanian and Spanish datasets. For these two languages, the self-agreement expressed
with F1 score (i.e. F1(c) is the fraction of equally labelled tweets out of all the tweets with a given label
c) is 0.60 and 0.49, respectively; the inter-annotator agreement is 0.41 and 0.42. The characteristics of
the remaining 13 datasets are presented in Table 11.
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Number of tweets Agreement
Language Negative Neutral Positive All Self- Inter-
Bosnian 12,868 11,526 13,711 38,105 0.81 0.51
Bulgarian 15,140 31,214 20,815 67,169 0.77 0.50
Croatian 21,068 19,039 43,894 84,001 0.81 0.51
English 26,674 46,972 29,388 103,034 0.79 0.67
German 20,617 60,061 28,452 109,130 0.73 0.42
Hungarian 10,770 22,359 35,376 68,505 0.76 -
Polish 67,083 60,486 96,005 223,574 0.84 0.67
Portuguese 58,592 53,820 44,981 157,393 0.74 -
Russian 34,252 44,044 29,477 107,773 0.82 -
Serbian 24,860 30,700 16,161 71,721 0.81 0.51
Slovak 18,716 14,917 36,792 70,425 0.77 -
Slovene 38,975 60,679 34,281 133,935 0.73 0.54
Swedish 25,319 17,857 15,371 58,547 0.76 -

Table 11: The left-hand side reports the number of tweets from each of the category and the overall number of
instances for individual languages. The right-hand side contains self-agreement of annotators, and inter-
annotator agreement for languages where more than one annotator was involved.

3.2.3 Implementation details

In our experiments, we use three different types of prediction models, BiLSTM neural networks using
joint vector space embeddings constructed with the LASER library, and two variants of multilingual
BERT, mBERT and CroSloEngual BERT.

The cross-lingual embeddings from the LASER library are pretrained on 93 languages, using BiLSTM
networks. They are stored as 1024 dimensional embedding vectors. Our classification models contain
the embedding layer, followed by the multilayer perceptron hidden layer of size 8, and an output layer
with three neurons (corresponding to three output classes, negative, neutral, and positive sentiment)
using the softmax. We use the ReLU activation function and Adam optimizer. The fine-tuning uses a
batch size of 32 and 10 epochs.

The multilingual mBERT model (Devlin et al., 2019) is case sensitive (i.e. bert_multi_cased), pretrained
on 104 languages, has 12 transformer layers, and 110 million parameters. Rather than training an indi-
vidual classifier for every classification task from scratch, which would be resource and time expensive,
the pre-trained BERT language model is usually used and fine-tuned on a specific task. This approach
is common in modern NLP because large pretrained language models extract highly-relevant textual
features without task-specific development and training. Frequently, this approach also requires less
task-specific data. During pre-training, the BERT model learns relations between sentences (entail-
ment) and between tokens within a sentence. This knowledge is used during training on a specific
down-stream task (Devlin et al., 2019). The use of BERT for a token classification task requires adding
connections between its last hidden layer and new neurons corresponding to the number of classes in
the intended task. To classify a sequence, we use a special [CLS] token representing the final hidden
state of the input sequence (i.e. the sentence). The predicted class label of the [CLS] token corresponds
to the class label of the entire sequence. The fine-tuning process is applied to the whole network. All
parameters of BERT and new class-specific weights are fine-tuned jointly to maximize the log-probability
of the correct labels.

3.3 Experiments in cross-lingual transfer

Our experimental evaluation focuses on text representations using embeddings into a common vector
space with the LASER library and two variants of multilingual BERT, mBERT and CroSloEngual BERT,
described in Section 3.1. We report transfer of models between languages from the same language
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family (Slavic and Germanic), as here successful transfer is most likely. We did not test all possible
combinations of languages, but we give a representative sample. To thoroughly test CroSloEngual
BERT, we also test Croatian, Slovene, and English (English not similar to the other two). We report the
results in Table 12.

LASER mBERT cseBERT Both target
Source Target F1 CA F1 CA F1 CA F1 CA
German English 0.55 0.59 0.63 0.64 0.42 0.42 0.62 0.65
English German 0.55 0.60 0.66 0.70 0.50 0.58 0.53 0.65
Polish Russian 0.64 0.59 0.57 0.57 0.50 0.40 0.70 0.70
Polish Slovak 0.63 0.59 0.58 0.59 0.63 0.65 0.72 0.72
German Swedish 0.58 0.57 0.59 0.59 0.58 0.56 0.67 0.65
German Swedish English 0.58 0.60 0.55 0.56 0.41 0.42 0.62 0.65
Slovene Serbian Russian 0.53 0.55 0.57 0.57 0.58 0.48 0.70 0.70
Slovene Serbian Slovak 0.59 0.52 0.57 0.59 0.48 0.60 0.72 0.72
Serbian Slovene 0.54 0.57 0.54 0.54 0.56 0.55 0.60 0.60
Serbian Croatian 0.67 0.64 0.65 0.62 0.65 0.70 0.73 0.68
Serbian Bosnian 0.65 0.61 0.61 0.60 0.59 0.62 0.67 0.64
Polish Slovene 0.51 0.48 0.55 0.54 0.50 0.53 0.60 0.60
Slovak Slovene 0.52 0.51 0.54 0.54 0.58 0.58 0.60 0.60
Croatian Serbian 0.54 0.52 0.52 0.51 0.52 0.49 0.48 0.54
Croatian Bosnian 0.66 0.61 0.57 0.56 0.67 0.62 0.67 0.64
Slovene Serbian 0.52 0.55 0.46 0.49 0.47 0.50 0.48 0.54
Slovene Bosnian 0.66 0.61 0.58 0.56 0.66 0.62 0.67 0.64
Croatian Slovene 0.53 0.53 0.53 0.54 0.61 0.60 0.60 0.60
Slovene Croatian 0.70 0.65 0.64 0.63 0.73 0.69 0.73 0.68
English Slovene 0.54 0.57 0.50 0.53 0.59 0.57 0.60 0.60
Average performance gap 0.05 0.07 0.06 0.07 0.08 0.08
Average performance gap on CSE 0.05 0.04 0.09 0.06 0.00 0.01

Table 12: The transfer of trained models between languages from the same language family using LASER com-
mon vector space, and two variants of BERT: original multilingual BERT (mBERT) and CroSloEngual
BERT (cseBERT). As a reference, we include the comparison with both training and testing set from the
target language (the right-most column). At the bottom, we report the average performance gap across
all languages compared to the reference scores and the average gap for only Croatian, Slovene, and
English. The best cross-lingual transfer score for each of the languages is in bold.

In each experiment, we use the entire dataset of the source language as the training set and the whole
dataset of the target language as the testing set, i.e. we do a zero-shot transfer. We compare the results
with the training and testing set from the target language, where 70% of the dataset is used for training
and 30% for testing. The latter results can be taken as an upper bound of what the transfer models could
achieve in ideal conditions. The results from Table 12 show that there is a performance gap between
the transfer learning models and native models. On average, the gap in F1 is 5% for LASER approach
and 6% for multilingual BERT; for the classification accuracy, the average gap is 7% for both LASER
and mBERT. However, there are significant differences between languages. We advise testing both
variants for a specific language, as they are highly competitive. The CroSloEngual BERT is slightly less
successful measured with an average performance gap over all languages: the gap is 8% in both F1 and
CA. However, if we take only the three languages used in the training of CroSloEngual BERT (the last
three language pairs in Table 12), the conclusions are completely different. The average performance
gap is 0% in F1 and 1% in classification accuracy, meaning that we get an almost perfect cross-lingual
transfer for these languages on the Twitter sentiment prediction task.
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3.4 Comparing representations

We also compare different types of representations commonly used in text classification: embeddings
into a common vector space obtained with LASER library, the multilingual BERT model, and bag-of-
ngrams representation with SVM classifier. Note that there is no transfer between different languages in
this experiment but only a test of the quality of the representation, i.e. embeddings. The training set in
each experiment consists of randomly chosen 70% of the dataset for each language, while the remaining
30% of instances are used as the testing set. The SVM model does not use neural embeddings, but the
Delta TF-IDF weighted bag-of-ngrams representation with substantial preprocessing of tweets (Mozetič
et al., 2016). The results were obtained with 10-fold blocked cross-validation. The datasets for Bosnian,
Croatian, and Serbian languages were merged in (Mozetič et al., 2016) due to the similarity of these
languages. We report the performance on the merged dataset for the SVM classifier. Results are
presented in Table 13.

LASER mBERT SVM
Language F1 CA F1 CA F1 CA
Bosnian 0.67 0.64 0.65 0.66 0.61 0.56
Bulgarian 0.50 0.59 0.58 0.60 0.52 0.54
Croatian 0.73 0.68 0.64 0.68 0.61 0.56
English 0.62 0.65 0.72 0.71 0.63 0.64
German 0.53 0.65 0.66 0.66 0.54 0.61
Hungarian 0.60 0.67 0.65 0.69 0.64 0.67
Polish 0.70 0.66 0.70 0.73 0.68 0.63
Portugal 0.52 0.51 0.66 0.67 0.55 0.51
Russian 0.70 0.70 0.74 0.75 0.61 0.60
Serbian 0.48 0.54 0.56 0.54 0.61 0.56
Slovak 0.72 0.72 0.70 0.75 0.68 0.68
Slovene 0.60 0.60 0.66 0.64 0.55 0.54
Swedish 0.67 0.65 0.64 0.66 0.66 0.62
Average 0.62 0.64 0.66 0.67 0.61 0.59

Table 13: Comparison of different representations: supervised mapping into a common vector space with the
LASER library, multilingual BERT, and bag-of-ngrams with the SVM classifier. The best score for each
language and metric is in bold.

The SVM baseline using bag-of-ngrams representation achieves on average lower predictive perfor-
mance than the two neural embedding approaches. We believe that the main reason for this is the
knowledge about the language structure contained in large precomputed embeddings used by the neu-
ral approaches. Together with the fact that standard feature-based machine learning approaches require
much more preprocessing effort, it seems that there are no good reasons why to bother with this ap-
proach in text classification. The multilingual BERT is the best of the three tested methods, achieving
the best average F1 and CA scores and the best result in most languages (in bold). The downside is
that the fine-tuning and execution of mBERT requires more computational time than precomputed fixed
embeddings. Nevertheless, with progress in optimization techniques for neural network learning and
the advent of computationally more efficient BERT variants, e.g., (You et al., 2020), this obstacle might
disappear in the future.

3.5 Discussion on cross-lingual sentiment predictors transfer

We studied two approaches to the cross-lingual transfer of Twitter sentiment prediction models. LASER
approach is based on mappings of words into the common vector space, and multilingual BERT models
are trained on a multitude of languages: mBERT on 104 languages, and CroSloEngual BERT (trained
in T1.2) on three languages. Our empirical evaluation is based on relatively large datasets of labelled
tweets from 13 European languages.
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Our results show a significant transfer potential using the models trained on similar languages; com-
pared to training and testing on the same language, we get on average 5% lower F1 score with LASER
and 6% with mBERT. Using a specialized trilingual variant of BERT, we get an even better cross-lingual
transfer. Using CroSloEngual BERT for cross-lingual model transfer in the three involved languages,
we get on average the same F1 score and 1% lower classification accuracy compared to training and
testing in the same language with the LASER library. This result shows that the specialized BERT
models enable almost zero-loss cross-lingual transfer to less-resourced languages, at least for certain
tasks.

The comparison of the quality of three text representations, cross-lingual joint embedding space of
LASER library, multilingual BERT embeddings, and classical bag-of-ngram representation coupled with
SVM classifier, shows that the multilingual BERT is the most successful of the three, followed by the
common vector space of LASER, while SVM with bag-of-ngrams is rarely competitive.

The work presented in Section 3 is described in full in (Robnik-Šikonja et al., 2020), attached here as Ap-
pendix B.

4 Cross-lingual transfer for prediction of idioms
This section demonstrates the practical use of modern contextual and cross-lingual embeddings, de-
veloped in T1.1 and T1.2, in a monolingual and multilingual setting. As a testbed, we use a practically
important linguistic problem, namely the detection of idiomatic expressions. In contrast to experiments
in Section 2 and Section 3, where we used well-know tasks and datasets, in this section, we show
that contextual embeddings can be applied to entirely new task, where previous technologies were not
successful. We show that deep neural networks using either ELMo or BERT embeddings (produced in
T1.2) perform better than existing approaches and can detect idiomatic word use even for idioms that
were not present in the training set. We develop a novel dataset of idiomatic expressions, demonstrate
the cross-lingual transfer of developed models, and show that contextual word embeddings can gener-
alize to other languages. This work is relevant for T1.2, as it shows the difference in using fixed ELMo
and BERT vectors compared to fine-tuning of the entire models. The successful detection of idiomatic
expressions has the potential to be applied in T5.3 and improve approaches for creative language use,
in particular for metaphors.

Multiword expressions (MWEs) are made up of at least two words that can be syntactically and/or
semantically idiosyncratic in nature and can cover fixed and nonfixed expressions. They often act as a
single unit in linguistic analysis. MWEs are not homogeneous and are commonly divided in the literature
into idiomatic expressions, light-verb constructions, verb-particle constructions, complex function words,
multiword named entities, and multiword terms (Constant et al., 2017). According to Jackendoff (1997),
the number of MWEs in a speaker’s lexicon may be "of the same order of magnitude as the number
of single words of the vocabulary", and according to Sag et al. (2002) "it seems likely that this is an
underestimate". This emphasizes the importance of good coverage and accuracy of MWE detection
and identification tools for NLP applications and lexical resources.

In this section, we are interested in the detection and identification of idiomatic expressions (IEs), also
called idioms, that are composed of a group of lexemes whose meaning is established by convention and
cannot be deduced from individual lexemes composing the expression (e.g., it’s a piece of cake).

Due to the lack of satisfactory tools, linguists often create lexicons of idioms manually or use tools that
take into account only co-occurrence features since these are easier to implement and are relatively
language independent. This type of workflow introduces several problems. First, manually created
large lexicons of idioms are scarce because of the time-consuming human labor required, particularly
for less-resourced languages. Second, frequency lists of idioms created without robust, generalized
identification tools are unreliable – mostly due to their discontinuity and syntactic variability. Finally, dis-
covering or detecting new IEs is often based on linguists’ personal knowledge or frequent collocations.
This may completely omit many idioms.
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IEs such as "break the ice" and "under the weather" commonly occur in texts. They can be hard to
understand for computer models as their meaning differs from the meaning of individual words. To
address this, several automatic machine learning-based approaches for the detection of idiomatic lan-
guage emerged. However, current approaches suffer from several issues and limitations related to
methodological shortcomings and a lack of datasets. The first issue that affects current approaches is
the lack of large datasets with annotated IEs. Because of a large number of different IEs, a dataset
that would contain a sufficient number of examples for every IE needed to train a classification model
currently does not exist. Additionally, most existing datasets only address English, which makes de-
veloping approaches for other languages difficult. Existing works use small datasets, such as the data
from SemEval 2013, task 5B (Korkontzelos et al., 2013), PARSEME Shared Task on Automatic Verbal
Multi-Word Expression (MWE) Identification (Savary et al., 2017), or the VNC-tokens dataset (Cook et
al., 2008). These datasets only cover a limited number of IEs and contain at most a few annotated
sentences for each expression, making it hard to train successful machine-learning models for IE recog-
nition.

In our work, we use currently the most successful approaches to contextual word embeddings, ELMo
(Peters et al., 2018) and BERT (Devlin et al., 2019). We examine whether contextual word embeddings
can be used as a solution to the idiom identification problem. Past work shows that contextual word
embeddings can detect different meanings of polysemous words and improve the performance on a
variety of NLP tasks (Devlin et al., 2019). However, current approaches have not used contextual word
embeddings for differentiating between idiomatic and literal language use. In the proposed approach,
called MICE (Mining Idioms with Contextual Embeddings), we use ELMo and BERT embeddings as an
input to a neural network and show that using them as the first layer of neural networks improves results
compared to existing approaches. We evaluate our approach on a new dataset of Slovene IEs and the
existing dataset from the PARSEME Shared Task on Automatic Verbal MWE Identification. We analyze
different properties of the proposed models, such as different variants of BERT models and cross-lingual
transfer of trained models.

We show that contextual embeddings contain a large amount of lexical and semantic information that
can be used to detect IEs. Our MICE approach outperforms existing approaches that do not use pre-
trained contextual word embeddings in the detection of IE present in the training data, as well as iden-
tification of IE missing in the training set. The latter is a major problem of existing approaches. Finally,
we show that multilingual contextual word embeddings can detect IEs in multiple languages even when
trained on a monolingual dataset.

We present our MICE methodology in Section 4.1. Section 4.2 describes the datasets used for the
evaluation of our approach, which we describe in Section 4.3. Section 4.4 discusses results and their
implications.

4.1 Novel MICE architecture for idiom detection

The proposed approach is based on contextual word embeddings, which were designed to deal with
the fact that a word can have multiple meanings. Instead of assigning the same vector to every oc-
currence of a word, contextual embeddings assign a different vector to each word occurrence based
on its context. As the contexts of words’ literal use and idiomatic occurrences of the same word are
likely to differ, these embeddings shall be well-suited for detecting IEs. We used two state-of-the-art
embedding approaches: ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019). For ELMo, we used
the pretrained Slovene model described by Ulčar & Robnik-Šikonja (2020a). The model was trained on
the Gigafida corpus (Krek et al., 2016) of Slovene texts. For BERT embeddings, we use two models,
described in Section 3.1.2: the original multilingual mBERT model presented by Devlin et al. (2019),
which was trained on Wikipedia text from 104 languages, including Slovene and Croatian, and the trilin-
gual CroSloEngual BERT presented by Ulčar & Robnik-Šikonja (2020). This BERT is better suited for
classification tasks in Slovene and Croatian as mBERT as its training incorporated larger amounts of
training data and a larger vocabulary for each of the involved languages. The authors also report an
improved cross-lingual transfer of trained models between the three languages.
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We use the embeddings (ELMo or BERT) as the first layer of a neural network. This layer is followed
by a bidirectional gated recurrent unit (GRU) with 100 cells. GRUs are similar to standard recurrent
units but use an additional update and reset gate to help deal with the vanishing gradient problem. The
update gate is defined as

zt = σ(W (z)xt + U(z)ht−1 + bz), (2)

where W (z) and U(z) are trainable weights, xt is the input vector and bz is the trainable bias. ht−1

represents the memory of past inputs computed by the network. The reset gate uses the same equation,
with different weights and biases:

rt = σ(W (r)xt + U(r)ht−1 + br ). (3)

For each input, the GRU computes the output as:

ht = zt � ht−1 + (1− z)� tanh(W (h)xt + U(h)(rt � ht−1) + bh), (4)

where � is the Hadamard product, and W (h), U(h), and bh are trainable weights and biases.

For both embeddings used, ELMo and BERT, the GRU layer is followed by a softmax layer to obtain the
final predictions. A dropout of 50% is applied at the softmax layer. This approach follows the work on
MWE detection presented by Klyueva et al. (2017) but with the difference that we use contextual embed-
dings. We deliberately use a simple network architecture to show that the embeddings, by themselves,
capture enough semantic information to properly recognize IEs.

We use the described architecture on two types of classification tasks: a token-level classification,
where we predict whether an individual token has an idiomatic or literal meaning, and a sentence-level
classification, where the network makes a single prediction for the entire sentence, predicting whether
the sentence contains an expression with an idiomatic meaning. The details of the tasks are presented
in Section 4.3.

We fine-tuned the hyperparameters using a development set consisting of 7% of sentences randomly
selected from our dataset, described in Section 4.2.1. We trained the network for 10 epochs using
RMSProp as the optimizer with the learning rate of 0.001, ρ = 0.9, and ε = 10−7. We used binary
cross-entropy as the loss function.

4.2 Datasets of idiomatic expressions

Our approach supports two types of tasks, monolingual and multilingual. The monolingual approach re-
quires a reasonably large dataset with a sufficient number of idioms. The multilingual approach exploits
the existing monolingual dataset to transfer the trained model to languages with fewer resources, i.e.
with non-existent or smaller datasets.

In Section 4.2.1, we describe our monolingual Slovene dataset. In Section 4.2.2 we describe the well-
known PARSEME datasets (Savary et al., 2017) for detection of multi-word expressions, including id-
ioms, in many languages.

4.2.1 Novel monolingual dataset

We evaluate our approach on a new dataset of Slovene IEs, called SloIE, which we make publicly
available for further research11. The dataset consists of 29,400 sentences extracted from the Gigafida
corpus (Krek et al., 2016) and contains 75 different IEs. The 75 IEs were selected from the Slovene
Lexical Database (Gantar & Krek, 2011). They had to meet the condition that they appear in corpus
sentences in both idiomatic and literal senses, such as, e.g., break the ice or step on someone’s toes.
Manual selection of idiomatic examples showed that most IEs in the Slovene Lexical Database (2,041

11http://hdl.handle.net/11356/1335
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in total) appear more frequently or even exclusively in their idiomatic meaning, either because literal use
is not possible (e.g., get under someone’s skin), or it’s very rare, although possible in terms of syntax
and semantics (e.g., to do something behind someone’s back). Although this finding is interesting from
a (socio)linguistic point of view, in designing the dataset for our purposes, we assumed that the literal
and idiomatic interpretation of an expression could be disambiguated by its context.

