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1 Introduction
The EMBEDDIA project aims to improve cross-lingual transfer of language resources and trained mod-
els using word embeddings and cross-lingual word embeddings. We presented the basic description of
embeddings and cross-lingual embeddings in D1.1 Datasets, benchmarks and evaluation metrics for cross-
lingual word embeddings, and the first stage of our work in D1.3 Initial context-dependent and dynamic em-
beddings technology. To make this document self-contained, we first repeat some basic explanations and
situate this work with respect to the state of the art in Section 1.1. Section 1.2 outlines the context of
this deliverable within the EMBEDDIA project and presents the structure of this report.

1.1 Embeddings and the state of the art

1.1.1 Introducing embeddings

To process text, neural networks require numerical representation of the given text (words, sentences,
documents), referred to as text embeddings. In this work we focus on word embeddings, which are rep-
resentations of words in numerical form, consisting of vectors of typically several hundred dimensions.
The vectors are used as an input to machine learning models; for complex language processing tasks
these are typically deep neural networks. These embedding vectors are learned from large monolingual
text collections (called corpora), originally by direct statistical inference: by characterising words in terms
of the words with which they co-occur, the representations exploit the distributional hypothesis that word
meaning is reflected in its context of use (Firth, 1957). Alternatively, and more commonly in the recent
work, embedding vectors can be derived using specialized learning tasks based on neural networks,
e.g., word2vec (Mikolov et al., 2013), GloVe (Pennington et al., 2014), or FastText (Bojanowski et al.,
2017). In either case, the resulting embeddings encode important information about word meaning as
distances between vectors, and capture semantic relations between words. Because of this, embed-
ding spaces also exhibit similar structures across languages, even when considering distant language
pairs like English and Vietnamese (Mikolov et al., 2013). This means that embeddings independently
produced from monolingual text resources can be aligned (Mikolov et al., 2013), resulting in a com-
mon cross-lingual representation, called cross-lingual embedding, which allows for fast and effective
integration of information in different languages.

1.1.2 Context-dependence

As described above, though, standard word embeddings fail to capture the fact that word meanings
depend on their context. During training of an embedding, all senses of a given polysemous word
(e.g., paper as a material, as a newspaper, as a scientific work, and as an exam) contribute relevant
information in proportion to their frequency in the training corpus. This causes the final vector to be
placed somewhere in the weighted middle of all these senses. Consequently, rare meanings of words
are poorly expressed, and the resulting vectors do not offer good semantic representations.

In conceiving the EMBEDDIA project, we anticipated that performance would be significantly improved
by making embedding models context-dependent and dynamic. The insight behind context-dependent mod-
elling is that word meaning depends on the particular context in which a word token appears: every us-
age of a word takes place in some sentential, lexical or discourse context and this has an effect on the
meaning that a reader or hearer takes it to have. A context-dependent model should therefore produce
a different vector representation for every occurrence of a word in a text. The intention behind dynamic
models, on the other hand, was the ability to model more general changes in those representations,
including the longer-term, more general changes in word meaning that happen over time or between
domains and genres. A dynamic model should therefore produce a different vector for a word type
depending on the time period or domain in which it occurs, but not necessarily for every word token oc-
currence within that period/domain. The two concepts are not mutually exclusive: an ideal embedding
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model might be both context-dependent and dynamic.

Indeed, much of the recent impressive progress in NLP has been based around embedding approaches
which are both context-dependent and dynamic according to these definitions, for example ELMo (Pe-
ters et al., 2018) and BERT (Devlin et al., 2019), These have now become standard in the state of the art,
giving very good performance across many NLP tasks, due to their combination of context-dependence
and the ability to incorporate large amounts of information via transfer learning and pre-training. As ex-
plained in Deliverables D1.2 and D1.3, most of our work here is therefore focused on using, analysing,
and improving upon these approaches, rather than developing our own from scratch.

1.2 Objectives and structure of the report

The objectives of workpackage WP1 of the EMBEDDIA project are to advance cross-lingual and context-
dependent word embeddings and test them with deep neural networks in the context of nine European
languages: English, Slovene, Croatian, Estonian, Lithuanian, Latvian, Russian, Finnish, and Swedish.
Within that, the specific objective of Task T1.2 is to advance context-dependent and dynamic embed-
dings technology. This report describes the results of T1.2. In the first 12 months, as described in D1.3
Initial context-dependent and dynamic embeddings technology, the main contributions of T1.2 were:

• experiments showing the need for robust, language-specific context-dependent embeddings;

• new improved ELMo embeddings for the EMBEDDIA languages;

• extrinsic evaluation of these new ELMo embeddings on two general NLP tasks (word analogy and
named entity recognition (NER));

• a new design for an intrinsic evaluation method for context-dependent embeddings, with a pilot
study for a new accompanying dataset CoSimLex.

Building on those, the main contributions described here are as follows:

• new BERT models for selected combinations of EMBEDDIA languages, described in Section 2 and
in the appended paper by Ulčar & Robnik-Šikonja (2020), published at the TSD 2020 conference;

• evaluation of these new BERT models, together with extended evaluation of the earlier ELMo
models, presented in Section 3.

• the completed multilingual CoSimLex dataset for intrinsic evaluation, described in Section 4 and
the paper by Armendariz, Purver, Ulčar, et al. (2020) published at the LREC 2020 conference, and
based on a new method for crowdsourcing high-quality context-dependent judgements, described
in the appended paper by Lau et al. (2020) published in the journal Transactions of the ACL;

• the results of running this evaluation method in a public SemEval shared task, Graded Word
Similarity in Context (GWSC), presented in Section 4.3 and in the appended paper by Armendariz,
Purver, Pollak, et al. (2020) published at the SemEval 2020 conference.

• a new method for dynamic composition of word embeddings to model how the meaning of a
sentence changes as it is incrementally processed, presented in Section 5 and in the appended
paper by Purver et al. (to appear).