Two annotators, students of linguistics, marked the complete set of 29,400 sentences. They had four
possible choices: YES (the expression in a particular sentence is used in the idiomatic sense, NO (the
expression is used in the literal sense), DON’T KNOW (not sure whether the expression is used in a
literal or idiomatic sense) and VAGUE, (literal or idiomatic use cannot be inferred from the sentence).
Student annotators were previously briefed with short instructions and provided with a sample of good
examples. For the training of classification models, we selected only sentences where both annotators
agreed on the annotation. The inter-annotator agreement across the entire dataset was 0.952.

Due to the nature of IEs, our dataset is imbalanced. A few expressions occur proportionally in both literal
and idiomatic use, while most expressions occurring predominately idiomatically. The dataset contains
fewer than 100 occurrences for most expressions. Table 14 shows an overview of the data present in
our dataset. The distribution of literal and idiomatic uses of each expression is shown in Figure 4.

Table 14: An overview of the data present in the SloIE dataset.

Sentences 29,400
Tokens 695,636
Idiomatic sentences 24,349
Literal sentences 5,051
Idiomatic tokens 67,088
Literal tokens 626,707
Different IEs 75

SloIE is much larger than other existing datasets of IEs in terms of the number of sentences, e.g., VNC-
tokens contains 2,984 instances of 53 IEs. Such a dataset would require significant effort to create for
other languages. Nevertheless, as our experiments in (Škvorc et al., 2020) show (see Appendix C), even
smaller datasets could produce useful results. Further, there is a significant potential for cross-lingual
transfer of trained models, especially between similar languages.

4.2.2 PARSEME datasets

The dataset for the Edition 1.1 of the PARSEME shared task on automatic identification of verbal mul-
tiword expressions (MWEs) consists of 280,838 annotated sentences split across 20 languages. The
corpus contains annotations for various types of verbal MWEs, such as verb-particle constructions, in-
herently reflexive verbs, and verbal idioms. As our work focuses on detecting IEs, we only predict tags of
verbal idioms and ignore all other tags. A summary of the number of sentences for each language used
in our work is presented in Table 15. We do not use the Arabic dataset as it was not made available
under an open licence.

IEs in the PARSEME datasets only occur in a small number of sentences. Additionally, most IEs oc-
cur only once in the corpus, which makes training a classifier difficult. For that reason, we used the
PARSEME dataset to evaluate our cross-lingual model. The prediction model used the pretrained
mBERT embeddings (Devlin et al., 2019) and was further trained on our Slovene SloIE dataset. It
was then tested on each of the PARSEME datasets in different languages. The details are reported in
Section 4.3.3.

30 of 114



ICT-29-2018 D1.6: Final cross-lingual embeddings

Figure 4: The number of literal and idiomatic uses for IEs present in the SloIE dataset. The top figure shows IEs
that occur more than 35 times with an idiomatic meaning. The bottom figure shows IEs that occur less
than 35 times with an idiomatic meaning.

4.3 Evaluation

We evaluate our MICE approach in three settings, described below.

1. Classification of IEs that were present in the training set. In Section 4.3.1 we evaluate whether MICE
is capable of detecting IEs that were present in the training set. We split this task into two sub-
tasks: i) sentence-level classification, where the network makes a single prediction for the entire
sentence, predicting whether that sentence contains an expression with the idiomatic meaning,
and ii) token-level classification, where we predict whether each token has a literal or idiomatic
meaning. The sentence-level classification task is easier, but the token-level task can be more
useful, as it can be used to detect which tokens have the idiomatic meaning.

2. Classification of IEs that were not present in the training set. Due to many idioms, it is difficult and
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Table 15: An overview of the data present in the PARSEME datasets. Of the 20 languages in the PARSEME
corpus, we use 18. We omit Arabic because it is not available as an open language, and Farsi, which
does not contain IEs. On average, each language contains 586 IEs.

Language Sentences Tokens IEs
BG 6,913 157,647 417
DE 6,261 120,840 1,005
EL 5,244 142,322 515
EN 7,436 124,203 59
ES 2,502 102,090 196
FA 2,736 46,530 0
FR 17,880 450,221 1,786
HE 4,673 99,790 86
HU 3,569 87,777 92
HR 3003 69915 131
IT 15,728 387,325 913
LT 12,153 209,636 229
MT 5,965 141,096 261
PL 11,578 191,239 317
PT 19,640 359,345 820
RO 45,469 778,674 524
SL 8,881 183,285 283
SV 200 3,376 9
TR 16,715 334,880 2,911
Total 19,6546 3,990,191 10,554

expensive to annotate a dataset that would cover every idiom. Thus, it would be desirable that
the prediction model is capable of detecting expressions that are not present in the training set.
We test this setting in Section 4.3.2. As with the first task, we use sentence-level and token-level
classifiers. This task is more difficult than detecting IEs present in the dataset. It can only be
solved successfully if the contextual word embeddings contain information about idiomatic word
use (e.g., as directions in the vector space).

3. Cross-lingual transfer on PARSEME dataset. In Section 4.3.3, we evaluate whether our approach can
be used to detect expressions in different languages when trained with multilingual word embed-
ding models. For testing this hypothesis, we use 18 languages from the multilingual PARSEME
dataset.

We compare the proposed MICE approach to different existing approaches. As a baseline, we use the
SVM classifier with the tf-idf weighted vector of a sentence as an input. We compare our approach to
MUMULS (Klyueva et al., 2017), which uses a similar neural network architecture to our approach but
does not use pretrained contextual word embeddings. Unlike our approach, MUMULS uses part-of-
speech tags and word lemmas as additional inputs.

For all tests, we report the classification accuracy (CA) and F1 score. As many of the tasks are highly
imbalanced, CA is not a good measure, and we mostly use the obtained F1 scores in interpretations of
the results.

4.3.1 IEs from the training set

For the first experiment, detection of IEs present in the training set, we randomly split the SloIE dataset
into training, testing, and development sets with the ratio of 63:30:7 (18,522, 8,820, and 2,058 sen-
tences). The network was trained for 10 epochs using RMSProp as the optimizer with the learning rate
of 0.001, ρ = 0.9, and ε = 10−7. The binary cross-entropy was used as the loss function. We report two

32 of 114



ICT-29-2018 D1.6: Final cross-lingual embeddings

sets of results: recognition of individual tokens in a sentence as idiomatic or non-idiomatic (i.e. token-
level classification) and detecting the whole sentence as either containing or not containing idioms (i.e.
sentence-level classification).

The results for token-level classification are presented in Table 16. To provide a sensible context for
token-based classification, the SVM classifier’s input consists of the target token and three words before
and three words after the target word. The SVM classifier obtains better F1 score than MUMULS but
lower score compared to MICE variants. The dataset is highly imbalanced, with 96,7% of all tokens
being non-idiomatic. Lacking discriminating information, MUMULS predicts almost every token as non-
idiomatic, which results in high classification accuracy but very low F1 score. Due to the dataset’s
imbalanced nature, the F1 score is more reflective of relevant real-world performance. Here, the MICE
variants are in a class of their own.

Table 16: Comparison of results when classifying tokens with the same IEs present in the training and testing set.
Each token was classified as either belonging to IE with the literal meaning, belonging to IE with the
idiomatic meaning, or not belonging to IE.

Method CA F1

Default classifier 0.903 0.176
SVM baseline 0.8756 0.3962
MUMULS 0.975 0.0659
MICE with Slovene ELMo 0.889 0.9219
MICE with mBERT 0.814 0.4556
MICE with CroSloEngual BERT 0.972 0.837

Of the three MICE approaches, the Slovene ELMo model obtains the highest F1 score. The MICE vari-
ants with BERT embeddings obtain lower classification accuracies and F1 scores. This is likely due to
different tokenization approaches used by the embeddings. We used ELMo embeddings by first per-
forming word-level tokenization while BERT splits words into sub-word units. Token-level classification
with BERT must classify sub-word units instead of classifying entire words, as is the case with ELMo.
Additionally, our ELMo embeddings were pretrained on a large amount of only Slovene texts, while
the mBERT model was trained on 104 different languages. Only a small amount of Slovene texts was
included in its training, and it has a small proportion of Slovene words in the vocabulary. The CroSlo-
Engual embeddings were trained on a larger amount of Slovene text and therefore achieved better
results.

In the evaluation on the sentence-level, instead of classifying each token, we classified each sentence
whether it contains an IE or not. This lowers the importance of different tokenization strategies between
ELMo and BERT. However, the sentence-level evaluation does not show whether the approaches can
detect specific words in a sentence as idioms. The results of this evaluation are presented in Table
17.

Table 17: Comparison of results when classifying sentences from the SloIE dataset and the same IEs are present
in the training and testing sets. Each sentence was classified as either containing an expression with the
literal meaning or containing an expression with the idiomatic meaning.

Method CA F1

Default classifier 0.828 0.906
SVM baseline 0.900 0.942
MUMULS 0.915 0.948
MICE with Slovene ELMo 0.951 0.980
MICE with mBERT 0.897 0.908
MICE with CroSloEngual BERT 0.921 0.954

The sentence-level classification task is easier than the token-level task, which leads to an improved per-
formance for all models. The SVM baseline outperforms the mBERT model. MUMULS also achieves
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better results, outperforming the SVM baseline and the mBERT approach. MICE with CroSloEngual
BERT is closer to ELMo in this task, though the latter still achieves the best scores. MICE with mBERT
likely achieves lower scores because this model was not pretrained on a large enough amount of
Slovene texts.

4.3.2 IEs outside the training set

In the previous experiment with the same IEs present in both the training and testing set, we obtained
good results (especially with the ELMo contextual embeddings). However, many languages lack large
annotated datasets and even when they do exist, they are unlikely to contain every possible IE found
in that language. Because of this, evaluations containing IEs in both sets over-estimates the practical
importance of tested methods.

To address this, we tested how well the approaches based on contextual word embeddings generalize
to IEs outside the training set. For this experiment, we split our dataset into a training and testing set so
that IEs from the testing set do not appear in the training set. Apart from this change, everything else
remained the same as in section 4.3.1 above.

Since IEs in the test set are not present in the training set, the classification models cannot learn how
to detect them based on word-data alone. We hypothesize that their detection is possible based on
the contexts in which they appear. As the meaning of an IE is different from the literal meaning of its
constituting words, it should appear in a different context. Neural networks with contextual word embed-
dings could detect such occurrences. Indeed, our results for the token- and sentence-level IE detection,
presented in Tables 18 and 19, show that approaches that do not use contextual word embeddings fail
to successfully detect IEs that did not occur in the training set. In contrast, MICE approaches using
contextual embeddings extract useful information.

For token level results, shown in Table 18, due to the imbalanced class distribution, all approaches lag
behind the default classifier concerning CA. For both the SVM baseline and MUMULS, this is the case
also in terms of F1 score. The MICE approach with ELMo and mBERT models manage to correctly
classify many IEs. However, the results are worse than in the scenario where the same IEs are present
in both the training and testing set. MICE with ELMO embeddings is again the best method, while
CroSloEngual BERT is surprisingly unsuccessful.

Table 18: Comparison of results when classifying tokens and test set IEs are not present in the training set.

Method CA F1 score
Default classifier 0.903 0.176
SVM baseline 0.870 0.029
MUMULS 0.873 0.000
MICE with Slovene ELMo 0.803 0.866
MICE with mBERT 0.733 0.803
MICE with CroSloEngual BERT 0.759 0.176

Sentence-level results in Table 19 show improved scores of all models, compared to token-level task.
The SVM baseline and MUMULS still lag behind the default classifier concerning both CA and F1 score.
MICE approaches are better, with the Slovene ELMo variant achieving the best scores.

4.3.3 Cross-lingual evaluation of IEs

The results above show encouraging results for IE detection in a language with sufficiently large datasets.
As recent research on cross-lingual embeddings shows that reasonably good transfer of trained models
can be obtained for many tasks (Ruder et al., 2019; Artetxe & Schwenk, 2019; Robnik-Šikonja et al.,
2020; Linhares Pontes et al., 2020), we attempt such a transfer of our models. We use the dataset from
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Table 19: Comparison of results when classifying sentences and the test set IEs are not present in the training set.

Method CA F1 score
Default classifier 0.828 0.906
SVM baseline 0.783 0.689
MUMULS 0.520 0.672
MICE with Slovene ELMo 0.842 0.907
MICE with mBERT 0.836 0.904
MICE with CroSloEngual BERT 0.771 0.837

the PARSEME shared task on automatic identification of verbal MWEs described in Section 4.2.2. We
evaluated two contextual embeddings discussed in the previous sections: the Slovene ELMo embed-
dings and the multilingual BERT embeddings. We evaluated the cross-lingual MICE approach in the
following manner:

• We evaluated MICE with Slovene ELMo embeddings on Slavic languages similar to Slovene, with
datasets present in the PARSEME collection, i.e. Slovene, Croatian, and Polish. As the Slovene
ELMo embeddings are not multilingual, they are unlikely to generalize to other languages. In future
work, we plan to use these embeddings for prediction in other languages by using contextual
cross-lingual mappings discussed in Section 2.

• We evaluated MICE with mBERT embeddings on all languages from the PARSEME collection. The
mBERT model was trained on 104 languages, including every language present in the PARSEME
dataset.

For both test-cases, we constructed balanced datasets, which consist of every sentence with IEs from
the PARSEME dataset in a given language and an equal number of sentences without IEs, chosen at
random from the same dataset. We evaluated the sentence-level classification task.

For the Slavic languages test, we trained the prediction model on the whole SloIE dataset, presented in
Section 4.2.1. We did not train the model on any multilingual data to see whether the contextual embed-
dings alone are enough to generalize to other languages, at least to similar ones such as Croatian. For
all PARSEME languages using MICE with mBERT, we split each dataset into the training, testing, and
validation sets using a 60:30:10 ratio. We trained the model for each language on the training set and
evaluated it on the testing set. For Slovene, Croatian, and Polish, we also trained MICE mBERT mod-
els on the SloIE dataset. The similarity of those languages means that additional data in the Slovene
language could be beneficial. The results are presented in Table 20.

The monolingual evaluation results presented in Section 4.3.2 are also confirmed on the Slovene
PARSEME dataset, as MICE with the Slovene ELMO model is capable of detecting idioms in that
dataset. The same model generalizes very well to the PARSEME Croatian dataset, likely due to its
similarity to Slovene. The generalization to Polish, which is a more distant Slavic language, is not
successful. MICE models with mBERT also generalize well for a few languages. They obtain good
results on Slovene and Croatian, likely due to the training on the SloIE corpus and generalization to
similar Croatian idioms. The MICE mBERT models outperform default classifiers in French, Turkish,
Lithuanian, Italian, Hebrew, and Basque, despite small amounts of training data, low numbers of IEs in
training sets, most IEs only appearing once, and IEs in the testing set not appearing in the training set.
They perform less well on other languages but are still capable of detecting some IEs.

MUMULS and the SVM baseline were both unable to detect IEs in other languages, obtaining the F1

score of 0 in all cases.

4.4 Discussion on idiom detection

We showed that contextual word embeddings can be used with neural networks to successfully detect
IEs in text. When contextual embeddings (ELMo or mBERT) were used as the first layer of a neural
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Table 20: Results of the multilingual evaluation. The MICE models with Slovene ELMo embeddings were evaluated
on Slavic languages similar to Slovene, while the variants with mBERT were tested for all languages
in PARSEME dataset which contain IEs. We report F1 scores and include the default classifier as a
reference.

Language Slovene ELMo mBERT Default F1

Slovene 0.8163 0.8359 0.667
Croatian 0.9191 0.8970 0.667
Polish 0.2863 0.6987 0.667
English - 0.650 0.667
French - 0.814 0.667
German - 0.622 0.667
Turkish - 0.682 0.667
Romanian - 0.625 0.667
Lithuanian - 0.689 0.667
Italian - 0.683 0.667
Hungarian - 0.555 0.667
Hindi - 0.562 0.667
Hebrew - 0.693 0.667
Farsi - - -
Basque - 0.692 0.667
Spanish - 0.340 0.667
Greek - 0.484 0.667
Bulgarian - 0.601 0.667

network with the same architecture as the existing MUMULS approach, we could obtain much better
results. While the existing approaches performed well on the sentence-level classification of IEs present
in the training set, they failed on token-level tasks and when detecting new IEs, not present in the training
set. We showed that using fine-tuned contextual word embeddings allows the network to perform better
on token-level classification and to successfully generalize to IEs that were not present in the training set.
This opens an opportunity for the successful treatment of IEs in many downstream applications.

We evaluated our MICE approach on the SloIE dataset, a new, large dataset of Slovene idioms, as well
as on the existing multilingual PARSEME datasets. SloIE dataset is larger than most existing datasets
and should therefore be useful for further research into automatic idiom detection. Additionally, we
evaluated how the size of the dataset affected the results and showed that our approaches perform well
even when trained on smaller datasets.

We show that contextual word embeddings are capable of generalizing to other languages. When deal-
ing with similar language pairs (e.g., Slovene-Croatian), both the monolingual ELMo embeddings and
the multilingual BERT embeddings could detect idioms in Croatian text when trained only on Slovene.
The multilingual BERT model detected idioms even in some more distant languages, though with re-
duced classification accuracy and F1 scores.

Our work could be improved and extended in multiple ways. We only used embeddings that were pre-
trained on the general text and were not fine-tuned for the specific task of detecting idiomatic language.
Several authors have shown (Li & Eisner, 2019; Devlin et al., 2019) that specializing embeddings for
specific tasks can improve results on a variety of NLP tasks. Several such approaches could be applied
to our task and would likely further improve the performance. Additionally, we intentionally used a simple
network architecture that could be improved in the future. Finally, to put our models into practical use,
we intend to apply MICE models in IE lexicon construction.

The work presented in Section 4 is described in full in (Škvorc et al., 2020), attached here as Appendix
C.
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5 Conclusions and further work
In this work, we tested and improved cross-lingual mappings of contextual embeddings and analyzed the
cross-lingual transfer of trained models. We first presented several methods for cross-lingual mappings
of contextual embeddings. The results show that ELMoVM and ELMoGAN methods enable successful
cross-lingual mapping of ELMo contextual embeddings. The success largely depends on the dataset
and successful fine-tuning of the methods’ hyperparameters. Surprisingly, even low-quality contextual
mapping dictionaries constructed from BabelNet and NER provide sufficient anchoring information if the
resulting datasets are large enough.

We analyzed practically important issue of cross-lingual transfer of trained Twitter sentiment predic-
tion models between languages. The results show a significant cross-lingual transfer potential using the
models trained on similar languages, even in zero-shot transfer mode (without any data in the target lan-
guage). The variant of multilingual BERT, CroSloEngual BERT, trained in T1.2, demonstrated excellent
cross-lingual transfer between Croatian, Slovene, and English, with almost no loss. We demonstrated
the use of contextual embeddings in monolingual and multilingual settings on the difficult linguistic prob-
lem of idiom detection. The proposed deep neural networks using either ELMo or BERT embeddings
performed much better than existing approaches. Our MICE approach showed good cross-lingual trans-
fer ability. It demonstrated that contextual word embeddings are capable of generalization to other
languages, especially similar ones.

The proposed non-isomorphic mappings are very sensitive to hyper-parameter selection. In further
work, we intend to work on a robust method to find hyper-parameters. We intend to test several more
GAN architectures to find a more robust mapping.

We intend to expand our study of cross-lingual model transfer with additional BERT models, such as
FinEst BERT, trained on English, Finnish and Estonian. Excellent performance of trilingual BERT models
in cross-lingual transfer for sentiment prediction also requires further confirmations in other downstream
tasks.

In our work with the idioms, we intend to test the contextual embeddings methodology on metaphors,
where there is a similar problem of detecting different contexts. Metaphors are relevant for the creative
language use in T5.3, where we plan to test the transformer neural architecture.

6 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
ELMo embeddings Clarin.si hdl.handle.net/11356/1277 Public (GPL v3)

CroSloEngual BERT embeddings huggingface.co/EMBEDDIA/crosloengual-bert Public(CC-BY 4.0)
Crosslingual NER github.com/EMBEDDIA/crosslingual-NER Public (GPL v3)
Vecmap changes github.com/EMBEDDIA/vecmap-changes Public (GPL v3)

Anchor point generation github.com/EMBEDDIA/anchor-point-generation Public (MIT)
SloIE idioms dataset Clarin.si hdl.handle.net/11356/1335 Public (CC BY-NC-SA 4.0)
MICE source code github.com/EMBEDDIA/MICE Public (Apache)

ELMoGAN mapping method github.com/EMBEDDIA/elmogan Public (MIT)
SuPAR ELMo dependency parser github.com/EMBEDDIA/supar-elmo Public (GPL v3)

Parts of this work are also described in detail in the following publications, which are attached to this
deliverable as appendices:
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Robnik-Šikonja, M., Reba, K., & Mozetič, I. (2020). Cross-lingual transfer of Twitter sentiment models
using a common vector space. In Proceedings of language technologies & digital humanities.
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Abstract. Building machine learning prediction models for a specific
NLP task requires sufficient training data, which can be difficult to ob-
tain for low-resource languages. Cross-lingual embeddings map word em-
beddings from a low-resource language to a high-resource language so
that a prediction model trained on data from the high-resource language
can also be used in the low-resource language. To produce cross-lingual
mappings of recent contextual embeddings, anchor points between the
embedding spaces have to be words in the same context. We address this
issue with a new method for creating datasets for cross-lingual contex-
tual alignments. Based on that, we propose novel cross-lingual mapping
methods for ELMo embeddings. Our linear mapping methods use ex-
isting vecmap and MUSE alignments on contextual ELMo embeddings.
Our new nonlinear ELMoGAN mapping method is based on GANs and
does not assume isomorphic embedding spaces. We evaluate the proposed
mapping methods on nine languages, using two downstream tasks, NER
and dependency parsing. The ELMoGAN method performs well on the
NER task, with low cross-lingual loss compared to direct training on
some languages. In the dependency parsing, linear alignment variants
are more successful.

Keywords: contextual embeddings, ELMo, GAN, cross-lingual mod-
els, non-linear vector alignment, non-isomorphic cross-lingual alignment,
vecmap, MUSE

1 Introduction

Word embeddings are representations of words in a numerical form, as vectors of
typically several hundred dimensions. The vectors are used as input to machine
learning models; these are generally deep neural networks for complex language
processing tasks. The embedding vectors are obtained from specialized neural
network-based embedding algorithms. The quality of embeddings depends on
the amount of semantic information expressed in the embedded space through
distances and directions. For that reason, static pre-trained word embeddings,
such as word2vec [25] or fastText [8], have in large part been recently replaced
by contextual embeddings, such as ELMo [31] and BERT [11].
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Appendix A: Cross-lingual alignments of ELMo con-
textual embedding
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Contextual embeddings generate a different word vector for the same word
for every context it appears in. BERT models and their derivatives are most often
used as a closed system, where the entire model is fine-tuned on a downstream
task. ELMo models, on the other hand, generate word vectors for each word
occurrence, and these vectors are then used for training various NLP models.
The ELMo neural network model consists of three layers of neurons. Embeddings
are typically a concatenation of network weights in all three layers. BERT models
consist of 12 or 24 layers, and vector extraction typically uses a combination of
the last four layers. For BERT, this approach may lose a lot of information;
therefore, the extracted BERT vectors are rarely used and are less successful
than ELMo vectors, see, e.g., [38]. A smaller size of ELMo models, compared to
BERT, also offers better explainability of the end-task models.

Modern word embedding spaces exhibit similar structures across languages,
even when considering distant language pairs like English and Vietnamese [25].
This means that embeddings independently produced from monolingual text
resources can be aligned, resulting in a common cross-lingual representation,
called cross-lingual embeddings, which allows for fast and effective integration
of information in different languages. For low-resource languages, training NLP
models can be difficult because of a lack of data for a specific task. The idea of
cross-lingual alignment is to use an already existing model trained on a high-
resource language and map the word embeddings from a low-resource language
vector space to the high-resource language vector space. That way, the words
with the same meaning in both languages have very similar vectors, which is not
the case before the alignment procedure.

Cross-lingual approaches can be sorted into several groups. The first group
of methods uses monolingual embeddings with (an optional) help from bilingual
dictionaries to align the embeddings. These methods are mostly used for static
embeddings, such as word2vec and fastText. The second group of approaches
uses bilingually aligned (comparable or even parallel) corpora for joint construc-
tion of embeddings in all involved languages. The third type of approach is based
on large pretrained multilingual masked language models such as BERT [11]. In
this work, we present an extension of the first group of approaches to contextual
embeddings. We focus on improvements of cross-lingual mappings for ELMo con-
textual embeddings. Currently, the most successful alignment methods assume
that the embedding spaces in different languages are isomorphic [6, 9], which is
generally not the case. Researchers have observed that the monolingual embed-
ding spaces of two different languages are not completely isomorphic, which is
especially true for distant languages [30, 39]. As a result, many of these methods
are unstable or unsuccessful when confronted with distant language pairs.

We propose novel methods for isomorphic and non-isomorphic alignment of
contextual embeddings, such as ELMo. For that purpose, we first construct novel
contextual mapping datasets based on parallel corpora and dictionaries. In a
novel non-isomorphic approach, we use generative adversarial networks (GANs)
[16], that produce nonlinear mappings between the embedding spaces.
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The main contributions of this work are i) a novel approach to create datasets
needed in the cross-lingual alignment of contextual embeddings, ii) novel isomor-
phic and non-isomorphic cross-lingual alignments of ELMo embeddings, iii) their
evaluation on nine low-resource languages and two downstream tasks, named en-
tity recognition (NER) and dependency parsing (DP). The results show the suc-
cessful cross-lingual transfer of tested approaches. The best alignment method
is dependent on the task.

The paper is split into four further sections. In Section 2, we present the
background on cross-lingual alignment and ELMo and cover related work on
cross-lingual embeddings. The construction of special datasets used for training
the alignments of contextual embeddings is presented in Section 3. In Section 4,
we describe the proposed ELMoGAN alignment method. In Section 5, we eval-
uate the proposed alignment methods on two downstream tasks. We summarize
our work in Section 6 and discuss opportunities for further work.

2 Background and related work

Word embeddings represent each word in a language as a vector in a high di-
mensional vector space so that the relations between words in a language are
reflected in their corresponding embeddings. Cross-lingual embeddings attempt
to map words represented as vectors from one vector space to the other so that
the vectors representing words with the same meaning in both languages are as
close as possible. Søgaard et al. [40] present a detailed overview and classification
of cross-lingual methods.

In Section 2.1, we describe how two monolingual embedding spaces can be
aligned with the optional help from a bilingual dictionary. This work’s main focus
is extending existing approaches that work with non-contextual embeddings to
contextual ELMo embeddings. For this reason, we present the background on
ELMo contextual embeddings in Section 2.2. The related work on non-contextual
mappings is given in Section 2.3, and on contextual mapping in Section 2.4.

2.1 Alignment of monolingual embeddings

Cross-lingual alignment methods take precomputed word embeddings for each
language and align them with the optional use of bilingual dictionaries. Two
types of monolingual embedding alignment methods exist. The first type of ap-
proaches map vectors representing words in one of the languages into the vector
space of the other language (and vice-versa). The second type of approaches
maps embeddings from both languages into a common vector space. The goal of
both types of alignments is the same: the embeddings for words with the same
meaning must be as close as possible in the final vector space. A comprehensive
summary of existing approaches can be found in works by Artetxe et al. [5].
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The open source implementation of the method described by Artetxe et al.
[6, 5], named vecmap1, is able to align monolingual embeddings either using
supervised, semi-supervised or unsupervised approach.

The supervised approach requires a large bilingual dictionary, which is used
to match embeddings of the same words. Then embeddings are aligned using the
Moore-Penrose pseudo-inverse, which minimizes the sum of squared Euclidean
distances. The algorithm always converges but can be caught in a local maximum
when the initial solution is poor. To overcome this, several methods (stochastic
dictionary introduction, frequency-based vocabulary cutoff, etc.) are used that
help the algorithm to climb out of local maximums. A more detailed description
of the algorithm is given in [6].

The semi-supervised approach uses a small initial seeding dictionary, while
the unsupervised approach is run without any bilingual information. The latter
uses similarity matrices of both embeddings to build an initial dictionary. This
initial dictionary is usually of poor but sufficient quality for later processing.
After the initial dictionary (either by seeding dictionary or using similarity ma-
trices) is built, the iterative algorithm is applied. The algorithm first computes
optimal mapping using the pseudo-inverse approach for the given initial dictio-
nary. Then optimal dictionary for the given embeddings is computed, and the
procedure is repeated with the new dictionary.

When constructing mappings between embedding spaces, entries of a bilin-
gual dictionary can be used as anchors for the alignment map for supervised
and semi-supervised approaches. Lately, researchers have proposed approaches
that do not require the use of a bilingual dictionary but rely on an adversarial
approach [9] or use the frequencies of the words [6] to find a required transfor-
mation. These are called unsupervised approaches.

The Facebook research project MUSE2 can find a cross-lingual map with
the use of a bilingual dictionary (supervised) or without one (unsupervised ap-
proach). The unsupervised approach works by using adversarial training to find
the starting linear mapping. A synthetic dictionary is extracted from this map-
ping, which is used to fine-tune the starting mapping using the Procrustes ap-
proach, described in detail by Conneau et al. [9].

2.2 ELMo contextual embeddings

ELMo (Embeddings from Language Models) embedding [31] is an example of
a state-of-the-art pre-trained transfer learning model. The first layer is a CNN
layer, which operates on a character level. It is context-independent, so each
word always gets the same embedding, regardless of its context. It is followed by
two biLM (bidirectional language model) layers. A biLM layer consists of two
concatenated LSTMs [18] . In the first LSTM, we try to predict the following
word, based on the given past words, where the embeddings from the CNN
layer represent each word. In the second LSTM, we try to predict the preceding

1 https://github.com/artetxem/vecmap
2 https://github.com/facebookresearch/MUSE
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word based on the given following words. It is equivalent to the first LSTM, just
reading the text in reverse.

The actual embeddings are constructed from the internal states of a bidi-
rectional LSTM neural network. Higher-level layers capture context-dependent
aspects, while lower-level layers capture aspects of syntax [31]. To train the ELMo
network, one puts one sentence at a time on the input. The representation of
each word depends on the whole sentence, i.e. it reflects the contextual features
of the input text and thereby polysemy of words. For an explicit word represen-
tation, one can use only the top layer. Still, more frequently, one combines all
layers into a vector. The representation of a word or a token tk at position k is
composed from

Rk = {xLM
k ,
−→
h

LM

k,j ,
←−
h

LM

k,j | j = 1, . . . , L} (1)

where L is the number of layers (ELMo uses L = 2), index j refers to the level of
bidirectional LSTM network, x is the initial token representation (either word or
character embedding), and hLM denotes hidden layers of forward or backward
language model.

In NLP tasks, any set of these embeddings may be used; however, a weighted
average is usually used. The weights of the average are learned during the training
of the model for the specific task. Additionally, an entire ELMo model can be
fine-tuned on a specific end task.

At the time of its introduction, ELMo has been shown to outperform previous
pre-trained word embeddings like word2vec and GloVe on many NLP tasks,
e.g., question answering, named entity extraction, sentiment analysis, textual
entailment, semantic role labeling, and coreference resolution [31]. Later, BERT
models turned out to be even more successful on these tasks. However, concerning
the quality of extracted vectors, ELMo can be advantageous as its information
is condensed in only three layers. In comparison, the information in multilingual
BERT is scattered over 14 layers.

2.3 Related work on non-contextual mappings

Cross-lingual alignment methods align precomputed monolingual word embed-
dings from two or more languages. The word vectors from all the languages
are mapped into a common vector space. This can be the same vector space as
one of the original monolingual embeddings or a completely independent vector
space. These methods aim to represent the words with the same meaning in dif-
ferent languages with as similar vectors as possible. Concerning the data used,
the alignment methods can be split into supervised and unsupervised methods.
Supervised methods determine the alignment of the embeddings with the use
of bilingual dictionaries. Unsupervised methods do not use any bilingual data.
Conneau et al. [10] trained the unsupervised alignment using adversarial train-
ing. Artetxe et al. [6] first constructed a low-quality seed dictionary using the
assumption that the two vector spaces are isometric and then iteratively updated
the mapping and dictionary until convergence.
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Artetxe et al. [5] comprehensively summarize existing linear methods, show-
ing that the state-of-the-art linear alignment methods can be summarized as an
orthogonal mapping. The difference between various methods is solely due to
different approaches to vector manipulation (such as normalization, whitening,
etc.) before the mapping extraction.

Nakashole and Flauger [27] show that, in a small neighborhood, linear map-
ping methods work well; however, the linearity assumption does not hold in
general, especially for distant languages [30]. A few nonlinear alignment meth-
ods have been proposed. Lu et al. [24] trained nonlinear mapping using Deep
Canonical Correlation Analysis (DCCA) [4], which is an expanded version of
a linear Canonical Correlation Analysis (CCA) method, using deep neural net-
works. They showed that DCCA performs better than linear CCA. Recently,
Zhao and Gilman [44] proposed a nonlinear mapping method, using kernel CCA
(KCCA). KCCA projects the vectors into a higher dimensional space and then
performs CCA in the new vector space. Zhao and Gilman [44] report that DCCA
has to fine-tune many hyper-parameters and show that KCCA outperforms both
DCCA and CCA, especially when data is scarce. In contrast, Lu et al. [24] ob-
serve that DCCA scales better with data size than KCCA.

Conneau et al. [10] used the adversarial training based on generative adver-
sarial networks (GAN) to train a linear mapping between vector spaces. Yang
et al. [43] have used full GAN models for neural machine translation. Fu et al.
[15] trained a bidirectional GAN for cross-lingual alignment of sentence embed-
dings, improving the results over linear and nonlinear state-of-the-art-methods
on sentence alignment task.

2.4 Related work on contextual mappings

All the above work only concerned static embeddings, not dynamic, contextual
embeddings. Schuster et al. [36] produced cross-lingual alignments of contextual
ELMo embeddings. While each occurrence of a word in contextual embeddings
is represented by a different vector, Schuster et al. [36] hypothesized that in
these vectors form clusters. Based on this assumption, they assigned each word
a single static vector by calculating the average vector over all word occurrences
in a large corpus. They used a linear MUSE method to calculate the alignments
of the averaged vectors. This approach’s problem is the assumption of isomorphic
spaces and loss of information if this assumption is not true in the local context.

Aldarmaki and Diab [3] used parallel corpora to produce the embedding vec-
tors. They aligned the corpora on the word level, using Fast Align [14], calculated
the ELMo embeddings on the aligned corpora, and extracted a dictionary from
the word-level alignments. Their approach showed good results in a sentence
translation retrieval task. They measured the accuracy of retrieving the correct
translation from the target side of a test parallel corpus using nearest neigh-
bor search and cosine similarity. They applied their approach to three languages
(English, German, Spanish). This approach is similar to the linear mappings
applied to ELMo, which we describe in Section 4.3. The difference is that we use
much larger dictionaries and test on many more language pairs.
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3 Datasets for alignment of contextual embeddings

This section explains how we generated training datasets required for cross-
lingual alignment of contextual ELMo embeddings. We also present the language
resources we used in the creation of the dataset.

Supervised cross-lingual vector alignment approaches assume a bilingual dic-
tionary is provided, where each word from the dictionary has its own embedding
vector. For static, non-contextual embeddings this is straight-forward. For con-
textual embeddings, the word vector depends on the context the word appears
in. For every context, the word gets a different vector. Schuster et al. [36] solved
this by averaging all the vectors of a given word, as described in Section 2. Some
information is lost when using this approach, as words have multiple meanings.
For example, the word “bark” can refer to the sound a dog makes, a sailing boat,
or the outer part of a tree trunk. Furthermore, two meanings may be represented
with one word in one language but with two different words in another language.

We solve this issue by separately aligning each occurrence of a word. We start
with a parallel corpus, aligned on a paragraph-level to have matching contexts
in two languages. Let i indicate the index of a context from a parallel corpus
P . Let A and B represent the first and the second language in a language pair.
Then PA

i is the i-th paragraph/context from corpus P in language A. Given a
bilingual dictionary D, let j indicate the index of a word pair in the dictionary
so that the dictionary is composed of pairs (DA

j , D
B
j ),∀j ∈ ‖D‖.

We construct our dataset by parsing the parallel corpus. For each word a ∈
PA
i , we check whether its lemma appears in DA. If it does, given its dictionary

index j, we check whether DB
j is a lemma of any word from PB

i . If it is, we add a

tuple (iDA
j , iD

B
j , e(iD

A
j , P

A
i ), e(iDB

j , P
B
i )) to our dataset, where e(iDA

j , P
A
i ) and

e(iDB
j , P

B
i )) are ELMo embeddings of the two dictionary words iDA

j and iDB
j ,

computed in the context Pi for each of the languages, respectively. We considered
at most 20 different contexts of each lemma to not overwhelm the dataset with
frequent words (such as stop words). For lemmatization of the corpora, we used
the Stanza tool [34]. Note that we only used lemmatized corpora for dictionary
look-up; for generating the embedding, we used the non-lemmatized corpora.

As we explained in Section 2.2, ELMo models are deep neural networks with
three hidden layers. The first layer is non-contextual CNN, followed by two
contextual biLSTM layers. The final embedding vectors are constructed from
vectors of all three layers, The first vector is contextually independent, while
the second and third are contextually dependent. In our cross-lingual alignment
approaches for ELMo, we align vectors from each of the three layers separately.
Thus, we need a separate dataset for each layer. We created two such contextual
datasets for each language pair, one for each of the contextual ELMo layers. For
the non-contextual ELMo layer, we produce embeddings for every word pair in
the bilingual dictionary. As the non-contextual ELMo vectors are the same for
all word contexts, the size of that dataset is identical to the bilingual dictionary
size.

We split the created datasets into a training and evaluation part. We sep-
arately split data for each language pair and each ELMo layer. The train part
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has 98.5% of word vector pairs, and the evaluation part has 1.5% of word vector
pairs.

In our work, we considered eleven language pairs from nine different lan-
guages. The language pairs along with the sizes of bilingual dictionaries, parallel
corpora, and the final training dataset are presented in Table 1. For English, we
used the original English 5.5B ELMo model3. For Russian, we used the ELMo
model trained by DeepPavlov4 on the Russian WMT News. For other languages,
we used ELMo models trained by Ulčar and Robnik-Šikonja [42].

Table 1: The sizes of dictionaries and parallel corpora used in the creation of
a dataset for contextual mappings, as well as the size of the resulting dataset
for alignment of ELMo embeddings. The sizes of dictionaries are reported in the
number of word pairs, the sizes of parallel corpora in the number of matching
contexts, and the sizes of resulting datasets in the number of matched words in
matched sentence pairs. The Type column describes the dictionary creation ap-
proach: “direct“ means that the dictionary was created directly from wiktionary,
“triang“ means that the dictionary was created from wiktionary using triangu-
lation via English, and “OES“ stands for the Oxford English-Slovene dictionary.

Language pair Type Dictionary Parallel corpus ELMo dataset

English-Estonian direct 11 022 12 486 898 77 800
English-Finnish direct 89 307 27 281 566 283 000
English-Croatian direct 3448 35 131 729 44 800
English-Lithuanian direct 13 960 1 415 961 62 800
English-Latvian direct 10 224 519 553 43 800
English-Russian direct 103 850 25 910 105 363 800
English-Slovenian direct 9634 19 641 457 89 800
English-Slovenian OES 182 787 19 641 457 294 318
English-Swedish direct 51 961 17 660 152 270 000
Estonian-Finnish direct 2191 9 504 879 12 800
Estonian-Finnish triang 43 313 9 504 879 78 200
Croatian-Slovenian direct 266 15 636 933 3400
Croatian-Slovenian triang 3669 15 636 933 31 600
Lithuanian-Latvian direct 2478 219 617 11 200
Lithuanian-Latvian triang 14 545 219 617 28 200

We used the OpenSubtitles parallel corpora5 [22] from the Opus web page6

for each pair of languages. The dictionaries we used are bilingual dictionaries
extracted from wiktionary, using wikt2dict7 tool [1]. The tool allows for direct
dictionary extraction, as well as triangulation via a third language. In the tri-

3 https://allennlp.org/elmo
4 https://github.com/deepmipt/DeepPavlov
5 https://www.opensubtitles.org/
6 http://opus.nlpl.eu
7 https://github.com/juditacs/wikt2dict
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angulation case, given three languages, A, B and C, we construct a bilingual
dictionary for languages A and B, so that for every word a ∈ A, we find its
translation c ∈ C from A − C dictionary. We then search for the translation of
the word c in language B in the C−B dictionary. We label this translated word
b. The dictionary created using triangulation consists of pairs a− b.

The dictionaries made using the wikt2dict tool are noisy, so we manually fil-
tered them. We replaced the accented vowels with their non-accented variants in
languages that do not use accented letters for vowels (e.g., Slovene and Russian).
We removed the extra non-alphabetic characters, such as hash symbol, brackets,
pipe, etc. We also removed all the entries which contained multiple-word terms.
We leave the extension to the alignment of multi-word terms to further work.

We used direct bilingual dictionaries for all language pairs, where one of the
languages was English. We used direct dictionaries and dictionaries created with
triangulation via English for all the pairs where both languages are not En-
glish. For the English-Slovene pair, we also used a large, high quality, handmade
proprietary Oxford English-Slovene dictionary.

4 Contextual alignments

This section first describes our proposed ELMoGAN method for nonlinear cross-
lingual alignment of contextual ELMo embeddings. In Section 4.1, we describe
the architecture of our model, and in Section 4.2, we present training of the
contextual alignments. Based on the constructed contextual alignment datasets,
it is also possible to align contextual embeddings with classical linear mappings.
We describe this approach in Section 4.3.

4.1 Architecture of ELMoGAN

Generative Adversarial Networks (GANs) [16] consist of two connected neural
models, a generator and a discriminator. The two models are trained simultane-
ously via an adversarial process. The discriminator attempts to discern whether
the data passed to its input is real or fake (i.e. artificially generated). At the
same time, the generator attempts to generate artificial data, which can fool
the discriminator. GANs play a zero-sum game, where the discriminator’s suc-
cess means the generator’s failure and vice versa. By simultaneously training
both networks, they both improve. GANs are mostly used on images, where the
described process can lead to compelling new generated images.

Following the success of GANs in neural machine translation [43] and cross-
lingual embeddings alignment [9, 15], we propose a novel supervised nonlinear
mapping method using bidirectional GANs. We based our contextual alignment
method, called ELMoGAN, on the model of Fu et al. [15]. Contrary to Fu et al.
[15], who only used their method with non-contextual fastText embeddings [8]
to align sentences, we align contextual ELMo embeddings [31], which is only
possible by constructing a special contextual mapping datasets, described in
Section 3.