The work reported in this deliverable (stemming from Task T1.2) is closely related to the work done
in Tasks T1.1 and T1.3, described in Deliverables D1.6 (Final cross-lingual embeddings technology)
and D1.8 (Final deep neural network architectures) respectively. However while Task T1.1 focuses
on methods for cross-lingual transfer, and Task T1.3 on the Deep Learning approaches themselves
and making them more suitable for morphologically rich languages, Task T1.2 focuses on the dynamic
and context-dependent properties of the embeddings produced. Together these tasks and deliverables
describe the core embedding technologies as a prerequisite for successful application of deep neural
networks in (cross-lingual) text processing.
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This report is split into six further sections. Section 2 describes the new ELMo and BERT embeddings
produced in this task, including the parameters and datasets used in their development. We then present
results of extrinsic evaluation for these models in Section 3, showing that they provide a new state of
the art for our target languages. Section 4 describes our novel approach to intrinsic evaluation with the
new CoSimLex dataset (Section 4.2), SemEval task results (Section 4.3) and the evaluation of our own
new models (Section 4.4), again showing very good performance for our target languages. Section 5
then describes some new directions in our work on dynamic embeddings. We present conclusions in
Section 6 where we also outline plans for further work. In addition, we list the software and models
developed and released as outputs in Section 7. The appendices then include the associated published
papers (Ulčar & Robnik-Šikonja, 2020; Ulčar & Robnik-Šikonja, 2020; Lau et al., 2020; Armendariz,
Purver, Ulčar, et al., 2020; Armendariz, Purver, Pollak, et al., 2020; Purver et al., to appear).

2 Existing and new context-dependent embeddings
The standard state-of-the-art approach to producing context-dependent embeddings is the use of lan-
guage models that are pre-trained on large corpora. The training task of a language model is to predict
a word, when given the word’s context. In some variants, the model is trained to predict the next word
when given the preceding sequence; in others, it must predict a missing (or masked) word within an oth-
erwise known sentence. Such a model is therefore context-dependent, as the representations it learns
must generate word embedding vectors for each occurrence of a word, not just for each given word type:
the same word in different contexts will be assigned different embeddings. In this section, we describe
ELMo (Peters et al., 2018) and BERT (Devlin et al., 2019) contextual models. These models can be
pre-trained on very large text datasets to produce high quality contextual embeddings, and these can
be used directly in a range of NLP tasks, or fine-tuned for them, in a form of transfer learning (Ruder et
al., 2019), in which the embeddings pre-trained on a general source task like language modelling bring
useful information about word meaning which can benefit a different target task. We describe existing
pre-computed models and the new ones we have generated for all EMBEDDIA languages.

2.1 ELMo

ELMo (Embeddings from Language Models) (Peters et al., 2018) is one of the state-of-the-art pretrained
transfer learning models. The ELMo model’s architecture consists of three neural network layers. The
output of the model after each layer gives one set of embeddings, altogether three sets. The first
network layer is convolutional (CNN) and operates on a character level. It is context independent, so
each word always gets the same embedding, regardless of its context. This layer is followed by two
biLM layers, which are context dependent. Although ELMo is trained on character-level input and is able
to handle out-of-vocabulary words, a vocabulary file containing the most common tokens is used for
efficiency during training and embedding generation. In NLP tasks, usually a weighted average of these
embeddings is used. The weights for merging the layers can be learned during the training of the model
for a specific task. Additionally, the entire ELMo model can be fine-tuned for a specific task.

2.1.1 Existing ELMo embeddings

The original ELMo model (Peters et al., 2018) was trained on a 1 billion word English corpus with a
vocabulary file of about 800,000 words. Later, ELMo models for other larger languages were trained,
like Chinese and Spanish. The ELMoForManyLangs project (Che et al., 2018) released pre-trained
ELMo models for many languages (Fares et al., 2017). These models, however, were trained on sig-
nificantly smaller datasets. They used 20 million words datasets. As reported in Deliverable D1.3 Initial
contextual embeddings, we trained our own models, since evaluations showed the ELMoForManyLangs
embeddings are significantly worse.
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2.1.2 Newly developed ELMo embeddings

To obtain contextual embeddings of sufficient quality for all EMBEDDIA languages except English and
Russian, we trained ELMo models for each of those languages; the resulting models have been de-
posited to the CLARIN repository and are publicly available (see Section 7). This work has already
been reported in deliverable D1.3 Initial contextual embeddings, and the details of the training are pre-
sented in Appendix A. However, in addition to the work done in deliverable D1.3, we now report further
evaluations of the trained ELMo models in Section 3 below.

This work is described in full in (Ulčar & Robnik-Šikonja, 2020), available as an accepted draft at the time
of Deliverable D1.3, now fully published and attached here as Appendix A.

2.2 BERT

The architecture of the BERT model (Devlin et al., 2019) is composed of 12 hidden layers of Trans-
former encoder cells of size 768 (Vaswani et al., 2017). BERT uses two training tasks: a masked
language model (MLM) attempts to predict randomly hidden tokens. A given percentage of tokens is
hidden/masked in the training dataset. The second training task is to predict whether two given sen-
tences are in consecutive order or not (although it can be trained to perform other tasks).

Unlike ELMo, BERT is not trained with a character level input, but uses subword tokens. Some very
common words are kept as single tokens, others are split into common stems, prefixes, etc. and some-
times down to single-letter tokens.

ELMo models are typically used to produce vectors, which are then used in downstream tasks. BERT
models on the other hand are generally finetuned as a whole model on a downstream task, with an
added head pertaining to the desired task (sentence classification, token classification, etc.)

2.2.1 Existing BERT models

The original BERT project offers pre-trained English, Chinese, Spanish, and multilingual models. The
multilingual BERT model (mBERT) is trained simultaneously on 104 languages, including all EMBEDDIA
languages, using very large amounts of data; it therefore provides a model in which the languages are
embedded in the same space, without requiring further explicit cross-lingual mapping; but may be sub-
optimal for any specific language or subset of languages.