ICT-29-2018 D1.6: Final cross-lingual embeddings

50 of 114
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As illustrated in Figure 1, the mapping GAN comprises the generator mod-
ule and discriminator module. The generator module contains two generators
that map vectors from one vector space to the other. Specifically, for a pair of
languages L1 and L2, one generator will map from L1 to L2, and the second will
map from L2 to L1. The two generators are completely independent of one an-
other, and they do not share the data during training. The discriminator module
contains two discriminators. The first discriminator tries to predict whether a
given pair of vectors represent the same token, i.e. if the first vector represents
the word x in L1 and the second vector represents the translation of the word
x in L2. The second discriminator attempts to learn the difference between the
direction of mapping. For a given pair of vectors, it predicts whether they are a
vector from L1 and its mapping to L2 or a vector from L2 and its mapping to
L1.

𝒙𝒙
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𝒚𝒚
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Fig. 1: The schema of the GAN, proposed by Fu et al. [15] for sentence alignment.
The image is taken from that source.

Compared to the ABSent model by Fu et al. [15], in ELMoGAN, we increased
the sizes of all the hidden layers in generators and discriminators. We also sig-
nificantly lowered the learning rate as we achieved poor results with the learning
rate used by Fu et al. [15]. Both generators in ELMoGAN have the same archi-
tecture: the input layer is followed by three fully connected feed-forward layers of
2048, 4096, and 2048 nodes. We used the ReLU activation function for all three
layers. We added a batch normalization layer between each fully connected layer.
The output layer has the same size as the input layer. It uses hyperbolic tangent
as the activation function so that the output is between −1 and +1. Both dis-
criminators also have the same architecture. We first concatenate the two input
vectors, then feed them to three consecutive fully connected feed-forward layers
with leaky ReLU (α = 0.2). The output layer is a single neuron with the sigmoid
activation.

4.2 Training of ELMoGAN

We jointly trained the generator and discriminator modules using the parallel
ELMo vectors datasets, described in Section 3. We trained ELMoGAN with the
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batch size of 256, Adam optimizer with learning rate 2× 10−5, and learning rate
decay 10−5. For each language pair, we trained three mapping models, one for
each of the ELMo layers. For all three models, we used the same settings. We
feed the generators the word vectors from our training dataset. On the input
of the first generator are the vectors from L1, and on the output, there are the
matching vectors from L2; vice-versa is true for the second generator. We feed
the first discriminator various pairs of vectors; some represent the same token
(True), others represent two different tokens or no token at all (False). For the
vector pairs labeled as True, we take the matching pairs from our train dataset.
For the vector pairs labeled as False, we have three types of pairs. The first type
is two randomly selected vectors from our dataset (one from each vector space).
The second type is vectors from L1 and their mappings, using generator one.
The third type is vectors from L2 and their mappings, using generator two.

We produced two different versions of the ELMoGAN, based on the number
of iterations the model was trained for. The first version (ELMoGAN-10k) was
trained for a fixed number of 10 000 iterations for each layer of each language
pair. For the second version (ELMoGAN-O), we trained models with several
different numbers of iterations. We evaluated them on a dictionary induction
task and selected the number of iterations that gave the best result. The details
of selecting the number of iterations are presented in Appendix A.

4.3 Cross-lingual linear mappings for contextual embeddings

It is possible to compute cross-lingual mappings between contextual embeddings
based on the standard assumption that the aligned spaces are largely isomor-
phic. Below, we shortly describe methods belonging to this type of alignment
approach.

With a large enough collection of words in matching contexts (as described
in Section 3), we compute their contextual embedding vectors and align them
with any of the non-contextual mapping methods. We use two such methods,
the vecmap library [5], which aligns both embedding spaces, and the MUSE
library [9], which only aligns target vectors and is therefore computationally
more efficient. As discussed in Section 2.4, a similar approach was proposed
by Aldarmaki and Diab [3] but did not use large contextual datasets based on
high-quality dictionaries as we did.

5 Evaluation

We evaluated the ELMoGAN-10k and ELMoGAN-O methods, trained as de-
scribed in Section 4.2 on two downstream tasks, named entity recognition and
dependency parsing. The results are presented separately for each task in Sec-
tions 5.1 and 5.2. We compare these methods with two linear mapping methods,
MUSE [10] and Vecmap [6, 5], adapted for contextual embeddings, as described
in Section 4.3. These are linear cross-lingual mapping methods that assume
isomorphic translation between vector spaces. For training of alignments, we
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used the same datasets, described in Section 3. In all of our experiments, we
use embeddings mapping from an evaluation to train language, i.e. we map the
embeddings of the language used for the evaluation to the vector space of the
language, which was used during the training of the model.

To better interpret the obtained results, we conducted two further ablation
studies. In Figure 3, we tested the importance of alignment dataset size. We used
the English-Slovene pair, where we have available a large, high-quality propri-
etary Oxford English-Slovene dictionary, instead of publicly available wiktionary.
In Section 5.4, we tested different variants of the Vecmap alignment approach
to check if we can avoid transforming both the source and target vector space
and thereby significantly speed-up the approach.

5.1 Named Entity Recognition

Named entity recognition (NER) is an information extraction task that seeks
to locate and classify named entities mentioned in unstructured text into pre-
defined categories such as the person names, organizations, locations, medical
codes, time expressions, quantities, monetary values, etc. The labels in the used
NER datasets are simplified to a common label set of four labels present in all the
addressed working languages. These labels are a person, location, organization,
and other. The latter encompasses all named entities that do not fall in one of
the three mentioned classes and all the tokens that are not named entities. The
datasets used in the evaluation on the NER task are shown in Table 2, along
with some basic statistics of the datasets.

Table 2: The collected datasets for NER task and their properties: number of
sentences, number of tagged words, availability, and link to the corpus location).

Language Corpus Sentences Tags Avail. Location

Croatian hr500k [23] 25000 29000 public link
English CoNLL-2003 NER [41] 21000 44000 public link
Estonian Estonian NER corpus [21] 14000 21000 public link
Finnish FiNER data [35] 14500 17000 public link
Latvian LV Tagger train data 10000 11500 public link
Lithuanian TildeNER 5476 7024 limited NA
Slovene ssj500k [20] 9500 9500 public link
Swedish Swedish NER 8500 7500 public link

We present the results using the Macro F1 score, which is an average of F1

scores for each class we are trying to predict, excluding the class Other (i.e. not
a named entity).

The upper part of Table 3 shows a typical cross-lingual transfer learning sce-
nario, where the model is transferred from resource-rich language (English) to
less-resourced languages. In this case, the non-isomorphic ELMoGAN methods,
in particular the ELMoGAN-10k variant, are superior to isomorphic Vecmap
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Table 3: Comparison of different methods for cross-lingual mapping of contextual
ELMo embeddings, evaluated on the NER task. The best Macro F1 score for each
language pair is in bold. The “Reference“ column represents a direct learning
on the target language without cross-lingual transfer. The upper part of the
table contains a scenario of cross-lingual transfer from English to a less-resourced
language, and lower part of the table shows a transfer between similar languages.
Source. Target. Dictionary Vecmap ELMoGAN-O ELMoGAN-10k MUSE Reference

English Croatian direct 0.385 0.279 0.345 0.024 0.810
English Estonian direct 0.554 0.682 0.737 0.284 0.895
English Finnish direct 0.672 0.708 0.788 0.229 0.922
English Latvian direct 0.499 0.650 0.630 0.216 0.818
English Lithuanian direct 0.498 0.476 0.575 0.208 0.755
English Slovenian direct 0.548 0.588 0.664 0.060 0.850
English Swedish direct 0.786 0.686 0.797 0.568 0.852

Croatian Slovenian direct 0.387 0.279 0.250 0.418 0.850
Croatian Slovenian triang 0.731 0.365 0.420 0.592 0.850
Estonian Finnish direct 0.517 0.288 0.302 0.278 0.922
Estonian Finnish triang 0.779 0.705 0.677 0.296 0.922
Finnish Estonian direct 0.477 0.263 0.331 0.506 0.895
Finnish Estonian triang 0.581 0.563 0.595 0.549 0.895
Latvian Lithuanian direct 0.423 0.376 0.367 0.345 0.755
Latvian Lithuanian triang 0.569 0.632 0.637 0.378 0.755
Lithuanian Latvian direct 0.263 0.305 0.318 0.604 0.818
Lithuanian Latvian triang 0.359 0.691 0.713 0.710 0.818
Slovenian Croatian direct 0.361 0.260 0.328 0.485 0.810
Slovenian Croatian triang 0.566 0.490 0.427 0.518 0.810

and MUSE approaches. In this scenario, ELMoGAN-10k is always the best or
close to the best mapping approach. This is not always the case in the lower
part of Table 3, which shows the second most important cross-lingual transfer
scenario: transfer between similar languages. In this scenario, ELMoGAN is the
best in three language pairs. Isomorphic Vecmap and MUSE perform best in
nine language pairs (five times Vecmap and four times MUSE). We hypothesize
that the reason for isomorphic mappings’ better performance is the similarity of
tested language pairs and less violation of isomorphism assumption the Vecmap
and MUSE method make. The results of the MUSE method support this hy-
pothesis. While MUSE performs worst in most cases of transfer from English,
the performance gap is smaller for transfer between similar languages. MUSE
is sometimes the best method for similar languages, but the results of MUSE
fluctuate greatly between language pairs. The second possible factor explaining
the results is the quality of the dictionaries, which are in general better for com-
binations involving English. In particular, dictionaries obtained by triangulation
via English are of poor quality, and non-isomorphic transformation might be
more affected by imprecise anchor points.

In general, even the best cross-lingual prediction models lag behind the ref-
erence model without cross-lingual transfer. The differences in Macro F1 score
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are small for some languages (e.g., 5.5% for English-Swedish), but they are sig-
nificantly larger for most of the languages.

5.2 Dependency parsing

Dependency parsing task (DP) constructs a dependency tree of a given sentence.
In DP, all the words in a sentence are arranged into a hierarchical tree based
on their semantic dependencies. Each word has at most one parent node, and
only the root word has no parent. A word can have multiple children nodes. In
addition to predicting the tree’s structure, the task is also to label the hierarchical
dependencies.

Table 4: Dependency parsing datasets and their properties: the treebank, number
of sentences, number of tokens, and information about the size of the split.

Language Treebank Tokens Sentences Train Validation Test

Croatian SET [2] 199409 9010 6914 960 1136
English EWT [37] 254855 16622 12543 2002 2077
Estonian EDT [26] 438171 30972 24633 3125 3214
Finnish TDT [17, 33] 202697 15135 12216 1364 1555
Latvian LVTB [32] 220536 13643 10156 1664 1823
Lithuanian ALKSNIS [7] 70051 3642 2341 617 684
Russian GSD 98000 5030 3850 579 601
Slovene SSJ [12, 20] 140670 8000 6478 734 788
Swedish Talbanken [28] 96858 6026 4303 504 1219

As the dependency parsing architecture, we use the SuPar tool by Yu Zhang8,
which is based on the deep biaffine attention [13]. We modified the SuPar tool to
accept ELMo embeddings on the input; specifically, we used the concatenation
of the three ELMo layers. We made the modified code publicly available9. We
trained the parser for 10 epochs, using datasets in nine languages (Croatian,
English, Estonian, Finnish, Latvian, Lithuanian, Russian, Slovene, and Swedish).
The datasets are obtained from the Universal Dependencies [29] version 2.3. The
datasets used and their basic statistics are shown in Table 4.

We used two evaluation metrics in the dependency parsing task, the unla-
belled and labeled attachment scores (UAS and LAS) on the test set. The UAS
and LAS are standard accuracy metrics in DP. The UAS score is defined as the
proportion of tokens that are assigned the correct syntactic head. The LAS score
is the proportion of tokens assigned the correct syntactic head and the correct
dependency label [19].

The Vecmap mapping method outperforms both ELMoGAN methods on
all language pairs in this task. Larger dictionaries, created with triangulation,

8 https://github.com/yzhangcs/parser
9 https://github.com/MatejUlcar/parser/tree/elmo
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Table 5: Comparison of different contextual cross-lingual mapping methods on
dependency parsing task. Results are reported as unlabeled attachments score
(UAS) and labeled attachment score (LAS).The column “Direct“ stands for
direct learning on the target (i.e. evaluation) language without cross-lingual
transfer. The languages are represented with their international language codes
ISO 639-1.
Train Eval. Vecmap ELMoGAN-O ELMOGAN-10k MUSE Direct
lang. lang. Dict. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

en hr direct 73.96 60.53 69.75 50.20 65.66 38.95 71.01 54.89 91.74 85.84
en et direct 62.08 40.62 52.75 30.05 43.48 22.97 58.76 34.07 89.54 85.45
en fi direct 64.40 45.32 49.41 29.35 42.54 22.69 55.03 37.61 90.83 86.86
en lv direct 77.84 65.97 68.43 46.09 67.30 38.38 76.26 63.45 88.85 82.82
en lt direct 67.92 39.62 56.60 30.19 62.26 24.53 66.04 37.74 55.05 24.39
en ru direct 72.00 16.62 66.46 9.23 61.85 8.31 / / 89.33 83.54
en sl direct 79.01 59.84 68.38 48.87 64.98 44.86 77.18 56.53 93.70 91.39
en sv direct 82.08 72.74 74.45 60.39 75.14 60.69 82.17 72.78 89.70 85.07

hr sl direct 85.47 72.70 54.06 34.17 55.34 32.77 83.45 69.08 93.70 91.39
hr sl triang 87.70 76.51 73.23 60.95 70.86 54.62 87.70 76.40 93.70 91.39
et fi direct 79.14 66.09 52.97 34.25 49.68 28.37 76.66 60.01 90.83 86.86
et fi triang 80.94 67.35 54.91 31.94 54.40 26.91 76.96 63.37 90.83 86.86
fi et direct 75.81 57.32 54.23 34.19 54.64 32.90 74.96 58.14 89.54 85.45
fi et triang 79.04 61.86 61.19 39.46 56.41 32.58 76.74 60.27 89.54 85.45
lv lt direct 72.38 51.43 64.76 45.71 61.90 35.24 67.62 50.48 55.05 24.39
lv lt triang 75.24 50.48 68.57 39.05 69.52 34.29 74.29 53.33 55.05 24.39
lt lv direct 63.68 25.88 43.46 11.99 52.43 13.54 61.05 18.87 88.85 82.82
lt lv triang 61.86 25.94 43.13 9.23 52.43 13.68 57.95 17.45 88.85 82.82
sl hr direct 77.89 62.58 49.36 29.93 51.01 32.03 72.87 55.70 91.74 85.84
sl hr triang 81.32 67.51 75.02 56.90 69.78 48.94 78.63 63.96 91.74 85.84

performed better than smaller direct dictionaries, despite the triangulated dictio-
naries being of worse quality. Language pairs with similar languages performed
better than when the training language was English. The exception is the eval-
uation on Latvian, where the model trained on English performed better than
the model trained on Lithuanian. For evaluation on Lithuanian, both models,
trained on English and Latvian, outperform the Lithuanian model. This indicates
a poorly trained Lithuanian model, which explains the aforementioned exception
in the evaluation of Latvian. The Lithuanian model’s low performance can be
partially explained by the small size of the Lithuanian treebank dataset, as seen
in Table 4.

The MUSE method is stable on the DP task, which is not the case on the
NER task. MUSE performs on par with Vecmap on a few language pairs. Still,
its results lie somewhere between Vecmap and ELMoGAN on average.

5.3 Dataset size importance

We tested the importance of dataset size on the English-Slovene language pair. In
the contextual dataset creation, we used a large, high-quality Oxford English-
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Slovene dictionary instead of wiktionary. We kept all the other resources and
settings the same. We evaluated ELMoGAN-10k on NER and DP tasks using
various sizes of the dataset to train contextual alignments. One of the dataset
sizes is 89 800 entries, which is the same size as the dataset created with a
low-quality Wiktionary dictionary. We included that size for easier comparison
between both dictionaries.

Fig. 2 & Table 6: Comparison of different sizes of cross-lingual contextual
datasets based on different dictionaries used for cross-lingual mapping of con-
textual ELMo embeddings, evaluated on the NER task. LQsize represents the
size of the dataset equal to the size of low quality dictionary (89 800 entries).
The mapping method used was ELMoGAN-10k.
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The results on NER task are shown in Figure 2 and Table 6. When we increase
the size of the dataset, the performance on the NER task improves. The dataset
size matters, and we presume that the performance would further increase with
an even larger dataset. Surprisingly, the results achieved with the dataset of
size 89 800 are slightly worse than the results achieved with the dataset of the
same size, created with a low-quality dictionary (see Table 3). Using the Oxford
English-Slovene dictionary, we achieved F1 score 0.646 when trained on English
and evaluated on Slovene. Using Wiktionary bilingual dictionary, we achieve F1

score 0.664 on the same language pair with the same alignment method.

The results in the DP task show different behavior. At first, the performance
quickly increases with larger datasets, and then it slowly starts to drop (see
Figure 3 and Table 7). The best results are achieved with the dataset of size
20 000 when mapping from English to Slovene. When mapping from Slovene to
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English, datasets of size only 2000 (based on UAS) and 5000 (based on LAS)
achieve the best results.

Fig. 3 & Table 7: Comparison of different sizes of cross-lingual contextual
datasets based on different dictionaries used for cross-lingual mapping of con-
textual ELMo embeddings, evaluated on the DP task. LQsize represents the size
of the dataset based on the low quality dictionary (89 800 entries). We used the
ELMoGAN-10k mapping method.
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en sl 1k 51.13 12.94
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en sl 20k 62.06 36.45
en sl 50k 59.63 37.41
en sl 100k 60.89 36.89
en sl LQsize 60.58 34.84

sl en 1k 55.14 31.87
sl en 2k 59.89 36.41
sl en 5k 62.66 42.27
sl en 10k 62.81 42.85
sl en 20k 64.09 44.53
sl en 50k 63.45 43.93
sl en 100k 63.39 41.50
sl en LQsize 63.30 40.45

The better performance of wiktionary bilingual dictionary over high-quality
Oxford dictionary, when datasets are of the same size, is observed in DP task as
well. On Slovene to English mapping, the dataset from Oxford dictionary scores
60.58% UAS and 34.84% LAS. Wiktionary-based dataset scores 64.98% UAS
and 44.86% LAS.

The results on dataset size and results from Sections 5.1 and 5.2 lead us
to the conclusion that the quality of the dictionary used does not play a large
role. The more important parameter is the size of the dictionary. On the NER
task, larger dictionary sizes always improve results. The DP task results remain
inconclusive, as the larger dictionary created with triangulation outperformed
the smaller direct dictionary for similar language pairs on the DP task.

5.4 Vecmap optimizations

In computing cross-lingual alignments of two languages, the Vecmap method
changes both embedding spaces. This means that we have to train a separate
embedding for each language pair. In our case, we had to train eight different
English models on English data for each downstream task, one for each pair of

ICT-29-2018 D1.6: Final cross-lingual embeddings

58 of 114
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languages, when using Vecmap for alignments. The reason is that the English
vectors change during alignment as well, and we have to apply that change
at the time of training cross-lingual alignment. This considerably slows down
the training and evaluating procedure. We tested several approaches to avoid
retraining separate models, but none was successful. The detailed description of
our experiments is contained in Appendix B.

6 Conclusion

We present ELMoGAN, a novel cross-lingual mapping approach for contex-
tual ELMO embeddings. The approach does not assume isomorphic embedding
spaces and uses GANs to compute the alignments. To construct the mappings,
we had to build contextual embeddings datasets for eleven language pairs. We
constructed a matching set of contextual word embeddings for each language pair
and each ELMo layer from parallel corpora and bilingual dictionaries. We used
these new datasets to train the mappings with the proposed nonlinear mapping
method ELMoGAN.

ELMoGAN is sensitive to the values of training parameters, mostly the learn-
ing rate and the number of iterations, but may bring superior performance com-
pared to isomorphic mappings, especially for aligning more distant language
pairs. To find a set of well-performing hyperparameters, this method has to be
carefully fine-tuned for each task. ELMoGAN method outperformed linear map-
pings on the NER task but performed worse on the DP task. As this approach
is not sufficiently mature, there are still open questions on the methodology for
choosing the right number of iterations for each task; the dictionary induction
task we currently use internally works well for the NER task but seems inappro-
priate for the dependency parsing task where greater emphasis is on syntactic
properties of the language (and not so much on the words as in the NER task).

In further work, we intend to work on a robust method to find hyper-
parameters. We intend to test several more GAN architectures to find a more
robust mapping. Another issue worth investigating is multiple-word terms, which
are not included in current contextual mapping datasets but could be very useful
in tasks requiring their joint recognition.
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A Tuning the number of iterations of ELMoGAN-O

ELMoGAN mapping models have been trained for a different number of itera-
tions for each language pair and each ELMo layer. We have trained all models
for the numbers of iterations set between 6000 and 50 000. We evaluated each
model on the dictionary induction task on the evaluation part of our contextual
mapping dataset, presented in Section 3. We have used the average score of pre-
cision@1, precision@5, and precision@10 for both directions of our bidirectional
mapping model (i.e. from the first to the second language and reverse). The
number of iterations that produced the best result on the evaluation set was
selected as the optimal and was used in the model called ELMoGAN-O in other
evaluations. The selected numbers of iterations are presented in Table 8.