Deriving from BERT, Liu et al. (2019) developed RoBERTa, which drops the training task, which predicts
whether two given sentences are consecutive or not. It keeps only masked token prediction. Unlike
BERT, which generates masked corpus as a training dataset in advance, RoBERTa randomly masks a
given percentage of tokens on the fly. That way, in each epoch, a different subset of tokens get masked.
Conneau et al. (2019) used RoBERTa architecture to train a massive multilingual model XLM-RoBERTa
(XLM-R), trained on 100 languages, akin to the multilingual BERT model.

An open source DeepPavlov library1 offers a specific Russian BERT model, just as for ELMo. Recently,
monolingual Finnish (FinBERT) (Virtanen et al., 2019), Estonian (EstBERT) (Tanvir et al., 2020) and
Latvian (LVBERT) (Znotin, š & Barzdin, š, 2020) BERT models were released.

2.2.2 Newly developed BERT models

At the start of this task, there were no language-specific BERT models for EMBEDDIA languages other
than the English and Russian versions mentioned above. We then trained new BERT models for EM-
BEDDIA languages. We decided to focus on trilingual models, featuring two similar languages and one

1https://github.com/deepmipt/DeepPavlov
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highly resourced language (English). Because these models are trained on a small number of lan-
guages, they better capture each of them and offer better monolingual performance. At the same time,
they can be used in a cross-lingual manner for knowledge transfer from a high resource language to a
low resource language.

We have trained three trilingual models, one on Slovene, Croatian and English data (CroSloEngual
BERT), one on Estonian, Finnish and English (FinEst BERT), and one on Latvian, Lithuanian and En-
glish (LitLat BERT). The models are now publicly available via the popular Huggingface library and for
individual download from CLARIN (see Section 7).

For each model we combined deduplicated corpora from all three languages. The corpora used to train
our BERT models are described in Section 2.3. The corpora are mostly the same as those used to train
ELMo models, but we added additional corpora for training LitLat BERT. To Latvian corpora we added
Saeima corpus (Dar ‘gis et al., 2018), Latvian part of DGT-UD corpus2 and Latvian articles from Ekspress
Meedia. Adding these corpora raised the total size of Latvian data from 0.27 billion tokens to 0.53 billion
tokens after deduplication.

FinEst BERT and CroSloEngual BERT were trained on BERT-base architecture. We used bert-vocab-
builder3 to produce wordpiece vocabularies (composed of subword tokens) from the given corpora. The
created wordpiece vocabularies contain 74,986 tokens for FinEst and 49,601 tokens for CroSloEngual
model. The training dataset is a masked corpus. We randomly masked 15% of the tokens in the corpus
and repeated the process 5 times, each time with different 15% of the tokens being masked. The dataset
is thus five times larger than the original corpora. On this data we trained our BERT models for about
40 epochs, which is approximately how much the multilingual BERT was trained for. The details of the
training are described in Appendix B.

LitLat BERT is based on the RoBERTa architecture. We opted for the RoBERTa approach because it has
since proven itself as more robust and better performing than BERT. It also offered two practical benefits
over original BERT approach. By dropping the next-sentence prediction training task, corpora shuffled
on the sentence level can easily be used. The second benefit is that it allows for training on multiple
GPUs out of the box, while BERT can only be trained on a single GPU, unless complex workarounds
are implemented.

We split the Lithuanian, Latvian and English corpora into three sets, train, eval and test. Train dataset
contains 99% of all the corpora, the other two sets contain 0.5% each. We used sentencepiece4 to pro-
duce subword byte-pair-encodings (BPE) from a given train dataset. The created subword vocabulary
contains 84,200 tokens. We have trained the model for 38 epochs5, with maximum sequence length
of 512 tokens. Just like with FinEst and CroSloEngual BERT, we randomly masked 15% of the tokens
during the training.

The FinEst BERT and CroSloEngual BERT work in this section is described in full in (Ulčar & Robnik-
Šikonja, 2020), attached here as Appendix B.

2.3 Training corpora

We reported the corpora used to train ELMo models for all the EMBEDDIA languages in Deliver-
able D1.3 Initial contextual embeddings. The corpora we used for training new BERT models is shown
in Table 1 for each language separately. The English dataset used in our BERT models is the same in
all of the models. The corpora is mostly the same as reported in deliverable D1.3. However, we added
some additional corpora. Some corpora are available online under permissive licences, some are avail-
able only for research, and some were provided by the project partners. Further details can be found in
Deliverable D1.1 Datasets, benchmarks and evaluation metrics for cross-lingual word embeddings.

2http://hdl.handle.net/11356/1197
3https://github.com/kwonmha/bert-vocab-builder
4https://github.com/google/sentencepiece
5the model has not been fully trained yet
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Table 1: The training corpora for BERT models and their total size (in billions of tokens) per language.

Language Corpora Size
Croatian hrWaC 2.1, Riznica, Styria articles 1.95
English 1 Billion Word Benchmark 0.8
Estonian CoNLL 2017, Ekspress Meedia articles 0.68
Finnish STT articles, CoNLL 2017, Ylilauta downloadable version 0.92
Latvian CoNLL 2017, DGT-UD, Saeima, Ekspress Meedia articles 0.53
Lithuanian Wikipedia 2018, DGT-UD, LtTenTen14 1.30
Slovene Gigafida 2.0 1.26

3 Extrinsic evaluation
In Deliverable D1.3 Initial contextual embeddings, we evaluated our new ELMo models on two tasks: word
analogy and named entity recognition (NER). In this report, while our ELMo models are the same as
reported in D1.3, we improve their evaluation on the NER task by improving the architecture of the
named entity recogniser and by comparing against one more reference model. We also evaluate the
ELMo models on a new task: dependency parsing. We then evaluate our new BERT models on two
evaluation tasks: named entity recognition (NER) and dependency parsing (DP), and compared their
performance with existing BERT models.

3.1 NER task

As described in Deliverable D1.1 Datasets, benchmarks and evaluation metrics for cross-lingual word embed-
dings, the labels we used in the NER datasets are simplified to a common set of three labels (person -
PER, location - LOC, organization - ORG), present in all the EMBEDDIA languages. Each word in the
NER dataset is labelled with one of the three labels or the label ‘O’ (i.e., Other, if it does not fit any of the
other three labels). Label frequencies in the datasets for each language are shown in Table 2.