We opted not to check more than 50 000 iterations because the precision on
the evaluation task rises quite quickly and then saturates or drops. For example,
on the English-Finnish pair, the selected iterations were 40 000 for layer 1 and
50 000 for layers 2 and 3. Still, these numbers do not fully reflect the optimal
behavior for all languages and dictionaries. The precision scores for different
iterations for this language pair are shown in Figure 4.

B Vecmap speed-up experiments

As explained in Section 5.4, the Vecmap method changes both languages’ em-
bedding spaces when computing the cross-lingual alignments. This means that
we have to train a separate embedding for each language pair; in our case, we
had to train eight different English models, one for each pair of languages. This
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Table 8: The number of iterations ELMoGAN-O was trained for, for each embed-
ding layer and language pair. The optimal number of iterations was determined
on the dictionary induction task.

Language 1 Language 2 Dictionary Layer 1 Layer 2 Layer 3

English Croatian direct 15000 50000 30000
English Estonian direct 12000 50000 40000
English Finnish direct 40000 50000 50000
English Latvian direct 10000 40000 50000
English Lithuanian direct 30000 50000 40000
English Slovenian direct 30000 50000 25000
English Swedish direct 50000 50000 50000
Croatian Slovenian direct 15000 40000 10000
Croatian Slovenian triangular 25000 50000 25000
Estonian Finnish direct 30000 25000 15000
Estonian Finnish triangular 30000 50000 20000
Latvian Lithuanian direct 25000 40000 30000
Latvian Lithuanian triangular 50000 30000 25000
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Fig. 4: The average precision score on dictionary induction task for English-
Finnish alignment at different numbers of iterations of alignment algorithm.

considerably slows down the training and evaluating procedure. We tested six
different sets of options for the Vecmap method to avoid retraining separate
models. In this experiment, the training language was always English, and we
used the DP task. By default, Vecmap first normalizes both vector sets of a
language pair. Then it calculates the mapping matrix, which maps vectors from
one language to the other language; in our experiment, from each language to
English. Finally, it re-weighs both sets of vectors. In the results below, we denote
this approach as “ELMoVM”. It is identical to how we used the Vecmap method
elsewhere in this paper. We tested five alternative approaches on the DP task;
all of them were unsuccessful. This extra step of mapping both source and target
languages seems to be unavoidable. The results for all the approaches are shown
in Table 9.
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24 Matej Ulčar and Marko Robnik-Šikonja

Table 9: Various options used with Vecmap method on DP task. Train language
is always English.

Eval. ELMoVM et orth nonorm evalnorm def
lang. UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS

hr 73.96 60.53 26.79 1.83 13.22 1.14 17.03 2.29 25.67 6.10 16.54 0.72
et 62.08 40.62 62.08 40.62 11.97 1.21 9.38 0.76 20.05 1.62 13.82 1.53
fi 64.40 45.32 11.38 0.76 15.41 0.49 18.11 0.62 24.50 1.94 18.53 0.83
lv 77.84 65.97 25.32 2.21 12.82 1.26 12.88 0.63 29.10 7.89 20.39 1.96
lt 67.92 39.62 9.43 0.00 7.55 0.00 7.55 0.00 15.09 0.00 11.32 1.89
sl 79.01 59.84 28.92 2.53 13.72 0.87 12.06 0.48 25.22 6.45 14.33 0.83
sv 82.08 72.74 26.23 5.23 13.50 1.46 11.27 0.81 26.45 11.92 15.22 1.41

Table 10: Options used (y) or not used (n) for different alternative methods of
Vecmap mapping.

Method ELMoVM et orth nonorm evalnorm def

Train lang. mapped y y n n n n
Normalization at train time y y n n n n
Eval lang. mapped y y y y y y
Normalization at eval time y y n n y y
Normalization used for mapping calc. y y y n n y

The options for all the approaches are summarized in Table 10. The approach
“et” is identical to ELMoVM, except that we used the English model trained for
Estonian-English pair for all language pairs. The following four approaches do
not alter English vectors in any way. Approach “orth” removes the normaliza-
tion performed during the evaluation, but the normalization was still used for
both languages to calculate the mapping matrix. Method “nonorm” is identical
to “orth”, except that we removed the normalization also during the mapping
matrix calculation. Method “evalnorm” adds the normalization during the eval-
uation but does not use it during the mapping matrix calculation. Finally, the
approach “def” uses the normalization both during the evaluation and mapping
matrix calculation.

ICT-29-2018 D1.6: Final cross-lingual embeddings

65 of 114



Cross-lingual Transfer of  

Sentiment Classifiers 
Marko Robnik-Šikonja1, Kristjan Reba1, Igor Mozetič2 

 

 1University of Ljubljana, Faculty of Computer and Information Science 

 Večna pot 113, SI-1000 Ljubljana, Slovenia 

 marko.robnik@fri.uni-lj.si    kr3377@student.uni-lj.si   

  

  2Jožef Stefan Institute 

 Jamova 39, SI-1000 Ljubljana, Slovenia 

 igor.mozetic@ijs.si 

 

Abstract 

Word embeddings represent words in a numeric space so that semantic relations between words are encoded 

as distances and directions in the vector space. Cross-lingual word embeddings map one language's vector space 

to the vector space of another language or vector spaces of multiple languages to the joint vector space where 

similar words are aligned. Cross-lingual embeddings can be used to transfer machine learning models between 

languages, thereby compensating for insufficient data in less-resourced languages. We use cross-lingual word 

embeddings to transfer machine learning prediction models for Twitter sentiment between 13 languages. We 

focus on two transfer mechanisms that recently show superior transfer performance. The first mechanism uses 

the transfer of trained models whose input is the joint numerical space for many languages as implemented in 

the LASER library. The second mechanism uses large pretrained multilingual BERT language models. Our 

experiments show that the transfer of models between similar languages is sensible, even with no target 

language data. The performance of cross-lingual models obtained with the multilingual BERT and LASER 

library is comparable, and the differences are language-dependent. The transfer with CroSloEngual BERT, 

pretrained on only three languages, is superior on these and some closely related languages. 

  

ICT-29-2018 D1.6: Final cross-lingual embeddings

Appendix B: Cross-lingual Transfer of Sentiment Pre-
dictors

66 of 114



1. INTRODUCTION 

Word embeddings are representations of words in numerical form, as vectors of typically several hundred 

dimensions. The vectors are used as input to machine learning models; for complex language processing tasks, 

these generally are deep neural networks. The embedding vectors are obtained from specialised neural network-

based embedding algorithms, e.g., word2vec (Mikolov et al., 2013) or fastText (Bojanowski et al., 2017). Modern 

word embedding spaces exhibit similar structures across languages, even when considering distant language 

pairs like English and Vietnamese (Mikolov et al., 2013). This means that embeddings independently produced 

from monolingual text resources can be aligned, resulting in a common cross-lingual representation, called 

cross-lingual embeddings, which allows for fast and effective integration of information in different languages. 

There exist several approaches to cross-lingual embeddings. The first group of approaches uses monolingual 

embeddings with the optional help from a bilingual dictionary to align the pairs of embeddings (Artetxe et al., 

2018a). The second group of approaches uses bilingually aligned (comparable or even parallel) corpora to 

construct joint embeddings (Artetxe and Schwenk, 2019). This approach is implemented in the LASER library1 

and is available for 93 languages. The third type of approaches is based on large pretrained multilingual masked 

language models such as BERT (Devlin et al., 2019). In this work, we focus on the second and third group of 

approaches. In particular, from the third group, we apply two variants of BERT  models, the original multilingual 

BERT model (mBERT), trained on 104 languages, and trilingual CroSloEngual BERT (Ulčar and Robnik-

Šikonja, 2020) trained on Croatian, Slovene, and English (CSE BERT).  

Sentiment annotation is a costly and lengthy operation, with a relatively low inter-annotator agreement 

(Mozetič et al., 2016). Large annotated sentiment datasets are, therefore, rare, especially for low-resourced 

languages. The transfer of already trained models or datasets from other languages would be useful. It would 

increase the ability to study sentiment-related phenomena for many more languages than possible today. 

Our study aims to analyse the abilities of modern cross-lingual approaches for the transfer of trained models 

between languages.  

We study two cross-lingual transfer technologies, using a joint vector space computed from parallel corpora 

with the LASER library and multilingual BERT models. The advantage of our study is sizeable comparable 

classification datasets in 13 different languages, which gives credibility and general validity to our findings. 

Further, due to the datasets' size, we can reliably test different transfer modes: direct transfer between languages 

(called a zero-shot transfer) and transfer with enough fine-tuning data in the target language. In the 

experiments, we study two cross-lingual transfer modes based on projections of sentences into a joint vector 

space. The first mode transfers trained models from source to target languages. The model is trained on the 

source language(s) and used for classification in the target language(s). This model transfer is possible because 

texts in all processed languages are embedded into the common vector space. The second mode expands the 

training set with instances from other languages, and then all instances are mapped into the common vector 

space during neural network training. Besides the cross-lingual transfer, we analyse the quality of 

representations for the Twitter sentiment classification and compare the common vector space for several 

languages constructed by the LASER library, multilingual BERT models, and the traditional bag-of-words 

approach. The results show a relatively low decrease in predictive performance when transferring trained 

                                                                 
1 https://github.com/facebookresearch/LASER  
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sentiment prediction models between similar languages and superior performance of multilingual BERT models 

covering only three languages. 

The paper is divided into four more sections. In Section 2, we present background on different types of cross-

lingual embeddings: alignment of monolingual embeddings, building a fixed common vector space for several 

languages, and large pretrained multilingual contextual models. We also discuss related work on Twitter 

sentiment analysis and cross-lingual transfer of the classification model. In Section 3, we present a large 

collection of tweets from 13 languages used in our empirical evaluation, the implementation details of our deep 

neural network prediction models, and the evaluation metrics used. Section 4 contains four series of 

experiments. We first analyse the transfer of trained models between languages from the same language group 

and from a different language group, followed by expanding datasets with instances from other languages. We 

end the experimental part by evaluating representation spaces and comparing the common vector space with 

the multilingual BERT models. In Section 5, we summarise the results and present ideas for further work. 

2. BACKGROUND AND RELATED WORK 

Word embeddings represent each word in a language as a vector in a high dimensional vector space so that 

the relations between words in a language are reflected in their corresponding embeddings. Cross-lingual 

embeddings attempt to map words represented as vectors from one vector space to the other so that the vectors 

representing words with the same meaning in both languages are as close as possible. Søgaard et al. (2019) 

present a detailed overview and classification of cross-lingual methods. 

Cross-lingual approaches can be sorted into three groups, described in the following three subsections. The 

first group of methods uses monolingual embeddings with (an optional) help from bilingual dictionaries to align 

the embeddings. The second group of approaches uses bilingually aligned (comparable or even parallel) corpora 

for joint construction of embeddings in all handled languages. The third type of approach is based on large 

pretrained multilingual masked language models such as BERT (Devlin et al., 2019). The multilingual BERT is 

typically used as a starting model, which is fine-tuned for a particular task without explicitly extracting 

embedding vectors. 

In Section 2.1, we first present background information on the alignment of individual monolingual 

embeddings. We describe the projections of many languages into a joint vector space in Section 2.2, and in 

Section 2.3, we present variants of multilingual BERT models. In Section 2.4, we describe related work on 

Twitter sentiment classification. Finally, in Section 2.5, we outline the cross-lingual transfer of classification 

models.  

2.1. Alignment of monolingual embeddings 

Cross-lingual alignment methods take precomputed word embeddings for each language and align them with 

the optional use of bilingual dictionaries. Two types of monolingual embedding alignment methods exist. The 

first type of approaches map vectors representing words in one of the languages into the vector space of the 

other language (and vice-versa). The second type of approaches maps embeddings from both languages into a 

joint vector space. The goal of both types of alignments is the same: the embeddings for words with the same 

meaning must be as close as possible in the final vector space. A comprehensive summary of existing approaches 

can be found in (Artetxe et al., 2018a). The open-source implementation of the method described in (Artetxe et 

al., 2018a), named vecmap2, can align monolingual embeddings using a supervised, semi-supervised, or 

unsupervised approach. 

                                                                 
2 https://github.com/artetxem/vecmap 
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The supervised approach requires the use of a bilingual dictionary, which is used to match embeddings of 

equivalent words. The embeddings are aligned using the Moore-Penrose pseudo-inverse, which minimises the 

sum of squared Euclidean distances. The algorithm always converges but can be caught in a local maximum. 

Several methods (e.g., stochastic dictionary introduction or frequency-based vocabulary cut-off) are used to help 

the algorithm climb out of local maxima. A more detailed description of the algorithm is given in (Artetxe et al., 

2018b). 

The semi-supervised approach uses a small initial seeding dictionary, while the unsupervised approach is 

run without any bilingual information. The latter uses similarity matrices of both embeddings to build an initial 

dictionary. This initial dictionary is usually of low but sufficient quality for later processing. After the initial 

dictionary (either by seeding dictionary or using similarity matrices) is built, an iterative algorithm is applied. 

The algorithm first computes optimal mapping using the pseudo-inverse approach for the given initial 

dictionary. The optimal dictionary for the given embeddings is then computed, and the procedure is repeated 

with the new dictionary. 

When constructing mappings between embedding spaces, a bilingual dictionary can help as its entries can 

be used as anchors for the alignment map for supervised and semi-supervised approaches. However, lately, 

researchers have proposed methods that do not require a bilingual dictionary but rely on the adversarial 

approach (Conneau et al., 2018) or use the words' frequencies (Artetxe et al., 2018b) to find a required 

transformation. These are called unsupervised approaches. 

2.2. Projecting into a joint vector space 

To construct a common vector space for all the processed languages, one requires a large aligned bilingual or 

multilingual parallel corpus. The constructed embeddings must map the same words in different languages as 

close as possible in the common vector space. The availability and quality of alignments in the training set corpus 

may present an obstacle. While Wikipedia, subtitles, and translation memories are good sources of aligned texts 

for large languages, less-resourced languages are not well-presented and building embeddings for such 

languages is a challenge. 

LASER (Language-Agnostic SEntence Representations) is a Facebook research project focusing on joint 

sentence representation for many languages (Artetxe and Schwenk, 2019). Similarly to machine translation 

architectures, it uses an encoder-decoder architecture. The encoder is trained on a large parallel corpus, 

translating a sentence in any language or script to a parallel sentence in either English or Spanish (whichever 

exists in the parallel corpus), thereby forming a joint representation of entire sentences in many languages in a 

shared vector space. The project focused on scaling to many languages; currently, the encoder supports 93 

different languages. Using LASER, one can train a classifier on data from just one language and use it on any 

language supported by LASER. A vector representation in the joint embedding space can be transformed back 

into a sentence using a decoder for the specific language. 

2.3. Multilingual BERT and CroSloEngual BERT 

BERT (Bidirectional Encoder Representations from Transformers) embedding (Devlin et al., 2019) 

generalises the idea of a language model (LM) to masked language models, inspired by the cloze test, which tests 

understanding of a text by removing a few words, which the participant is asked to replace. The masked language 

model randomly masks some of the tokens from the input, and the task of LM is to predict the missing token 

based on its neighbourhood. BERT uses transformer neural networks (Vaswani et al., 2017) in a bidirectional 

sense and further introduces the task of predicting whether two sentences appear in a sequence. The input 

representation of BERT are sequences of tokens representing sub-word units. The input is constructed by 
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summing the embeddings of corresponding tokens, segments, and positions. Some widespread words are kept 

as single tokens; others are split into sub-words (e.g., frequent stems, prefixes, suffixes—if needed down to single 

letter tokens). The original BERT project offers pre-trained English, Chinese, and multilingual model. The latter, 

called mBERT, is trained on 104 languages simultaneously. 

To use BERT in classification tasks only requires adding connections between its last hidden layer and new 

neurons corresponding to the number of classes in the intended task. The fine-tuning process is applied to the 

whole network, and all of the parameters of BERT and new class-specific weights are fine-tuned jointly to 

maximise the log-probability of the correct labels. 

Recently, a new type of multilingual BERT models emerged that reduce the number of languages in 

multilingual models. For example, CSE BERT (Ulčar & Robnik-Šikonja, 2020) uses Croatian, Slovene (two 

similar less-resourced languages from the same language family), and English. The main reasons for this choice 

are to represent each language better and keep sensible sub-word vocabulary, as shown by Virtanen et al. (2019). 

This model is built with the cross-lingual transfer of prediction models in mind. As CSE BERT includes English, 

we expect that it will enable the better transfer of existing prediction models from English to Croatian and 

Slovene.  

2.4. Twitter sentiment classification 

We present a brief overview of the related work on automated sentiment classification of Twitter posts. We 

summarise the published labelled sets used for training the classification models and the machine learning 

methods applied for training. Most of the related work is limited to English texts only. 

To train a sentiment classifier, one needs a reasonably large training dataset of tweets already labelled with 

the sentiment. One can rely on a proxy, e.g., emoticons used in the tweets, to determine the intended sentiment; 

however, high-quality labelling requires the engagement of human annotators. There exist several publicly 

available and manually labelled Twitter datasets. They vary in the number of examples from several hundred to 

several thousand, but to the best of our knowledge, so far, none exceeds 20,000 entries. Saif et al. (2013) describe 

eight Twitter sentiment datasets and introduce a new one that contains separate sentiment labels for tweets and 

entities. Rosenthal et al. (2015) provide statistics for several of the 2013–2015 SemEval datasets.  

There are several supervised machine learning algorithms suitable to train sentiment classifiers from 

sentiment labelled tweets. For example, in the SemEval-2015 competition, before the rise of deep neural 

networks, the most often used algorithms for the sentiment analysis on Twitter (Rosenthal et al., 2015) were 

support vector machines (SVM), maximum entropy, conditional random fields, and linear regression. In other 

cases, frequently used classifiers were naive Bayes, k-nearest neighbours, and even decision trees. Often, SVM 

was shown as the best performing classifier for the Twitter sentiment. However, only recently, when researchers 

started to apply deep learning for Twitter sentiment classification, considerable improvements in classification 

performance were observed (Wehrmann et al., 2017; Jianqiang et al., 2018; Naseem et al., 2020). Similarly to 

our approach, recent approaches use contextual embeddings such as ELMo (Peters et al., 2018) and BERT 

(Devlin et al., 2019), but in a monolingual setting. 

2.5. Transfer of trained models 

Cross-lingual word embeddings can be used directly as inputs in NLP models. The main idea is to train a 

model on data from one language and then apply it to another, relying on shared cross-lingual representation. 

Several tasks have been attempted in testing cross-lingual transfer and use different approaches. Søgaard et al. 

(2019) survey the transfer in the following tasks: document classification, dependency parsing, POS tagging, 
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named entity recognition (NER), super-sense tagging, semantic parsing, discourse parsing, dialogue state 

tracking (DST), entity linking (wikification), sentiment analysis, machine translation, natural language 

interference, etc. For example, Ranasinghe and Zampieri (2020) apply large pretrained models in a similar way 

as we but use offensive language domain and only four languages from different families (English, Spanish, 

Bengali, and Hindu). In sentiment analysis, which is of particular interest in this work here, Mogadala and 

Rettinger (2016) evaluate their embeddings on the multilingual Amazon product review dataset. In the Twitter 

sentiment analysis, Wehrmann et al. (2017) use LSTM networks but first learn a joint representation for four 

languages (English, German, Portuguese, and Spanish) with character-based convolutional neural networks. 

 

3. DATASETS AND EXPERIMENTAL SETTINGS 

This section presents the evaluation metrics, experimental data, and implementation details of the used 

neural prediction models. 

3.1. Evaluation metrics 

Following Mozetič et al. (2016), we report the 𝐹1̅ score and classification accuracy (CA). F1(c) score for class 

value c is the harmonic mean of precision p and recall r for the given class c, where the precision is defined as 

the proportion of correctly classified instances from the instances predicted to be from the class c, and the recall 

is the proportion of correctly classified instances actually from the class c: 

𝐹1(𝑐) =
2𝑝𝑐𝑟𝑐

𝑝𝑐+𝑟𝑐

. 

The F1 score returns values from the [0,1] interval, where 1 means perfect classification, and 0 indicates that 

either precision or recall for class c is 0. We use an instance of the 𝐹1 score specifically designed to evaluate the 

3-class sentiment models (Kiritchenko et al., 2014). 𝐹1̅  is defined as the average over the positive (+) and negative 

(−) sentiment class:  

𝐹1̅ =
𝐹1(+) + 𝐹1(−)

2
. 

𝐹1̅ implicitly considers the ordering of sentiment values by considering only the extreme labels, positive (+) 

and negative (-). The middle, neutral, is taken into account indirectly. 𝐹1̅=1 implies that all negative and positive 

tweets were correctly classified, and as a consequence, all neutrals as well. 𝐹1̅ = 0 indicates that all tweets were 

classified as neutral, and consequently, all negative and positive tweets were incorrectly classified.  

𝐹1̅ is not the best performance measure. First, taking the arithmetic average of the F1 scores over different 

classes (called macro F1 ) is methodologically misguided (Flach and Kull, 2015). It is justified only when the 

class distribution is approximately even, as is in our case. Second, 𝐹1̅ does not account for correct classification 

by chance. A more appropriate measure that allows for class ordering, classification by chance, and class 

labelling with disagreements is Krippendorff's alpha-reliability (Krippendorff, 2013). However, since 𝐹1̅ is 

commonly used in the sentiment classification community, and the results are typically well correlated with the 

alpha-reliability, we decided to report our experimental results in terms of 𝐹1̅. 