Table 2: The number of words labelled with each of the named entity labels (PER, LOC, ORG) and the density of
these labels (their sum divided by number of all words) for datasets in all EMBEDDIA languages.

Language PER LOC ORG density
Croatian 10241 7445 11216 0.057
Estonian 8490 6326 6149 0.096
Finnish 3402 2173 11258 0.087
Latvian 5615 2643 3341 0.085
Lithuanian 2101 2757 2126 0.076
Slovenian 4478 2460 2667 0.049
Swedish 3976 1797 1519 0.047
English 17050 12316 14613 0.146
Russian 3293 2738 3635 0.107

3.1.1 ELMo

We embedded the text in the datasets with ELMo models to produce three vectors for each token. We
used the three ELMo vectors as the input of our recognition model. We first calculated a weighted aver-
age of them, where the weights were learned during the training. This was followed by two bidirectional
LSTM layers with 2048 LSTM cells. The final layer of our model was a time-distributed softmax layer
with 4 neurons. Details about training the NER models are described in Appendix A.

We present results using the Macro F1 score, that is the average of F1-scores for each of the three NE
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classes (the class Other is excluded). We compared the results of our ELMo emeddings with embed-
dings generated by ELMoForManyLangs embeddings in Table 3. In the same table we also present
the results achieved by using non-contextual fastText embeddings. Both ELMo variants significantly
outperform fastText embeddings on the task. On Latvian, ELMoForManyLangs and EMBEDDIA ELMo
embeddings perform equally well. On other languages, EMBEDDIA ELMo improve results over ELMo-
ForManyLangs baseline.

Table 3: The results of NER evaluation task. The scores are macro average F1 scores of the three named entity
classes, excluding score for class "Other". The columns show fastText and ELMoForManyLangs (EFML)
as baselines, and our new EMBEDDIA ELMo embeddings.

Language fastText EFML EMBEDDIA
Croatian 0.62 0.73 0.82
Estonian 0.79 0.89 0.91
Finnish 0.76 0.88 0.92
Latvian 0.62 0.83 0.83
Lithuanian 0.44 N/A 0.74
Slovenian 0.63 0.82 0.85
Swedish 0.75 0.85 0.88

3.1.2 BERT

We evaluated EMBEDDIA BERT models (CroSloEngual BERT and FinEst BERT) on the NER task by
finetuning the entire models with an added token classification head for this task. We used transform-
ers library by Huggingface (Wolf et al., 2020) to finetune the models on NER datasets for 3 epochs.
We compare our models with existing multilingual BERT models: multilingual BERT (mBERT), XLM-
RoBERTa, and with existing monolingual BERT models on appropriate languages: Finnish (FinBERT),
Estonian (EstBERT) and Latvian (LVBERT).

The results are presented in Table 4. CroSloEngual BERT outperforms all other evaluated models on
Croatian, Slovenian and English. FinEst BERT performs comparably to the FinBERT and beats all other
models on Finnish. On Estonian FinEst BERT outperforms all other evaluated models. LitLat BERT
outpeforms mBERT and XLM-R on Lithuanian. On Latvian, LitLat BERT achieves similar results as
XLM-R, with both of them beating mBERT. Monolingual EstBERT and LVBERT do not perform on par
with other models on their respective languages. Surprisingly, FinBERT performed better on Estonian
than EstBERT (0.876 and 0.872 macro F1 scores, respectively).

Table 4: The results of NER evaluation task for various BERT models. The scores are macro average F1 scores of
the three NE classes. NER models were fine-tuned from each of the BERT models. “MONO” represents
monolingual models (FinBERT for Finnish, EstBERT for Estonian, LVBERT for Latvian). We compare our
models CroSloEngual BERT (CSE), FinEst BERT and LitLat BERT against baseline mBERT, XLM-R and
monolingual (MONO) models.

EMBEDDIA
Language mBERT XLM-R MONO CSE FinEst LitLat
Croatian 0.790 0.817 - 0.884 - -
English 0.939 0.937 - 0.944 0.945 0.942
Estonian 0.898 0.908 0.872 - 0.927 -
Finnish 0.933 0.930 0.961 - 0.957 -
Latvian 0.830 0.865 0.797 - - 0.867
Lithuanian 0.797 0.817 - - - 0.852
Slovenian 0.897 0.914 - 0.920 - -
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3.2 Dependency parsing

Dependency parsing task (DP) attempts to predict the dependency tree structure of a given sentence.
The words in said sentence are arranged into the tree, based on the syntactical relations between them.
Each node in the tree represents one word and has at most one parent. The task also attempts to clas-
sify these relations with an appropriate label from a given set of labels (Jurafsky & Martin, 2009).

We trained dependency parsers on universal dependencies (UD) treebank datasets, version 2.3 (Nivre
et al., 2018). Specifically, we used the following datasets: SET for Croatian, EWT for English, EDT
for Estonian, TDT for Finnish, LVTB for Latvian, ALKSNIS for Lithuanian, GSD for Russian, SSJ for
Slovenian, and Talbanken for Swedish.

We present the results of dependency parsing task as unlabeled attachement score (UAS) and labeled
attachment score (LAS). The UAS score is defined as the proportion of tokens that are assigned the
correct parent in the tree (or are correctly identified as roots), while the LAS score is the proportion of
tokens that are assigned the correct head as well as the correct dependency relation label.

3.2.1 ELMo

To train dependency parsers using ELMo embeddings, we used SuPar tool by Yu Zhang.6 SuPar is
based on the deep biaffine attention (Dozat & Manning, 2017). We modified the SuPar tool to accept
ELMo embeddings on the input; specifically, we used the concatenation of the three ELMo vectors.
The modified code has been made publicly available (see Section 7). We trained the parser for 10
epochs for each language, using separately EMBEDDIA ELMo embeddings and ELMoForManyLangs
embeddings.

We use two evaluation metrics in the dependency parsing task, the unlabeled and labelled attachment
scores (UAS and LAS) on the test set. The UAS and LAS are standard accuracy metrics in DP. The
UAS score is defined as the proportion of tokens that are assigned the correct syntactic head, while
the LAS score is the proportion of tokens that are assigned the correct syntactic head as well as the
dependency label.