The second score we report is the classification accuracy CA, defined as the ratio of correctly predicted tweets 

Nc to all the tweets N: 

𝐶𝐴 =
𝑁𝑐

𝑁
. 
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3.2. Datasets 

We use a corpus of Twitter sentiment datasets (Mozetič et al., 2016), consisting of 15 languages, with over 1.6 

million annotated tweets. The languages covered are Albanian, Bosnian, Bulgarian, Croatian, English, German, 

Hungarian, Polish, Portuguese, Russian, Serbian, Slovak, Slovene, Spanish, and Swedish. The authors studied 

the annotators' agreement on the labelled tweets. They discovered that the SVM classifier achieves significantly 

lower score for some languages (English, Russian, Slovak) than the annotators. This hints that there might be 

room for improvement for these languages using a better classification model or larger training set. 

We cleaned the above datasets by removing the duplicated tweets, weblinks, and hashtags. Due to the low 

quality of sentiment annotations indicated by low self-agreement and low inter-annotator agreement, we 

removed Albanian and Spanish datasets. For these two languages, the self-agreement expressed with  

𝐹1̅ score is 0.60 and 0.49, respectively; the inter-annotator agreement is 0.41 and 0.42. As defined above, 𝐹1̅ is 

the arithmetic average of F1 scores for the positive and negative tweets, where F1(c) is the fraction of equally 

labelled tweets out of all the tweets with the label c. 

In the paper where the datasets were introduced (Mozetič et al., 2016), Serbian, Croatian, and Bosnian 

tweets were merged into a single dataset. The three languages are very similar and difficult to distinguish in 

short Twitter posts. However, it turned out that this merge resulted in poor classification performance due to a 

very different quality of annotations. In particular, Serbian (71,721 tweets) was annotated by 11 annotators, 

where two of them accounted for over 40% of the annotations. All the inter-annotator agreement measures 

come from the Serbian only (1,880 tweets annotated twice by different annotators, 𝐹1̅ is 0.51), and there are 

very few tweets annotated twice by the same annotator (182 tweets only, 𝐹1̅ for the self-agreement is 0.46). In 

contrast, all the Croatian and Bosnian tweets were annotated by a single annotator, and we have reliable self-

agreement estimates. There are 84,001 Croatian tweets, 13,290 annotated twice, and the self-agreement 𝐹1̅ is 

0.83. There are 38,105 Bosnian tweets, 6,519 annotated twice, and the self-agreement 𝐹1̅ is 0.78. The authors 

concluded that the annotation quality of the Croatian and Bosnian tweets is considerably higher than that of 

the Serbian. If one constructs separate sentiment classifiers for each language, one observes a very different 

performance than reported originally. The individual classifiers are better and "well-behaved" compared to the 

joint Serbian/Croatian/Bosnian model. In this paper, we follow the authors' suggestion that datasets with no 

overlapping annotations and different annotation quality are better not merged. As a consequence, the Serbian, 

Croatian, and Bosnian datasets are analysed separately. The characteristics of all the 13 datasets are presented 

in Table 1. 

 Number of tweets Agreement (𝐹1̅) 

Language Negative Neutral Positive All Self- Inter- 

Bosnian 12,868 11,526 13,711 38,105 0.78 - 

Bulgarian 15,140 31,214 20,815 67,169 0.77 0.50 

Croatian 21,068 19,039 43,894 84,001 0.83 - 

English 26,674 46,972 29,388 103,034 0.79 0.67 

German 20,617 60,061 28,452 109,130 0.73 0.42 

Hungarian 10,770 22,359 35,376 68,505 0.76 - 

Polish 67,083 60,486 96,005 223,574 0.84 0.67 

Portuguese 58,592 53,820 44,981 157,393 0.74 - 

Russian 34,252 44,044 29,477 107,773 0.82 - 

Serbian 24,860 30,700 16,161 71,721 0.46 0.51 

Slovak 18,716 14,917 36,792 70,425 0.77 - 

Slovene 38,975 60,679 34,281 133,935 0.73 0.54 

Swedish 25,319 17,857 15,371 58,547 0.76 - 
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Table 1: The left-hand side reports the number of tweets from each category and the overall number of instances 

for individual languages. The right-hand side contains self-agreement of annotators and inter-annotator 

agreement for tried languages where more than one annotator was involved. 

 

3.3. Implementation details 

In our experiments, we use three different types of prediction models, BiLSTM neural networks using joint 

vector space embeddings constructed with the LASER library, and two variants of BERT, mBERT, and CSE 

BERT. The original mBERT (bert-multi-cased) is pretrained on 104 languages, has 12 transformer layers, and 

110 million parameters. The CSE BERT uses the same architecture but is pretrained only on Croatian, Slovene, 

and English. In the construction of sentiment classification models, we fine-tune the whole network, using the 

batch size of 32,  2 epochs, and Adam optimiser. We also tested larger numbers of epochs and larger batch sizes 

in preliminary experiments, but this did not improve the performance. 

The cross-lingual embeddings from the LASER library are pretrained on 93 languages, using BiLSTM 

networks, and are stored as 1024 dimensional embedding vectors. Our classification models contain an 

embedding layer, followed by a multilayer perceptron hidden layer of size 8, and an output layer with three 

neurons (corresponding to three output classes, negative, neutral, and positive sentiment) using the softmax. 

We use the ReLU activation function and Adam optimiser. The fine-tuning uses a batch size of 32 and 10 epochs. 

Further technical details are available in the freely available source code. 

 

4. EXPERIMENTS AND RESULTS 

Our experimental work focuses on model transfer with cross-lingual embeddings. However, to first establish 

the suitability of different embedding spaces for Twitter sentiment classification, we start with their comparison 

in a monolingual setting in Section 4.1. We compare the three neural approaches presented in Section 3.3 

(common vector space of LASER, mBERT, and CSE BERT). As a baseline, we use the classical approach using 

bag-of-ngram representation with the SVM classifier. In the cross-lingual experiments, we focus on the two 

most-successful types of model transfer, described in Sections 2.2 and 2.3: the common vector space of the 

LASER library and the variants of the multilingual BERT model (mBERT and CSE BERT). We conducted several 

cross-lingual transfer experiments: transfer of models between languages from the same (Section 4.2) and 

different language family (Section 4.3), as well as the expansion of training sets with varying amounts of data 

from other languages (Section 4.4). In the experiments, we did not systematically test all possible combinations 

of languages and language groups as this would require an excessive amount of computational time and would 

not contribute to the clarity of the paper. Instead, we arbitrarily selected a representative set of language 

combinations in advance. We leave a comprehensive systematic approach based on informative features (Lin et 

al., 2019) for further work. 

4.1. Comparing embedding spaces 

To establish the appropriateness of different embedding approaches for our Twitter sentiment classification 

task, we start with experiments in a monolingual setting. We compare embeddings into a joint vector space 

obtained with the LASER library with the mBERT and CSE BERT. Note that there is no transfer between 

ICT-29-2018 D1.6: Final cross-lingual embeddings

73 of 114



different languages in this experiment but only a test of the suitability of the representation, i.e., embeddings. 

To make the results comparable with previous work on this dataset, we report results obtained with 10-fold 

blocked cross-validation. There is no randomisation of training examples in the blocked cross-validation, and 

each fold is a block of consecutive tweets. It turns out that standard cross-validation with a random selection of 

examples yields unrealistic estimates of classifier performance and should not be used to evaluate classifiers in 

time-ordered data scenarios (Mozetič et al., 2018).  

As a baseline, we report the results of the SVM models without neural embeddings that use Delta TF-IDF 

weighted bag-of-ngrams representation with substantial preprocessing of tweets (Mozetič et al., 2016). Further, 

the datasets for the Bosnian, Croatian, and Serbian languages were merged in (Mozetič et al., 2016) due to the 

similarity of these languages; therefore, we report the performance on the merged dataset for the SVM classifier. 

Results are presented in Table 2. 

 

 

LASER mBERT CSE BERT SVM 

Language 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 

Bosnian 0.68 0.64 0.65 0.60 0.68 0.65 (0.61 0.56) 

Bulgarian 0.53 0.59 0.58 0.59 0.00 0.45 0.52 0.54 

Croatian 0.72 0.68 0.64 0.66 0.76 0.71 (0.61 0.56) 

English 0.62 0.65 0.68 0.68 0.67 0.66 0.63 0.64 

German 0.52 0.64 0.66 0.66 0.31 0.59 0.54 0.61 

Hungarian 0.63 0.67 0.65 0.69 0.57 0.65 0.64 0.67 

Polish 0.70 0.66 0.70 0.70 0.56 0.57 0.68 0.63 

Portuguese 0.48 0.47 0.50 0.49 0.12 0.22 0.55 0.51 

Russian 0.70 0.70 0.64 0.64 0.07 0.43 0.61 0.60 

Serbian 0.50 0.54 0.50 0.52 0.30 0.50 (0.61 0.56) 

Slovak 0.72 0.72 0.67 0.66 0.69 0.71 0.68 0.68 

Slovene 0.57 0.58 0.58 0.58 0.60 0.61 0.55 0.54 

Swedish 0.67 0.64 0.67 0.65 0.54 0.56 0.66 0.62 

#Best 5 3 6 6 3 3 2 2 

 

Table 2: Comparison of different representations: supervised mapping into a joint vector space with the LASER 

library, mBERT, CSE BERT, and bag-of-ngrams with the SVM classifier. The best score for each language and 

metric is in bold. In the last row, we count the number of best scores for each model. The SVM results for 

Bosnian, Croatian, and Serbian were obtained with the model trained on the merged dataset of these languages 

model and are therefore not directly compatible with the language-specific results for the other representations. 

The SVM baseline using bag-of-ngrams representation mostly achieves lower predictive performance than 

the two neural embedding approaches. We speculate that the main reason is more information about the 

language structure contained in precomputed dense embeddings used by the neural approaches. Together with 

the fact that standard feature-based machine learning approaches require much more preprocessing effort, it 

seems that there are no good reasons why to bother with this approach in text classification; we, therefore, omit 

this method from further experiments. The mBERT model is the best of the tested methods, achieving the best 

𝐹1̅ and CA scores in six languages (in bold), closely followed by the LASER approach, which achieves the best 𝐹1̅ 
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score in five languages and the best CA score in three languages.  The CSE BERT is specialised for only three 

languages, and it achieves the best scores in languages where it is trained (except in English, where it is close 

behind the mBERT), and in Bosnian, which is similar to Croatian. Overall, it seems that large pretrained 

transformer models (mBERT and CSE BERT) are dominating in the Twitter sentiment prediction. The downside 

of these models is that their training, fine-tuning, and execution require more computational time than 

precomputed fixed embeddings. Nevertheless, with progress in optimisation techniques for neural network 

learning and advent of computationally more efficient BERT variants, e.g., (You et al., 2020), this obstacle might 

disappear in the future. 

 

4.2. Transfer to the same language family 

The transfer of prediction models between similar languages from the same language family is the most likely 

to be successful. We test several combinations of source and target languages from Slavic and Germanic 

language families. We report the results in Table 3. 

In each experiment, we use the entire dataset(s) of the source language as the training set and the whole 

dataset of the target language as the testing set, i.e., we do a zero-shot transfer. We compare the results with the 

LASER embeddings with BiLSTM network using training and testing set from the target language, where 70% 

of the dataset is used for training and 30% for testing. As we use large datasets, the latter results can be taken as 

an upper bound of what cross-lingual transfer models could achieve in ideal conditions. 

The results from Table 3 (bottom line) show that there is a gap in the performance of transfer learning models 

and native models. On average, the gap in 𝐹1̅ is 5% for the LASER approach,  6% for mBERT, and 8% for CSE 

BERT. For CA, the average gap is 7% for both LASER and mBERT and 8% for CSE BERT. However, there are 

significant differences between languages, and we advise to test both variants for a specific language, as the 

models are highly competitive. The CSE BERT is slightly less successful measured with the average performance 

gap over all languages as the gap is 8% in both 𝐹1̅ and CA. However, if we take only the three languages used in 

training of CSE BERT (Croatian, Slovene, and English) as shown in Table 4, conclusions are entirely different. 

The average performance gap is 0% in 𝐹1̅ and 1% in the classification accuracy, meaning that we get almost a 

perfect cross-lingual transfer for these languages on the Twitter sentiment prediction task.  

We also tried more than one input language at once, for example, German and Swedish as source languages and 

English as the target language, as shown in Table 3. The success of the tested combinations is mixed: for some 

models and some languages, we slightly improve the scores, while for others, we slightly decrease them. We 

hypothesise that our datasets for individual languages are large enough so that adding additional training data 

does not help. 

 
  

LASER mBERT CSE BERT Both target 

Source Target 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 

German English 0.55 0.59 0.63 0.64 0.42 0.42 0.62  0.65 

English German 0.55 0.60 0.66 0.70 0.50 0.58 0.53 0.65 

Polish Russian 0.64 0.59 0.57 0.57 0.50 0.40 0.70  0.70 

Polish Slovak 0.63 0.59 0.58 0.59 0.63 0.65 0.72  0.72 

German Swedish 0.58 0.57 0.59 0.59 0.58 0.56 0.67  0.65 

German Swedish English 0.58 0.60 0.55 0.56 0.41 0.42 0.62  0.65 

Slovene Serbian Russian 0.53 0.55 0.57 0.57 0.58 0.48 0.70  0.70 
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Table 3: The transfer of trained models between languages from the same language family using LASER common 

vector space, mBERT, and CSE BERT. We compare the results with both training and testing set from the target 

language using the LASER approach (the right-most two columns).  

 
 

LASER mBERT CSE BERT Both target 

Source Target 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 

Croatian Slovene 0.53 0.53 0.53 0.54 0.61 0.60 0.60 0.60 

Croatian English 0.63 0.63 0.63 0.66 0.62 0.64 0.62  0.65 

English Slovene 0.54 0.57 0.50 0.53 0.59 0.57 0.60 0.60 

English Croatian 0.62 0.67 0.67 0.63 0.73 0.67 0.73 0.68 

Slovene English 0.63 0.64 0.65 0.67 0.63 0.64 0.62  0.65 

Slovene Croatian 0.70 0.65 0.64 0.63 0.73 0.69 0.73 0.68 

Croatian English Slovene 0.54 0.54 0.53 0.54 0.60 0.58 0.60 0.60 

Croatian Slovene English 0.62 0.61 0.65 0.67 0.63 0.65 0.62  0.65 

English Slovene Croatian 0.64 0.68 0.63 0.63 0.68 0.70 0.73 0.68 

Average performance gap 0.04 0.03 0.04 0.03 0.00 0.01 
 

Table 4: The transfer of sentiment models between all combinations of languages on which CSE BERT was 

trained (Croatian, Slovene, and English).  

4.3. Transfer to a different language family 

The transfer of prediction models between languages from different language families is less likely to be 

successful. Nevertheless, to observe the difference, we test several combinations of source and target languages 

from different language families (one from Slavic, the other from Germanic, and vice-versa). We compare the 

LASER approach with mBERT models; the CSE BERT is not constructed for these circumstances, and we skip 

it in this section. We report the results in Table 5. 

The results show that with the LASER approach, there is an average decrease of performance for transfer 

learning models of 11% (both 𝐹1̅ and CA), and for mBERT, the gap is 9%.  This gap is significant and makes the 

resulting transferred models less useful in the target languages, though there are considerable differences 

between the languages. Another observation is that the differences between target languages are significant.  

Slovene Serbian Slovak 0.59 0.52 0.57 0.59 0.48 0.60 0.72  0.72 

Serbian Slovene 0.54 0.57 0.54 0.54 0.56 0.55 0.60 0.60 

Serbian Croatian 0.67 0.64 0.65 0.62 0.65 0.70 0.73 0.68 

Serbian Bosnian 0.65 0.61 0.61 0.60 0.59 0.62 0.67 0.64 

Polish Slovene 0.51 0.48 0.55 0.54 0.50 0.53 0.60 0.60 

Slovak Slovene 0.52 0.51 0.54 0.54 0.58 0.58 0.60 0.60 

Croatian Slovene 0.53 0.53 0.53 0.54 0.61 0.60 0.60 0.60 

Croatian Serbian 0.54 0.52 0.52 0.51 0.52 0.49 0.48 0.54 

Croatian Bosnian 0.66 0.61 0.57 0.56 0.67 0.62 0.67 0.64 

Slovene Croatian 0.70 0.65 0.64 0.63 0.73 0.69 0.73 0.68 

Slovene Serbian 0.52 0.55 0.46 0.49 0.47 0.50 0.48 0.54 

Slovene Bosnian 0.66 0.61 0.58 0.56 0.66 0.62 0.67 0.64 

Average performance gap 0.05 0.07 0.06 0.07 0.08 0.08  
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LASER mBERT Both target 

Source Target 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 

Russian English 0.52 0.56 0.52 0.57 0.62 0.65 

English Russian 0.57 0.58 0.55 0.57 0.70 0.70 

English Slovak 0.46 0.44 0.57 0.58 0.72 0.72 

Polish, Slovene English 0.58 0.57 0.60 0.60 0.62 0.65 

German, Swedish Russian 0.61 0.61 0.62 0.59 0.70 0.70 

English, German Slovak 0.50 0.47 0.56 0.54 0.72 0.72 

German Slovene 0.54 0.56 0.53 0.54 0.60 0.60 

English Slovene 0.54 0.57 0.50 0.53 0.60 0.60 

Swedish Slovene 0.54 0.56 0.52 0.54 0.60 0.60 

Hungarian Slovene 0.52 0.52 0.53 0.54 0.60 0.60 

Portuguese Slovene 0.51 0.49 0.54 0.54 0.60 0.60 

Average performance gap 0.11 0.11 0.09 0.09  

Table 5: The transfer of trained models between languages from different language families using LASER 

common vector space and the mBERT. We compare the results with both training and testing set from the target 

language using the LASER approach (the right-most two columns).  

4.4. Increasing datasets with several languages 

Another type of cross-lingual transfer is possible if we increase the training sets with instances from several 

related and unrelated languages. We conduct two sets of experiments in this setting. In the first setting, reported 

in Table 6, we constructed the training set in each experiment with instances from several languages and 70% 

of the target language dataset. The remaining 30% of target language instances are used as the testing set. In the 

second setting, reported in Table 7, we merge all other languages and 70% of the target language into a joint 

training set. We compare the LASER approach, mBERT, and also CSE BERT, as Slovene and Croatian are 

involved in some combinations. 

Table 6 shows a gap between learning models using the expanded datasets and models with only target language 

data. The decrease is more extensive for both BERT models (on average around 10%) than for the LASER 

approach (the decrease is on average 3% for 𝐹1̅ and 5% for CA). These results indicate that the tested expansion 

of datasets was unsuccessful, i.e. the provided amount of training instances in the target language was already 

sufficient for successful learning. The additional instances from other languages in the transformed space are 

likely to be of lower quality than the native instances and therefore decrease the performance. 

 

 

 

 

 

 

 

  LASER mBERT CSEBERT Target only 

Source Target 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 

English, Croatian, Slovene Slovene 0.58 0.53 0.46 0.45 0.60 0.58 0.60 0.60 

ICT-29-2018 D1.6: Final cross-lingual embeddings

77 of 114



Table 6: The expansion of training sets with instances from several languages. We compare the LASER approach, 

mBERT, and CSE BERT. As the upper bound, we give results of the LASER approach trained on only the target 

language.  

 

The results in Table 7, where we test the expansion of the training set (consisting of 70% of the dataset in the 

target language) with all other languages, show that using many languages and significant enlargement of 

datasets is also not successful. The two improvements in the LASER approach over using only target language 

are limited to a single metric (𝐹1in case of Bulgarian and Serbian), which indicates that true positives are 

favoured at the expense of true negatives. For all other languages, the tried expansions of training sets are 

unsuccessful for the LASER approach, and the difference to native models is on average 3.5% for the 𝐹1̅ score 

and 6% for CA. The mBERT models are in almost all cases more successful in this massive transfer than LASER 

models, and they sometimes marginally beat the reference mBERT approach trained only on the target language. 

 

 LASER mBERT 

 All & Target Only Target All &Target Only Target 

Target 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 𝐹1̅ CA 

Bosnian 0.64 0.59 0.67 0.64 0.63 0.60 0.65 0.60 

Bulgarian 0.54 0.56 0.50 0.59 0.60 0.60 0.58 0.59 

Croatian 0.63 0.57 0.73 0.68 0.65 0.63 0.64 0.66 

English 0.58 0.60 0.62 0.65 0.64 0.69 0.68 0.68 

German 0.52 0.59 0.53 0.65 0.61 0.66 0.66 0.66 

Hungarian 0.59 0.61 0.60 0.67 0.65 0.69 0.65 0.69 

Polish 0.67 0.63 0.70 0.66 0.71 0.71 0.70 0.70 

Portuguese 0.44 0.39 0.52 0.51 0.52 0.52 0.50 0.49 

Russian 0.66 0.64 0.70 0.70 0.67 0.66 0.64 0.64 

Serbian 0.52 0.49 0.48 0.54 0.53 0.51 0.50 0.52 

Slovak 0.64 0.61 0.72 0.72 0.67 0.65 0.67 0.66 

Slovene 0.54 0.50 0.60 0.60 0.56 0.54 0.58 0.58 

Swedish 0.63 0.59 0.67 0.65 0.67 0.64 0.67 0.65 

Avg. gap 0.03 0.06   0.00 0.00   

Table 7: The expansion of training sets with instances from all other languages (+70% of the target language 

instances) to train the LASER approach and mBERT.  We compare the results with the training on only the 

target language. The scores where models with the expanded training sets beat their respective reference scores 

are in bold.  