We present the results in Table 5. EMBEDDIA ELMo embeddings perform better than ELMoForMany-
Langs on all languages, for both metrics. We add the comparison between the original English ELMo
and English ELmoForManyLangs embeddings. The difference in performance between the models is
smallest on Latvian, English and Swedish. The relatively small improvement of our ELMo on Latvian can
be explained by the usage of a small training corpus. Neither English nor Swedish are morphologically
rich languages, which could explain the smaller improvement on those two languages.

Table 5: The ELMo embeddings quality measured on the dependency parsing task. Results are given as UAS
and LAS for EMBEDDIA ELMo and ELMoForManyLangs. For English, the original ELMo model is shown
instead of EMBEDDIA ELMo. There is no Lithuanian ELMoForManyLangs model.

ELMoForManyLangs EMBEDDIA ELMo
Language UAS LAS UAS LAS
English 0.903 0.863 0.905 0.872
Slovenian 0.856 0.777 0.937 0.914
Croatian 0.882 0.795 0.917 0.858
Finnish 0.883 0.834 0.908 0.869
Estonian 0.812 0.725 0.895 0.855
Latvian 0.872 0.808 0.889 0.828
Lithuanian - - 0.551 0.244
Swedish 0.880 0.831 0.897 0.851

6https://github.com/yzhangcs/parser
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3.2.2 BERT

Similarly to Section 3.2.1, we next used the SuPar tool to train a BERT-based dependency parser. We
extracted the vectors from the last four BERT layers and fed them to the input of the dependency parsing
model. We used the weighted average of the four vectors and trained for 10 epochs for each language,
using EMBEDDIA CroSloEngual, FinEst and LitLat BERT models. We compare the results with vectors
from multilingual BERT (mBERT) and XLM-RoBERTa (XLM-R) as reference.

Table 6: The BERT embeddings quality measured on the dependency parsing task, using vectors extracted from
last four layers of BERT. Results are given as UAS and LAS.

EMBEDDIA EMBEDDIA EMBEDDIA
mBERT XLM-R CroSloEngual FinEst LitLat

Language UAS LAS UAS LAS UAS LAS UAS LAS UAS LAS
Croatian 0.922 0.861 0.931 0.875 0.925 0.861 - - - -
Slovenian 0.927 0.898 0.947 0.927 0.930 0.896 - - - -
English 0.915 0.878 0.929 0.895 0.918 0.881 0.907 0.862 0.758 0.658
Estonian 0.849 0.791 0.893 0.849 - - 0.843 0.762 - -
Finnish 0.871 0.810 0.915 0.875 - - 0.862 0.777 - -
Latvian 0.841 0.758 0.897 0.836 - - - - 0.547 0.333
Lithuanian 0.569 0.263 0.522 0.228 - - - - 0.250 0.052

CroSloEngual BERT performs on par with mBERT, while FinEst BERT performs slightly worse than
mBERT. LitLat model performs badly on all languages, which can be partly explained by the fact that the
model has not been fully trained yet. However, XLM-RoBERTa significantly outperforms all of the other
BERT models on this task, except on Lithuanian. Full results are displayed in Table 6. Our own models
achieved very poor results on Lithuanian with all ELMo and BERT embeddings, which indicates a low
quality dataset, so the results on this language might not be the most representative.

However, while this method allows direct comparison between our BERT models and the ELMo models
from Section 3.2.1, it is not the optimum way to deploy BERT. BERT models are usually fully fine-
tuned on an end-task, and show better results that way than by extracting vectors from a pre-trained
BERT model and using them directly to train a classifier. We used the Udify tool (Kondratyuk & Straka,
2019) to train the dependency parsing classifier by fine-tuning the entire BERT models. We trained the
dependency parser for 80 epochs on the treebank data. We kept the tool parameters at default values,
except for "warmup_steps" and "start_step" values, which we changed to equal the number of training
batches in one epoch. The tool does not support finetuning RoBERTa-type models, so we were not able
to evaluate XLM-R and LitLat BERT models on this task.

Table 7: The BERT embeddings quality measured on the dependency parsing task by fine-tuning the whole BERT
models. Results are given as UAS and LAS.

EMBEDDIA EMBEDDIA
mBERT CroSloEngual FinEst

Language UAS LAS UAS LAS UAS LAS
Croatian 0.930 0.891 0.940 0.903 - -
Slovenian 0.938 0.922 0.957 0.947 - -
English 0.917 0.894 0.922 0.899 0.918 0.895
Estonian 0.880 0.848 - - 0.909 0.882
Finnish 0.898 0.867 - - 0.933 0.915

Results are shown in Table 7: CroSloEngual BERT now shows improvement over mBERT on all three
languages, with the highest improvement on Slovenian and only a marginal improvement on English.
FinEst BERT outperforms mBERT on Estonian and Finnish, with the biggest margin being on the Finnish
data. FinEst BERT and mBERT perform equally well on English data.
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Relative to multilingual BERT performance, EMBEDDIA BERT models perform significantly better when
fine-tuning the entire model than when extracting vectors from a pre-trained model.

The BERT results in this section are described in full in (Ulčar & Robnik-Šikonja, 2020), attached here as
Appendix B.

4 Intrinsic evaluation
In contrast with extrinsic evaluation, in which the embeddings are evaluated by their performance in
specific tasks, intrinsic evaluation focuses on properties of the embeddings themselves. Intrinsic eval-
uation of word embeddings is usually performed via word similarity and relatedness tests, in which
the distance between two embeddings produced by the model is compared against datasets contain-
ing ratings by human annotators. Exact metrics vary: for example, earlier datasets like WordSim-353
(Finkelstein et al., 2001) and MEN (Bruni et al., 2014) didn’t make a clear distinction between related-
ness and similarity, whereas the later SimLex-999 (Hill et al., 2015) made a point of making a clear
distinction between the two and focusing on similarity ratings. However, the main problem with these
datasets, and most intrinsic evaluation methods for embeddings to date, is that they do not take context
into account, but are based only on properties of words when seen in isolation: they are thus not suited
to evaluating the context-dependent embeddings of interest here. Some recent work has introduced
context-dependence, by measuring similarity between uses in different sentential contexts (Huang et
al., 2012; Pilehvar & Camacho-Collados, 2018). However, so far this has assumed that the object of
study for evaluation purposes is words with distinct discrete word senses; as such, it is not fully suitable
for evaluation of embedding models that assign different representations to words in all contexts, or the
ability of these models to reflect the subtle, graded changes in meaning that humans perceive. The
work presented in this section attempts to fill this gap.

Deliverable D1.3 (Initial context-dependent and dynamic embeddings) introduced the concept behind
this approach, and described initial pilot studies and a proposal for an evaluation task. Here, we present
the final approach, complete with multi-lingual public dataset and application both as a public shared
task and as an evaluation for the models described in Section 2 above.

4.1 Approach

Our new approach is based on the approach of SimLex-999 (Hill et al., 2015), in which the evaluation
focuses on the embedding model’s ability to predict human judgements of similarity between word pairs;
the novelty is that we move this to a context-dependent setting in which: (a) the pairs are presented in
context (so that the effect of context on similarity must be predicted); and (b) each pair is presented in
more than one different context (so that the change between contexts must be predicted).

Figure 1 shows an example. Systems are presented with a paragraph of text, and must predict human
judgements of similarity of two target words contained therein. The same target word pair is presented
in two different contexts, and thus paired with two corresponding different gold standard judgements.
A successful model must therefore accurately reflect human perceptions of the effect of context. In
contrast to existing approaches (Huang et al., 2012; Pilehvar & Camacho-Collados, 2018), in which
systems must only predict whether words have the same sense or not in different contexts, models
can now be evaluated on their ability to predict the graded, numerical measures of human similarity
perception; the changes that the change in context induces; or both.

4.2 Dataset: CoSimLex

In order to support this new approach to intrinsic evaluation of contextual embeddings we created a new
dataset, CoSimLex (Armendariz, Purver, Ulčar, et al., 2020). This dataset is based on pairs of words

14 of 113



ICT-29-2018 D1.7: Final contextual embeddings

Figure 1: Example from the English dataset, showing a word pair with two contexts, each with mean and standard
deviation of human similarity judgements. The original SimLex values for the same word pair without
context are shown for comparison. The P-Value shown is the result of a Mann-Whitney U test, showing
that the human judgements differ significantly between contexts.

Word1: man Word2: warrior SimLex: µ 4.72 σ 1.03
Context1 Context1: µ 7.88 σ 2.07
When Jaimal died in the war, Patta Sisodia took the command, but he too died in the battle. These young
men displayed true Rajput chivalry. Akbar was so impressed with the bravery of these two warriors that
he commissioned a statue of Jaimal and Patta riding on elephants at the gates of the Agra fort.
Context2 Context2: µ 3.27 σ 2.87
She has a dark past when her whole family was massacred, leaving her an orphan. By day, Shi Yeon
is an employee at a natural history museum. By night, she’s a top-ranking woman warrior in the Nine-
Tailed Fox clan, charged with preserving the delicate balance between man and fox.

P-Value: 1.3× 10−6

from SimLex-999 (Hill et al., 2015) to allow comparison with the context-independent case. For Croatian
and Finnish we use existing translations of SimLex-999 (Mrkšić et al., 2017; Venekoski & Vankka, 2017;
Kittask, 2019). In the case of Slovene, we produced our own new translation following Mrkšić et al.
(2017)’s methodology for Croatian. This Slovenian translation has been made publicly available via
CLARIN.7

CoSimLex consists of 340 word pairs in English, 112 in Croatian, 111 in Slovene and 24 in Finnish.
Each pair is rated within two different contexts, giving a total of 1174 scores of contextual similarity. Each
line of CoSimLex is made of a pair of words; two different contexts extracted from Wikipedia in which
these two words appear; two scores of similarity, each one related to one of the contexts, calculated as
the mean of annotator ratings for that context; two scores of standard deviation; the p-value given by
applying the Mann-Whitney U test to the two score distributions; and the four inflected forms of the words
exactly as they appear in the contexts (including case; note that in the morphologically rich languages,
many inflections are possible). To the best of our knowledge, this is the first reasonably sized dataset
in which differences in contextual similarity between two words are supported with a test of statistical
significance. Figure 1 shows an example from the English dataset.

4.2.1 Context selection

One main challenge was selecting two suitable real contexts in which to present each word pair. Con-
texts were extracted from each language’s Wikipedia; they are made of three consecutive sentences,
and contain the pair of words, appearing only once each. To maximise the likely difference in ratings
of similarity between contexts, we developed a two-stage process based on existing ELMo and BERT
models and human judges. In the first step, we used ELMo and BERT models to rate the similarity be-
tween the target words in context, and selected candidate contexts with the highest and lowest scores,
together with some randomly selected. The second step was performed by expert human annotators,
one per language, who were asked to select the two that, in their opinion, maximised the contrast in
similarity.

4.2.2 Annotation and pre-processing

The other major challenge was developing a process to collect reliable human judgements of similarity
in context. We based this on the instructions used for SimLex-999 (Hill et al., 2015), and for English
adopted their use of crowd-sourcing via Amazon Mechanical Turk, while for the less-resourced languages
where few crowd-source workers are available, we recruited annotators directly.

7http://hdl.handle.net/11356/1309
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The process of annotating ratings in context is relatively complex, and over a number of pilot studies we
discovered that obtaining good inter-rater agreement (IRA) depended on careful design of the interface
and process: in particular, it is crucial to maximise the annotators’ engagement with the context para-
graphs (particularly in the crowd-sourced setting where annotators are particularly keen to minimise the
time spent on any task). Through iterative design and pilot testing, we arrived at a two-step annota-
tion process: in the first step, annotators must read the context paragraph and perform a small task
which ensures that it has been properly read; only after completing that do they see the target words
highlighted in bold and are asked to rate their similarity. Reliability of annotation was also ensured by
an adapted version of SimLex-999’s post-processing method, which includes rating calibration and the
filtering of annotators with very low correlation to the rest.