English, Croatian, Serbian, Slovak Slovak 0.67 0.65 0.57 0.54 0.27 0.37 0.72 0.72 

Hungarian,Slovak,English,Croatian,Russian Russian 0.67 0.65 0.61 0.59 0.63 0.61 0.70 0.70 

Russian, Swedish, English English 0.60 0.61 0.62 0.60 0.59 0.62 0.62 0.65 

Croatian, Serbian, Bosnian, Slovene Slovene 0.54 0.58 0.44 0.45 0.57 0.56 0.60 0.60 

English, Swedish, German German 0.55 0.60 0.60 0.64 0.47 0.58 0.53 0.65 

Average performance gap  0.03 0.05 0.08 0.11 0.11 0.10   
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5. CONCLUSIONS 

We studied state-of-the-art approaches to the cross-lingual transfer of Twitter sentiment prediction models: 

mappings of words into the common vector space using the LASER library and two multilingual BERT variants: 

mBERT and trilingual CSE BERT. Our empirical evaluation is based on relatively large datasets of labelled 

tweets from 13 European languages. We first tested the success of these text representations in a monolingual 

setting. The results show that BERT variants are the most successful, closely followed by the LASER approach, 

while the classical bag-of-ngrams coupled with SVM classifier is no longer competitive with these neural 

approaches. In the cross-lingual experiments, the results show that there is a significant transfer potential using 

the models trained on similar languages; compared to training and testing on the same language, with LASER, 

we get on average 5% lower𝐹1̅ score and with mBERT 6% lower 𝐹1̅ score. The transfer of models with CSE BERT  

is even more successful in the three languages covered by this model, where we get no performance gap 

compared to the LASER approach trained and tested on the target language. Using models trained on languages 

from different language families produces more considerable differences (on average around 10% for 𝐹1̅  and 

CA). Our attempt to expand training sets with instances from different languages was unsuccessful using either 

additional instances from a small group of languages or instances from all other languages. The source code of 

our analyses is freely available3. 

We plan to expand the BERT models with additional emotional and subjectivity information in future work 

on sentiment classification. Given the favourable results in cross-lingual transfer, we will expand the work to 

other relevant tasks.  
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Abstract

Idiomatic expressions can be problematic for natural language processing appli-

cations as their meaning cannot be inferred from their constituting words. A lack

of successful methodological approaches and sufficiently large datasets prevents

the development of machine learning approaches for detecting idioms, especially

for expressions that do not occur in the training set. We present an approach,

called MICE, that uses contextual embeddings for that purpose. We present

a new dataset of multi-word expressions with literal and idiomatic meanings

and use it to train a classifier based on two state-of-the-art contextual word

embeddings: ELMo and BERT. We show that deep neural networks using both

embeddings perform much better than existing approaches, and are capable of

detecting idiomatic word use, even for expressions that were not present in the

training set. We demonstrate cross-lingual transfer of developed models and

analyze the size of the required dataset.
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1. Introduction

Idiomatic expressions (IEs), also called idioms, are composed from a group

of words whose meaning is established by convention and cannot be deduced

from individual words composing the expression (e.g., it’s a piece of cake). In

this work we are interested in detection and identification of IEs.

Due to the lack of satisfactory tools, linguists often create lexicons of idioms

manually or by using tools that take into account only co-occurrence features,

since these are easier to implement and are relatively language independent.

This type of workflow introduces several problems. First, manually created large

lexicons of idioms are scarce because of the time-consuming human labor that

is required, particularly for less-resourced languages. Second, frequency lists

of idioms that were created without robust, generalized identification tools are

unreliable – mostly due to their discontinuity and syntactic variability. Finally,

discovery or detection of new IEs is often based on personal knowledge of linguists

or frequent collocations. This may completely omit many idioms.

IEs such as "break the ice" and "under the weather" commonly occur in texts.

They can be hard to understand for computer models as their meaning differs

from the meaning of individual words. To address this, several automatic machine

learning based approaches for detection of idiomatic language emerged. However,

current approaches suffer from a number of issues and limitations related to

methodological shortcomings as well as a lack of datasets. The first issue that

affects current approaches is the lack of large datasets with annotated IEs.

Because of a large number of different IEs, a dataset that would contain sufficient

number of examples for every IE needed to train a classification model currently

does not exist. Additionally, most existing datasets only address English, which

makes developing approaches for other languages difficult. Existing works use

small datasets, such as the data from SemEval 2013, task 5B [1], PARSEME

Shared Task on Automatic Verbal Multi-Word Expression (MWE) Identification

2

ICT-29-2018 D1.6: Final cross-lingual embeddings

83 of 114



[2], or the VNC tokens dataset [3]. These datasets only cover a limited number

of IEs and contain at most a few annotated sentences for each expression, which

makes it hard to train successful machine-learning models for IE recognition.

Deep neural networks are currently the most successful machine learning

approach for textual data, surpassing all other approaches in practically all

language processing and understanding tasks [4, 5, 6, 7, 8]. As input, neural

networks require numerical data, and texts are transformed into numeric vectors

via a process called text embedding. The process has to ensure that relations

between words are reflected in distances and directions in a numeric space of

typically several hundred dimensions. The embedding vectors are obtained

from specialized learning tasks, based on neural networks, e.g., word2vec [9],

GloVe [10], or fastText [11]. For training, the embedding algorithms use large

monolingual text corpora and design a learning task that tries to predict a context

of a given word. The problem of the first generation of neural embeddings, such

as word2vec, is their failure to express polysemous words. During training of the

embedding, all senses of a given word (e.g., paper as a material, as a newspaper,

as a scientific work, and as an exam) contribute relevant information about their

contexts in proportion to their frequency in the training corpus. This causes

the final vector to be placed somewhere in the weighted middle of all word’s

meanings. Consequently, rare meanings of words (which mostly include their

idioms) are poorly expressed with these embeddings and the resulting vectors

do not offer good semantic representations. For example, none of the 50 closest

vectors of the word paper is related to science1.

The idea of contextual embeddings is to generate a different vector for each

context a word appears in and the context is typically defined sentence-wise. To

a large extent, this solves the problems with word polysemy, i.e. the context of

a sentence is typically enough to disambiguate different meanings of a word for

humans and so it is for the learning algorithms. In our work, we use currently

1A demo showing near vectors computed with word2vec from Google News corpus is

available at http://bionlp-www.utu.fi/wv_demo/.
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the most successful approaches to contextual word embeddings, ELMo [7] and

BERT [8]. We examine whether contextual word embeddings can be used as a

solution to the idiom identification problem. Past work shows that contextual

word embeddings are capable of detecting different meanings of polysemous

words and can improve the performance on a variety of NLP tasks [8]. However,

to the best of our knowledge, current approaches have not used contextual word

embeddings for differentiating between idiomatic and literal language use. In the

proposed approach, called MICE (Mining Idioms with Contextual Embeddings),

we use ELMo and BERT embeddings as an input to a neural network and show

that using them as the first layer of neural networks improves results compared

to existing approaches. We evaluate our approach on a new dataset of Slovene

IEs, as well as on the existing dataset from the PARSEME Shared Task on

Automatic Verbal MWE Identification. We analyze different properties of the

proposed models, such as the amount of labelled data required to get useful

results, different variants of BERT models, and cross-lingual transfer of trained

models.

We show that contextual embeddings contain a large amount of lexical and

semantic information that can be used to detect IEs. Our MICE approach

outperforms existing approaches that do not use pre-trained contextual word

embeddings in detection of IE present in the training data, as well as identification

of IE missing in the training set. The later is a major problem of existing

approaches. Finally, we show that multilingual contextual word embeddings

are capable of detecting IEs in multiple languages even when trained on a

monolingual dataset.

The reminder of the paper is structured as follows. In Section 2, we describe

past research on automatic IE detection. We present our MICE methodology

in Section 3. Section 4 describes the datasets used for the evaluation of our

approach, which we describe in Section 5. Section 6 concludes the paper.

4
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2. Related Work

There currently exists a variety of approaches for detecting IEs in a text,

broadly divided into supervised and unsupervised methods. In supervised

approaches, the problem is frequently presented as a binary classification problem

where a separate classifier is trained for each idiom [12]. The disadvantage of

this approach is that it scales poorly to a large number of idioms as it requires a

separate training set for each idiom.

In recent years, several neural network approaches have been proposed.

MUMULS [13] uses a neural network with a bidirectional gated recurrent units

(GRUs) [14] in combination with an embedding layer. In addition to idioms, it

is capable of detecting different types of verbal multi-word expressions, which

were annotated within the PARSEME Shared Task on Automatic Verbal MWE

Identification [2]. MUMULS achieved best results on multiple languages, but the

authors reported a poor classification accuracy on languages with a low amount

of training data and were unable to detect expressions that did not occur in

the training set. The 2018 edition of the shared task [15] featured several other

systems based on neural networks [16, 17, 18] with similar outcomes to MUMULS,

namely good results on several languages but low classification accuracy and F1

score for languages with small training datasets and no detection of expressions

that are not present in the training set. Another approach was presented by

Boroş and Burtica [18], who use a bidirectional long short-term memory network

(biLSTM) in combination with graph-based decoding. However, despite using

neural networks, these approaches do not use pretrained contextual embeddings.

Because of this, they cannot make use of un-annotated datasets when training

their model and cannot and makes it more difficult for them to make full use of

contextual information in text.

The second broad group of methods for detecting idiomatic word use are

unsupervised approaches. Sporleder and Li [19] use lexical cohesion to detect IEs

without the need for a labeled dataset or language resources such as dictionaries

or lexicons. Liu and Hwa [20] compare the context of a word’s occurrence to a

5
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predefined "literal usage representation" (i.e. a collection of words that often

appear near literal uses of the word) to obtain a heuristic measure indicating

whether a word was used literally or idiomatically. The obtained scores are

passed to a probabilistic latent variable model, which predicts the usage of each

word. They report average F1 scores between 0.72 to 0.75 on the SemEval 2013

Task 5B [1] and VNC tokens datasets [3]. This is lower than the results obtained

by our model on a comparable task.

A potential problem with current approaches is a lack of large annotated

datasets that could be used to train classification models. Liu and Hwa [12] use

the data from SemEval 2013 Task 5B [1], which only contains 10 different idioms

with 2371 examples. Boroş and Burtica [18] and Klyueva et al. [13] trained their

models on the PARSEME Shared Task on Automatic Verbal MWE Identification

[2], which only contains a small number of idioms across 20 languages. Larger

datasets exist, such as the VNC tokens dataset [3], which contains 2,984 instances

of 53 different expressions, and the dataset presented by Fadaee et al. [21], which

contains 6,846 sentences with 235 different IEs in English and German. In our

work, we use a larger dataset with 29,400 sentences and 75 different IEs.

Existing classification approaches require a list of idiomatic phrases with

accompanying datasets on which a classifier is trained. Current approaches

pay little attention to detecting idioms that do not appear in the training

set, which is a much harder problem. However, due to a large number of

idiomatic phrases, such a use is more reflective of real-world problems. Even the

unsupervised approach presented by Liu and Hwa [20] first manually constructs

literal usage representations for each idiomatic phrase and is therefore not suitable

for detecting non-listed IEs. We use contextual embeddings, which can capture

semantic information without requiring labelled data for training. This allows

then to detect idiomatic phrases even if they do not appear in a pre-defined list.

6
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3. Detecting IEs with Contextual Word Embeddings

We first describe two state-of-the-art deep neural network approaches to

contextual embeddings, ELMo [7] and BERT [8], followed by the proposed MICE

neural network architectures for identification of IEs.

3.1. ELMo contextual embeddings

ELMo (Embeddings from Language Models) [7] is a large pretrained neural

language model, producing contextual embeddings and state-of-the-art results

in many text processing tasks. The ELMo architecture consists of three layers

of neurons. The output of neurons after each layer gives one set of embeddings,

altogether three sets. The first layer is the convolutional (CNN) layer operating

on the character-level input. This layer is followed by two biLSTM layers, that

consist of two concatenated LSTM layers. The first, left-to-right LSTM layer

is trained to predict the following word based on the given past words, where

each word is represented by the embeddings from the CNN layer. The second,

right-to-left LSTM predicts the preceding word based on the given following

words. Although ELMo is trained on character-level input and is able to handle

out-of-vocabulary words, a vocabulary file containing the most common tokens

is used for efficiency during training and embedding generation.

In NLP tasks, usually a weighted average of the three embeddings is used.

The weights for merging the representation of layers are learned during the

training of the model for a specific task. Optionally, the entire ELMo model can

be fine-tuned for the specific task.

In our work, we use the ELMo model that was pre-trained on a large amount

of Slovene text [22]. We take an average of the three ELMo embedding layers

as the input to our prediction models. These embeddings are not fine-tuned

to the specific task of idiom detection, as we wanted to evaluate how well the

embeddings capture the relevant contextual information without task-specific

fine-tuning. As results show, even without fine-tuning, the contextual embeddings

improve performance compared to similar approaches that do not use contextual

7
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word-embeddings. Fine-tuning of embeddings layer of neural networks is left for

further work.

3.2. BERT contextual model

BERT (Bidirectional Encoder Representations from Transformers) [8] gen-

eralises the idea of language models to masked language models—inspired by

Cloze (i.e. gap filling) tests—which test the understanding of a text by removing

a certain portion of words that the participant is asked to fill in. The masked

language model randomly masks some of the tokens from the input, and the task

of the language model is to predict the missing token based on its neighbourhood.

BERT uses transformer architecture of neural networks [23], which uses both

left and right context in predicting the masked word and further introduces

the task of predicting whether two sentences appear in a sequence. The input

representation of BERT are sequences of tokens representing subword units.

The result of pre-trained tokenization is that some common words are kept as

single tokens, while others are split into subwords (e.g., common stems, prefixes,

suffixes—if needed down to a single letter tokens). The original BERT project

offers pre-trained English, Chinese, and multilingual models; the latter, called

mBERT is trained on 104 languages simultaneously. BERT has shown excellent

performance on 11 NLP tasks: 8 from GLUE language understanding benchmark

[24], question answering, named entity recognition, and common-sense inference.

Rather than training an individual classifier for every classification task

from scratch, which would be resource and time expensive, the pre-trained

BERT language model is usually used and fine-tuned on a specific task. This

approach is common in modern NLP, because large pretrained language models

extract highly-relevant textual features without task specific development and

training. Frequently, this approach also requires less task-specific data. During

pre-training, BERT model learns relations between sentences (entailment) and

between tokens within a sentence. This knowledge is used during training on

a specific down-stream task [8]. The use of BERT for a token classification

task requires adding connections between its last hidden layer and new neurons

8
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corresponding to the number of classes in the intended task. To classify a

sequence, we use a special [CLS] token that represents the final hidden state

of the input sequence (i.e the sentence). The predicted class label of the [CLS]

token corresponds to the class label of the entire sequence. The fine-tuning

process is applied to the whole network and all of the parameters of BERT and

new class specific weights are fine-tuned jointly to maximize the log-probability

of the correct labels.

In our use of BERT models, we did not fine-tune the embedding weights

but left them as they were after the original pretraining. This simplification

significantly reduces the computational load but leads to potential loss of accuracy.

This is a possible improvement to be tested in future work, as fine-tuning the

embeddings would likely improve the results.

3.3. The proposed MICE architecture

Our approach is based on contextual word embeddings, which were designed

to deal with the fact that a word can have multiple meanings. Instead of assigning

the same vector to every occurrence of a word, contextual embeddings assign a

different vector to each word occurrence based on its context. As the contexts

of words’ literal use and idiomatic occurrences of the same word are likely to

differ, these embeddings shall be well-suited for detecting IEs. We used two

state-of-the-art embedding approaches: ELMo [7] and BERT [8]. For ELMo, we

used the pretrained Slovene model described by [22]. The model was trained on

the Gigafida corpus [25] of Slovene texts. For BERT embeddings, we use two

different models:

1. The multilingual mBERT model presented by Devlin et al. [8], which was

trained on Wikipedia text from 104 languages, including Slovene.

2. The trilingual CroSloEngual BERT presented by Ulčar and Robnik-Šikonja

[26], which was trained on English, Slovene, and Croatian using Wikipedia

for English text, the Gigafida corpus for Slovene text, and a combination

of hrWaC [27], articles from the Styria media group, and Riznica corpora

[28] for Croatian text. This BERT is better suited for classification tasks

9
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in Slovene and Croatian as mBERT as its training incorporated larger

amounts of training data and a larger vocabulary for each of the involved

languages. The authors also report improved cross-lingual transfer of

trained models between the three languages.

We use the embeddings (ELMo or BERT) as the first layer of a neural network.

This layer is followed by a bidirectional gated recurrent unit (GRU) with 100

cells. GRUs are similar to standard recurrent units but use an additional update

and reset gate to help deal with the vanishing gradient problem. The update

gate is defined as

zt = σ(W (z)xt + U (z)ht−1 + bz), (1)

where W (z) and U (z) are trainable weights, xt is the input vector and bz is

the trainable bias. ht−1 represents the memory of past inputs computed by the

network. The reset gate uses the same equation, with different weights and

biases:

rt = σ(W (r)xt + U (r)ht−1 + br). (2)

For each input, the GRU computes the output as:

ht = zt � ht−1 + (1− z)� tanh(W (h)xt + U (h)(rt � ht−1) + bh), (3)

where � is the Hadamard product, and W (h), U (h), and bh are trainable weights

and biases.

For both embeddings used, ELMo and BERT, we follow the GRU layer with a

softmax layer for obtaining the final predictions. A dropout of 50% is applied at

the softmax layer. This approach follows the work on MWE detection presented

by Klyueva et al. [13] but with the difference that we use contextual embeddings.

We deliberately use a simple network architecture to show that the embeddings,

by themselves, capture enough semantic information to properly recognize IEs.

We use the architecture on two types of classification tasks: a token-level

classification, where we predict whether an individual token has an idiomatic or

literal meaning, and a sentence-level classification, where the network makes a

single prediction for the entire sentence, predicting whether the sentence contains
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an expression with an idiomatic meaning. The details of the tasks are presented

in Section 5.

We fine-tuned the hyperparameters using a development set consisting of

7% of sentences randomly selected from our dataset, as described in Section 4.1.

We trained the network for 10 epochs using RMSProp as the optimizer with the

learning rate of 0.001, ρ = 0.9, and ε = 10−7. We used the binary cross-entropy

as the loss function.

4. Datasets

Our approach supports two types of tasks, monolingual and multilingual.

The monolingual approach requires a reasonably large dataset with a sufficient

number of idioms. We analyze the required size of a dataset in terms of different

idioms and examples of their usage in both monolingual and multilingual settings

in Section 5.5. The multilingual approach exploits the existing monolingual

dataset to transfer the trained model to languages with fewer resources, i.e. with

non-existent or smaller datasets.

In Section 4.1 we describe our monolingual Slovene dataset. In Section 4.2

we describe the well-known PARSEME datasets [2] for detection of multi-word

expressions in many languages, which also include idioms.

4.1. Monolingual dataset

We evaluate our approach on a new dataset of Slovene IEs, called SloIE,

which we make publicly available for further research2. The dataset consists

of 29,400 sentences extracted from the Gigafida corpus [25] and contains 75

different IEs. The 75 IEs were selected from the Slovene Lexical Database [29]

and had to meet the condition that they appear in corpus sentences in both

idiomatic and literal senses, such as, e.g., break the ice, step on someone’s toes.

Manual selection of idiomatic examples showed that most IEs in the Slovene

Lexical Database (2,041 in total) appear more frequently or even exclusively

2http://hdl.handle.net/11356/1335
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in their idiomatic meaning, either because literal use is not possible (e.g., get

under someone’s skin), or it’s very rare, although possible in terms of syntax and

semantics (e.g. to do something behind someone’s back). Although this finding

is interesting from a (socio)linguistic point of view, in designing the dataset for

our purposes, we assumed that the literal and idiomatic interpretation of an

expression can be disambiguated by its context.

Two annotators, students of linguistics, marked the complete set of 29,400

sentences. They had four possible choices: YES (the expression in a particular

sentence is used in the idiomatic sense, NO (the expression is used in the literal

sense), DON’T KNOW (not sure whether the expression is used in a literal

or idiomatic sense) and VAGUE, (literal or idiomatic use cannot be inferred

from the sentence). Student annotators were previously briefed with short

instructions and provided with a sample of good examples. For the training of

classification models, we selected only sentences where both annotators agreed

on the annotation. The inter-annotator agreement across the entire dataset was

0.952.

Due to the nature of IEs, our dataset is imbalanced. A few expressions

occur proportionally in both literal and idiomatic use, while most expressions

occurring predominately idiomatically. The dataset contains fewer than 100

occurrences for most expressions. Table 1 shows an overview of the data present

in our dataset. The distribution of literal and idiomatic uses of each expression

is shown in Figure 1.

SloIE is much larger than other existing datasets in terms of number of

sentences, e.g., VNC tokens contains 2984 instances of 53 IEs. Such a dataset

would require significant effort to create for other languages. For that reason,

we analyze the size and distribution required for successful IE detection models

in Section 5.5.

4.2. PARSEME datasets

The dataset for the Edition 1.1 of the PARSEME shared task on automatic

identification of verbal multiword expressions (MWEs) consists of 280,838 anno-
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Table 1: An overview of the data present in the SloIE dataset.