As we can see in Table 8, the resulting CoSimLex datasets in the different languages show good IRA
correlation scores, very close to those of SimLex-999 (ρ = 0.77 vs ρ = 0.78 in English); show a high
percentage of statistically significant differences between contexts (62% of pairs overall); and show
very similar average change between contexts, even for the highly inflected languages. The CoSimLex
dataset is now available in the public repository CLARIN.8

Table 8: Similarity, standard deviation, Spearman’s ρ and change are average values. The two rightmost columns
denote the proportion of pairs whose differences of scores with the original values are statistically signifi-
cant at p-value < 0.1 and p-value < 0.05.

Dataset #pairs Sim StDev Spearman’s ρ Change (Abs) p < 0.1 p < 0.05
SimLex-999 999 4.56 1.27 0.78 - - -
English CoSimLex 340 5.54 2.24 0.77 2.16 65% 61%
Croatian CoSimLex 112 4.39 2.23 0.76 2.32 65% 54%
Slovene CoSimLex 111 4.90 2.17 0.77 1.96 59% 46%
Finnish CoSimLex 24 4.08 2.16 0.81 1.75 33% 29%

This work is described in full in two papers. Our method for crowdsourcing contextual judgements is
described in (Lau et al., 2020), attached here as Appendix C. The CoSimLex dataset itelf is described in
(Armendariz, Purver, Ulčar, et al., 2020), available as an accepted draft at the time of Deliverable D1.3, now
fully published and attached here as Appendix D.

4.3 SemEval2020 Task 3: Graded Word Similarity in Context

Our approach and dataset were put into practice as a public shared task, named Graded Word Similarity
in Context (GWSC).9 This was run as part of the 2020 edition of the SemEval challenge: SemEval (the In-
ternational Workshop on Semantic Evaluation) is an annual series of public challenges in the evaluation
of systems for computational semantics.10 The evaluation phase ran during February and March 2020;
we received 15 submissions from teams all over the world. A more detailed look at the outcomes can
be found in our task description paper (Armendariz, Purver, Pollak, et al., 2020) which was presented
in December at the 28th International Conference of Computational Linguistics (COLING’202011); 11
participating teams also presented papers about their submissions to our competition.

4.3.1 Subtasks and metrics

The task was multi-lingual, using the CoSimLex datasets in the four EMBEDDIA languages mentioned
above (English, Slovenian, Croatian and Finnish). System performance was evaluated using two inde-
pendent metrics, which measure different aspects of prediction quality:

8https://www.clarin.si/repository/xmlui/handle/11356/1308
9https://competitions.codalab.org/competitions/20905

10https://semeval.github.io/
11https://coling2020.org/
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Subtask 1 - Predicting Changes: The first aspect is the ability of a system to predict the change in similarity
ratings between the two contexts for each word pair. This is evaluated via the correlation between the
changes predicted by the system and those derived from human ratings. We use the uncentered
Pearson correlation: this gives a measure of accuracy of predicting relative magnitude of changes,
and allows for differences in scaling while maintaining the effect of direction of change (the stan-
dard centered correlation normalizes on the mean, so could give high values even when a system
predicts changes in the wrong direction, but with a similar distribution over examples).

CCuncentered =

∑n
i=1(xi )(yi )√

(
∑n

i=1 xi )
2(
∑n

i=1 yi )
2

Subtask 2 - Predicting Ratings: The second aspect is the ability to predict the absolute similarity rating
for each word pair in each context. This was evaluated using the harmonic mean of the Pear-
son and the Spearman correlation with gold-standard judgements, following the example of Se-
mEval2017 Task2: Multilingual and cross-lingual semantic word similarity (Camacho-Collados et
al., 2017).

Teams were able to submit different systems for each subtask and language pair. The baselines were
based on the multilingual version of the popular context-dependent model BERT. Additionally, we pro-
vided the results achieved by the ELMo models trained by the EMBEDDIA team.

4.3.2 Task submissions and rankings

The task received a total of 14 submissions for the first subtask and 15 submissions for the second.
From those, 11 teams submitted system description papers for review. As can be seen in tables 9 and
10, systems beat the baselines by significant margins, but few did well in more than one language or
subtask.

Table 9: Subtask 1 Final Ranking: The values are calculated as the Pearson Uncentered Correlation between the
system’s scores and the average human annotation. It represents the system’s ability to predict the change
in perception produced by the contexts. Since different annotators looked at each context, human perfor-
mance couldn’t be calculated for this subtask. JUSTMasters and UZH are not part of the official ranking
since they were able to optimise their systems with more than the competition’s limit of 9 submissions.

SUBTASK 1
English Croatian Slovene Finnish

Ferryman 0.774 BabelEnconding 0.74 Hitachi 0.654 will_go 0.772
will_go 0.768 Hitachi 0.681 BRUMS 0.648 Ferryman 0.745
MultiSem 0.76 BRUMS 0.664 BabelEnconding 0.646 BabelEnconding 0.726
LMMS 0.754 Ferryman 0.634 CiTIUS-NLP 0.624 BRUMS 0.671
BRUMS 0.754 LMMS 0.616 Ferryman 0.606 CiTIUS-NLP 0.671
Hitachi 0.749 will_go 0.597 will_go 0.603 MultiSem 0.593
BabelEnconding 0.73 CiTIUS-NLP 0.587 LMMS 0.56 Hitachi 0.574
CiTIUS-NLP 0.721 MineriaUNAM 0.374 MineriaUNAM 0.328 MineriaUNAM 0.389
MineriaUNAM 0.544 MultiSem - MultiSem - LMMS 0.36
JUSTMasters 0.738 0.44 0.512 0.546
UZH 0.765 - - -
mBERT_uncased 0.713 0.587 0.603 0.671
ELMo 0.570 0.662 0.452 0.550

A lot of the systems submitted were based on (or at least made use of) models inspired by BERT or
other Transformer based models. However we saw a variety of ideas on how best to leverage this
model’s power. Some teams found ways to make use of external knowledge: LMMS and AlexU-AUX-
BERT created sense embeddings using WordNet (Miller, 1995) as a guide. The approach worked very
well for English, but proved difficult to apply to other languages. Ferryman’s model finished first in the
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Table 10: Subtask 2 Final Ranking: The values are calculated as the harmonic mean of the Spearman and Pearson
correlation between the system’s scores and the average human annotation. It represents the system’s
ability to predict contextual human perception of similarity. Human performance is the average value
when comparing each annotator against the average of the rest. JUSTMasters is not part of the of-
ficial ranking since they were able to optimise their system with more than the competition’s limit of 9
submissions.