Sentences 29,400

Tokens 695,636

Idiomatic sentences 24,349

Literal sentences 5,051

Idiomatic tokens 67,088

Literal tokens 626,707

Different IEs 75

tated sentences split across 20 languages. The corpus contains annotations for

various types of verbal MWEs, such as verb-particle constructions, inherently

reflexive verbs, and verbal idioms. As our work focuses on detecting IEs, we only

predict tags of verbal idioms. A summary of the number of sentences for each

language used in our work is presented in Table 2. We do not use the Arabic

dataset as it was not made available under an open licence.

IEs in the PARSEME datasets only occur in a small number of sentences.

Additionally, most IEs occur only once in the corpus, which makes training a

classifier difficult. For that reason, we used the PARSEME dataset to evaluate

our cross-lingual model. The model used the pretrained mBERT embeddings

from [8], was further trained on our Slovene SloIE dataset, and tested on each

of the PARSEME datasets in different languages. The details are reported in

Section 5.4.

5. Evaluation

We evaluate our MICE approach in five different settings, explained below.

We present the results of these evaluation scenarios in the subsections.

1. Classification of IEs that were present in the training set. In Section 5.1

we evaluate whether MICE is capable of detecting IEs that were present

in the training set. We split this task into two sub-tasks: i) sentence-level
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Figure 1: The number of literal and idiomatic uses for IEs present in the SloIE dataset. The

top figure shows IEs that occur more than 35 times with an idiomatic meaning. The bottom

figure shows IEs that occur less than 35 times with an idiomatic meaning.

classification, where the network makes a single prediction for the entire

sentence, predicting whether that sentence contains an expression with

an idiomatic meaning and ii) token-level classification, where we predict

whether each token has a literal or idiomatic meaning. The sentence-level

classification task is easier, but the token-level task can be more useful, as

it can be used to detect which tokens have the idiomatic meaning.

2. Classification of IEs that were not present in the training set. Due to a

large number of idioms, it is difficult and expensive to annotate a dataset
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Table 2: An overview of the data present in the PARSEME datasets. Of the 20 languages

in the PARSEME corpus, we use 18. We omit Arabic because it is not available as an open

language and Farsi, which does not contain IEs. On average, each language contains 586 IEs.

Language Sentences Tokens IEs

BG 6,913 157,647 417

DE 6,261 120,840 1,005

EL 5,244 142,322 515

EN 7,436 124,203 59

ES 2,502 102,090 196

FA 2,736 46,530 0

FR 17,880 450,221 1,786

HE 4,673 99,790 86

HU 3,569 87,777 92

HR 3003 69915 131

IT 15,728 387,325 913

LT 12,153 209,636 229

MT 5,965 141,096 261

PL 11,578 191,239 317

PT 19,640 359,345 820

RO 45,469 778,674 524

SL 8,881 183,285 283

SV 200 3,376 9

TR 16,715 334,880 2,911

Total 19,6546 3,990,191 10,554

that would cover every idiom. Because of this, it would be desirable that

the prediction model is capable of detecting expressions that are not present

in the training set. We test this setting in Section 5.2. As with the first

task, we use sentence-level and token-level classification. This task is more

difficult than detection of IEs present in the dataset, and can only be
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solved successfully if the contextual word embeddings contain information

about idiomatic word use (e.g., as directions in the vector space).

3. Difference in detection of individual IEs. It is possible that success in

detection of different IEs differs significantly, where some IEs are easy and

other much more difficult to detect. In Section 5.3 we evaluate how well

our model detects each IE in our dataset and present the differences.

4. Cross-lingual transfer on the PARSEME dataset. In Section 5.4 we evaluate

whether our approach can be used to detect expressions in different lan-

guages when trained with multilingual word embedding models. For testing

this hypothesis, we use 18 languages from the multilingual PARSEME

dataset containing.

5. Required size of a dataset. Our dataset is significantly larger than other

datasets used for automatic idiom detection, e.g., PARSEME (for a single

language). In Section 5.5 we conduct a series of experiments that provide

an information how large dataset (in terms of number of IE and number of

examples per IE) is actually needed for successful detection of idioms. This

information may be valuable for other languages where similar detection

tools will be built.

We compare the proposed MICE approach to different existing approaches.

As a baseline, we use the SVM classifier with the tf-idf weighted vector of a

sentence as the input. We compare our approach to MUMULS [13], which

uses a similar neural network architecture to our approach but does not use

pretrained contextual word embeddings. Unlike our approach, MUMULS uses

part-of-speech tags and word lemmas as additional inputs.

For all tests, we report the classification accuracy (CA) and F1 score. As

many of the tasks are highly imbalanced, CA is not a good measure and we

mostly use the obtained F1 scores in interpretations of results.

5.1. IEs from the training set

For the first experiment, detection of IEs present in the training set, we

randomly split the SloIE dataset into training, testing, and development sets
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with the ratio of 63:30:7 (18,522, 8,820, and 2,058 sentences). The network was

trained for 10 epochs using RMSProp as the optimizer with a learning rate of

0.001, ρ = 0.9, and ε = 10−7. Binary cross-entropy was used as the loss function.

We report two sets of results: recognition of individual tokens in a sentence as

idiomatic or non-idiomatic (i.e. token-level classification), and detection of the

whole sentence as either containing or not containing idioms (i.e. sentence-level

classification).

The results for token-level classification are presented in Table 3. To provide

a sensible context for token-based classification, the input of the SVM classifier

consists of the target token and three words before and three words after the

target word. The SVM classifier obtains better F1 score than MUMULS but

lower score compared to MICE variants. The dataset is highly imbalanced, with

96,7% of all tokens being non-idiomatic. Lacking discriminating information,

MUMULS predicts almost every token as non-idiomatic, which results in high

classification accuracy but a very low F1 score. Due to the imbalanced nature of

the dataset, the F1 score is more reflective of relevant real-world performance,

and here the MICE variants are in the class of their own.

Table 3: Comparison of results when classifying tokens with the same IEs present in the

training and testing set. Each token was classified as either belonging to IE with the literal

meaning, belonging to IE with the idiomatic meaning, or not belonging to IE.

Method CA F1

Default classifier 0.903 0.176

SVM baseline 0.8756 0.3962

MUMULS 0.975 0.0659

MICE with Slovene ELMo 0.889 0.9219

MICE with mBERT 0.814 0.4556

MICE with CroSloEngual BERT 0.972 0.837

Of the three MICE approaches, the one with the Slovene ELMo model

obtains the highest F1 score. The MICE variants with BERT embeddings obtain
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lower classification accuracies and F1 scores. This is likely due to different

tokenization approaches used by the embeddings. We used ELMo embeddings by

first performing word-level tokenization while BERT splits words into sub-word

units. Token-level classification with BERT must classify sub-word units instead

of classifying entire words, as is the case with ELMo. Additionally, our ELMo

embeddings were pretrained on a large amount of only Slovene texts, while the

mBERT model was trained on 104 different languages. Only a small amount

of Slovene texts was included in its training and it has a small proportion of

Slovene words in the vocabulary. The CroSloEngual embeddings were trained

on a larger amount of Slovene text and therefore achieve better results.

In evaluation on the sentence-level, instead of classifying each token, we

classified each sentence whether it contains a IE or not. This lowers the impor-

tance of different tokenization strategies between ELMo and BERT. However,

sentence-level evaluation does not show whether the approaches are capable of

detecting specific words in a sentence as idioms. The results of this evaluation

are presented in Table 4.

Table 4: Comparison of results when classifying sentences from the SloIE dataset and the same

IEs are present in the training and testing sets. Each sentence was classified as either containing

an expression with the literal meaning or containing an expression with the idiomatic meaning.

Method CA F1

Default classifier 0.828 0.906

SVM baseline 0.900 0.942

MUMULS 0.915 0.948

MICE with Slovene ELMo 0.951 0.980

MICE with mBERT 0.897 0.908

MICE with CroSloEngual BERT 0.921 0.954

The sentence-level classification task is less difficult, which leads to an im-

proved performance for all models. The SVM baseline outperforms the mBERT

model. MUMULS also achieves better results, outperforming the SVM baseline
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and the mBERT approach. MICE with CroSloEngual BERT is closer to ELMo

in this task, though the latter still achieves the best scores. MICE with mBERT

likely achieves lower scores because this model was not pretrained on a large

enough amount of Slovene text.

5.2. IEs outside the training set

In the previous experiment with the same IEs present in both the training and

testing set, we were able to obtain good results (especially with our contextual

embeddings approach). However, many languages lack large annotated datasets

and even when they do exist, they are unlikely to contain every possible IE

found in that language. Because of this, evaluations containing IEs in both sets

over-estimates the practical importance of tested methods.

To address this, we tested how well the approaches based on contextual word

embeddings generalize to IEs outside the training set. For this experiment, we

split our dataset into a training and testing set so that IEs from the testing

set do not appear in the training set. Apart from this change, everything else

remained the same as in section 5.1 above.

Since IEs in the test set are not present in the training set, the classifica-

tion models cannot learn how to detect them based on word-data alone. We

hypothesize that their detection is possible based on contexts in which they

appear. As the meaning of an IE is different from the literal meaning of its

constituting words, it should appear in a different context. Neural networks with

contextual word embeddings could detect such occurrences. Indeed, our results

for token- and sentence-level IE detection, presented in Tables 5 and 6, show

that approaches that do not use contextual word embeddings fail to successfully

detect IEs that did not occur in the training set, while MICE approaches using

contextual embeddings extract useful information.

For token level results, shown in Table 5, due to the imbalanced class

distribution, all approaches lag behind the default classifier concerning CA. For

both the SVM baseline and MUMULS this is the case also in terms of F1 score.

The MICE approach with ELMo and mBERT models manages to correctly
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classify a number of IEs, though the results are worse than in the scenario,

where the same IEs are present in both the training and testing set. MICE with

ELMO embeddings is again the best method, while CroSloEngual embeddings

are surprisingly unsuccessful.

Table 5: Comparison of results when classifying tokens and test set IEs are not present in the

training set.

Method CA F1 score

Default classifier 0.903 0.176

SVM baseline 0.870 0.029

MUMULS 0.873 0.000

MICE with Slovene ELMo 0.803 0.866

MICE with mBERT 0.733 0.803

MICE with CroSloEngual BERT 0.759 0.176

Sentence-level results in Table 6 show improved scores of all models. The

SVM baseline and MUMULS still lag behind the default classifier concerning

both CA and F1 score. MICE approaches are better, with Slovene ELMo variant

achieving the best scores.

Table 6: Comparison of results when classifying sentences and the test set IEs are not present

in the training set.

Method CA F1 score

Default classifier 0.828 0.906

SVM baseline 0.783 0.689

MUMULS 0.520 0.672

MICE with Slovene ELMo 0.842 0.907

MICE with mBERT 0.836 0.904

MICE with CroSloEngual BERT 0.771 0.837
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5.3. Evaluation of individual IEs

In addition to cumulative results of the entire test set, we are also interested

in individual differences between IEs, as it is possible that some IEs are easy and

others are hard to detect. As the meanings of IEs can vary from being similar or

very different to the literal meanings of their words, we assume that the ability of

models based on contextual word embeddings could vary significantly. For this

task, we train the detection models on all other IEs (74 of them) and test them

on the left-out IE. In this way, we obtain a separate detection model for each IE,

trained on every sentence that did not contain that IE, and evaluate it on the

sentences containing that IE (similar out-of-test-set sentence-level scenario as

in Section 5.2). For this evaluation, we used the MICE Slovene ELMo model

described in Section 5.2, as it outperformed all other models in previous tests.

Figure 2 shows the distribution of F1 scores across all the IEs in our SloIE

dataset. The distribution shows that for the majority of IEs, MICE models

achieve high F1 scores above 0.8, while there are a few IEs with low recognition

rate with F1 < 0.6. In Table 7 we elaborate on these results and show the five best

and worst recognizable IEs. At the moment, we do not have an interpretation

why certain IEs are more or less difficult to detect, and leave this question for

further work.

5.4. Cross-lingual evaluation of IEs

The results above show encouraging results for IE detection in a language

with sufficiently large datasets. As recent research on cross-lingual embeddings

shows that reasonably good transfer of trained models can be obtained for many

tasks [30, 31, 32, 33], we attempt such a transfer of our models. We use the

dataset from the PARSEME shared task on automatic identification of verbal

multiword expressions described in Section 4.2. We evaluated two contextual

embeddings discussed in the previous sections: the Slovene ELMo embeddings

and the multilingual BERT embeddings. We evaluated the cross-lingual MICE

approach in the following manner:
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Figure 2: The distribution of F1 scores per IEs in sentence-level task on the out-of-test-set

task using MICE with Slovene ELMo embeddings.

• We evaluated MICE with Slovene ELMo embeddings on Slavic languages

similar to Slovene, with datasets present in the PARSEME collection, i.e.,

Slovene, Croatian, and Polish. As the Slovene ELMo embeddings are not

multilingual, they are unlikely to generalize to other languages. In future

work, we plan to use these embeddings for prediction in other languages

by using cross-lingual mappings (e. g., [34]).

• We evaluated MICE with mBERT embeddings on all languages from the

PARSEME collection. The mBERT model was trained on 104 languages,

including every language present in the PARSEME dataset.

For both test-cases, we constructed balanced datasets which consist of every

sentence with IEs from the PARSEME dataset in a given language, and an equal

number of sentences without IEs, chosen at random from the same dataset. We

performed the evaluation on the sentence-level classification task.

For the Slavic languages test, we trained the prediction model on the whole

SloIE dataset, presented in Section 4.1. We did not train the model on any

multilingual data to see whether the contextual embeddings alone are enough to

generalize to other languages, at least to similar ones such as Croatian. For all
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Table 7: Examples of the easiest and most difficult IEs for MICE with Slovene ELMo

embeddings.

IE F1 score Number of detected IEs

Pospraviti v arhive 1.0 4

Kislo jabolko 1.0 9

Pomešati jabolka in hruške 1.0 33

Pristati v žepih nekoga 1.0 28

Perje začne frčati 1.0 19

Pospraviti kaj v arhiv 0.600 12

Imeti krompir 0.597 162

Gnilo jajce 0.571 11

Kdo nosi hlače 0.525 218

Želodec se obrne 0.487 10

PARSEME languages using MICE with mBERT, we split each dataset into the

training, testing and validation sets using a 60:30:10 ratio, trained the model

for each language on the training set and evaluated it on the testing set. For

Slovene, Croatian, and Polish we additionally trained MICE mBERT models

on the SloIE dataset, as the similarity of those languages means that additional

data in the Slovene language could be beneficial. The results are presented in

Table 8.

The results of the monolingual evaluation presented in Section 5.2 are also

confirmed on the Slovene PARSEME dataset, as MICE with Slovene ELMO

model is capable of detecting idioms in that dataset. The same model generalizes

very well to the PARSEME Croatian dataset, likely due to its similarity to

Slovene. The generalization to Polish, which is more distant Slavic language,

is not successful. MICE models with mBERT also generalize well for a few

languages. They obtain good results on Slovene and Croatian, likely due to

the large amount of training data in the SloIE corpus, which also generalizes to

Croatian idioms. The MICE mBERT models outperform default classifiers in
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Table 8: Results of the multilingual evaluation. The MICE models with Slovene ELMo

embeddings were evaluated on Slavic languages similar to Slovene, while the variants with

mBERT were tested for all languages in PARSEME dataset which contain IEs. We report F1

scores and include default classifiers as a reference.

Language Slovene ELMo mBERT Default F1

Slovene 0.8163 0.8359 0.667

Croatian 0.9191 0.8970 0.667

Polish 0.2863 0.6987 0.667

English - 0.650 0.667

French - 0.814 0.667

German - 0.622 0.667

Turkish - 0.682 0.667

Romanian - 0.625 0.667

Lithuanian - 0.689 0.667

Italian - 0.683 0.667

Hungarian - 0.555 0.667

Hindi - 0.562 0.667

Hebrew - 0.693 0.667

Farsi - - -

Basque - 0.692 0.667

Spanish - 0.340 0.667

Greek - 0.484 0.667

Bulgarian - 0.601 0.667

French, Turkish, Lithuanian, Italian, Hebrew, and Basque, despite small amounts

of training data, low numbers of IEs in training sets, most IEs only appearing

once, and IEs in the testing set not appearing in the training set. They perform

less well on other languages but are still capable of detecting some IEs.

MUMULS and the SVM baseline were both unable to detect IEs in other

languages, obtaining the F1 score of 0 in all cases.
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5.5. Effect of the dataset size

Most languages currently do not have IE datasets, and it might be helpful to

provide an information on how large datasets are required. In this section, we

analyze the size of dataset needed to obtain acceptable performance in Slovene

language and expect that findings will generalize to other languages. Further, as

our SloIE dataset is larger than existing IE datasets, our results are not directly

comparable to existing research, which was evaluated on smaller datasets. Our

evaluation will shed light on this question as well.

We approach the analysis by running a number of tests on subsets of SloIE

dataset. We randomly selected subsets of different sizes (100 %, 80%, 60%,

40%, 20%, and 10% percent) and re-ran the evaluations, repeating tests with

IEs from the training set (Section 5.1). We only tested our best model, MICE,

with Slovene ELMo embeddings. We show the results when classifying IEs from

the training set in Table 9. The results show that MICE performs well even

when using smaller datasets. The F1 score and CA slowly decrease with lower

numbers of training sentences and remain quite high even with smaller training

sets. This means that our approach could achieve good real-world performance

even with languages that do not have large annotated datasets. When classifying

IEs from outside the training set, the results did not significantly change with

lower dataset sizes.

Our final evaluation checks whether a balanced dataset improves the result.

The SloIE dataset is highly imbalanced (both in the number of examples per

IE and in the number of idiomatic and literal use cases of each expression).

This might make training neural networks difficult. To determine how much the

dataset imbalance effects the results we constructed a smaller, balanced dataset,

that contains the same amount of idiomatic/non-idiomatic sentences for each

expression. The balanced version of the dataset contains 5481 training sentences

and 2349 testing sentences across 75 IEs.

The balanced dataset is much smaller than the original dataset, and possibly

reduced performance may be due to a less training data. For a more fair

comparison, we also constructed a smaller, imbalanced dataset by taking a

25

ICT-29-2018 D1.6: Final cross-lingual embeddings

106 of 114



Table 9: The effect of dataset size on classification accuracy (CA) and F1 score using the

sentence-level classification task with IEs that appear in the training set, using MICE with

Slovene ELMo embeddings.

Sentences CA F1 score

27698 0.903 0.938

17449 0.906 0.0.942

9771 0.902 0.938

4787 0.870 0.934

2010 0.894 0.934

703 0.874 0.924

random subset of SloIE sentences for each expression equal in size to the balanced

dataset. The size and number of sentences for the imbalanced dataset was the

same as the balanced version.

We performed sentence-level classification on the two datasets, predicting IEs

present in the training set. The results of the classification are shown in Table

10. Results show that training the model on the balanced dataset did not lead

to an improved classification accuracy or F1 score. This indicates that MICE

is insensitive to this sort of imbalance and performs well even when trained on

imbalanced datasets.

Table 10: The effect of using a balanced dataset on classification accuracy and F1 score. The

evaluation was conducted as a sentence-level classification task with IEs appearing in the

training set, and using MICE with Slovene ELMo embeddings.

Dataset CA F1 score Default CA Default F1

Balanced 0.8011 0.766 0.500 0.667

Imbalanced 0.812 0.853 0.625 0.767
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6. Conclusion and Future Work

We showed that contextual word embeddings can be used with neural networks

to successfully detect IEs in text. When contextual embeddings (ELMo or

mBERRT) were used as the first layer of a neural network with the same

architecture as the existing MUMULS approach, we were able to obtain much

better results. While the existing approaches performed well on sentence-level

classification of IEs that were present in the training set, they failed on token-

level tasks and when detecting new IEs, not present in the training set. We

showed that using fine-tuned contextual word embeddings allows the network

to perform better on token-level classification and to successfully generalize to

IEs that were not present in the training set. This opens an opportunity for

successful treatment of IEs in many downstream applications. We published our

code and models under the CC licence3.

We evaluated our MICE approach on SloIE dataset, a new, large dataset

of Slovene idioms, as well as on the existing multilingual PARSEME datasets.

SloIE dataset, which we made publicly available4, is larger than most of existing

datasets, and should therefore be useful for further research into automatic

idiom detection. Additionally, we evaluated how the size of the dataset affects

the results and showed that our approaches perform well even when trained on

smaller datasets.

We show that contextual word embeddings are capable of generalizing to

other languages. When dealing with similar language pairs (e. g., Slovene-

Croatian), both the monolingual ELMo embeddings and the multilingual BERT

embeddings were capable of detecting idioms in Croatian text when trained only

on Slovene. The multilingual BERT model was able to detect idioms even in

some more distant languages, though with reduced classification accuracy and

F1 scores.

Our work could be improved and extended in multiple ways. We only used

3https://github.com/TadejSkvorc/MICE
4http://hdl.handle.net/11356/1335
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embeddings that were pretrained on general text and were not fine-tuned for the

specific task of detecting idiomatic language. Several authors have shown [35, 8]

that specializing embeddings for specific tasks can improve results on a variety

of NLP tasks. Several such approaches could be applied to our task and would

likely further improve the performance. Additionally, we intentionally used a

simple network architecture that could be improved in the future. Finally, to

put our models into a practical use, we intend to apply MICE models in the

task of IE lexicon construction.
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