SUBTASK 2
English Croatian Slovene Finnish

MineriaUNAM 0.723 BabelEnconding 0.658 BabelEnconding 0.579 BRUMS 0.645
LMMS 0.72 Hitachi 0.616 BRUMS 0.573 BabelEnconding 0.611
AlexU-Aux-Bert 0.719 MineriaUNAM 0.613 CiTIUS-NLP 0.538 MineriaUNAM 0.597
MultiSem 0.718 LMMS 0.565 will_go 0.516 MultiSem 0.492
BRUMS 0.715 BRUMS 0.545 AlexU-Aux-Bert 0.516 Ferryman 0.357
will_go 0.695 CiTIUS-NLP 0.496 Hitachi 0.514 LMMS 0.354
Hitachi 0.695 AlexU-Aux-Bert 0.402 MineriaUNAM 0.487 will_go 0.35
CiTIUS-NLP 0.687 will_go 0.402 LMMS 0.483 Hitachi 0.335
BabelEnconding 0.634 Ferryman 0.397 Ferryman 0.345 CiTIUS-NLP 0.289
Ferryman 0.437 MultiSem - MultiSem - AlexU-Aux-Bert 0.289
JUSTMasters 0.725 0.443 0.44 0.68
mBERT_uncased 0.573 0.402 0.516 0.289
ELMo 0.510 0.529 0.407 0.516
Human 0.77 0.76 0.77 0.81

English subtask 1 by feeding the TF-IDF score of the words in the contexts to their BERT inspired model
during training.

Some teams worked on ways to increase the data available to the model. The MultiSem team created
five new datasets in order to fine-tune their BERT models. Most of them were automatically generated
from previous datasets to increase contextual influence. With a very multiligual approach, BabelEncond-
ing translated the contexts and target words to many languages and fed them to their models. They
reasoned that, in addition to increasing the amount of data available, the translation could help with
things like word sense disambiguation when two senses are actually a different word in some of the
languages. It worked especially well for the less resourced languages.

Another group of submissions focused on testing a variety of models and parameters and combining
them in different ways, often to create stacked embeddings. The BRUMS,Hitachi and JUSTMasters teams
fall in this category. Finally MineriaUNAM used K-Means inspired centroids to modify the original SimLex-
999 non contextualised similarity scores. It delivered great results for the English subtask 2, which they
won, but it would be great to see the same ideas applied in a way that doesn’t depend on the original
human annotation.

Many of the improvements in performance seen in these submissions were dependent on additional
resources like WordNet, customised datasets and previous human annotations. Sadly this makes these
approaches very difficult to apply to less resourced languages. A notable exception was the submission
by the BabelEnconding team which, in addition to the great performance of the system, led us to award
them with the best paper of SemEval2020 Task 3.

This work is described in full in (Armendariz, Purver, Pollak, et al., 2020), attached here as Appendix E.

4.4 Intrinsic evaluation of EMBEDDIA embeddings

As administrators of the task, we did not take part in the competition; but can now use the same method
to evaluate and compare our new EMBEDDIA models described in Sections 2 and 3 above. As we can
see in Tables 11 and 12, our ELMo models outperformed the existing "ELMo for many languages" (Che
et al., 2018) in every subtask and language. The difference is more significant for Croatian and Slovene.
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As we saw with the SemEval task baselines, the Transformer-based BERT models do significantly better
than ELMo. Our BERT models, trained in a small selection of related languages, did much better than
the existing multilingual BERT (mBERT), which was trained in a large number of different languages.
Croatian and Slovene were again the two languages that benefited the most.

Comparing with the submissions for the SemEval2020 task, our BERT models would have finished first
in both subtasks for Slovene, second in both for Croatian, and fourth in both for Finnish. It is important
to note that our models are trained as general language model embeddings, rather than being specially
optimised for this specific task like some of the SemEval task submissions. While some of the SemEval
approaches do not seem very well suited to less-resourced languages, as discussed above, others might
be more appropriate (e.g. BabelEnconding’s use of simultaneous multiple-language embeddings) - it will
be interesting to see if techniques like this can help improve performance in other NLP tasks.

Table 11: Subtask 1. Uncentered Spearman Correlation.

Model English Croatian Slovene Finnish
ELMo
models

ELMoForManyLangs 0.556 0.520 0.467 0.403
EMBEDDIA ELMo 0.570 0.662 0.550 0.452

BERT
models

mBERT_uncased 0.713 0.587 0.603 0.671
EMBEDDIA CroSloEng BERT 0.719 0.715 0.673 -

EMBEDDIA FinEst BERT 0.692 - - 0.672

Table 12: Subtask 2. Harmonic mean of the Spearman and Pearson correlations.

Model English Croatian Slovene Finnish
ELMo
models

ELMoForManyLangs 0.449 0.433 0.328 0.403
EMBEDDIA ELMo 0.510 0.529 0.516 0.407

BERT
models

mBERT_uncased 0.573 0.443 0.516 0.289
EMBEDDIA CroSloEng BERT 0.601 0.642 0.589 -

EMBEDDIA FinEst BERT 0.591 - - 0.533

5 New directions in dynamic embeddings
As outlined in Deliverable D1.3, the strong performance of contextual embedding models such as BERT,
which can be pre-trained on general language modelling tasks on very large amounts of text and then
fine-tuned for specific tasks, have quickly made them the predominant state-of-the-art approach in most
NLP tasks. However, the notion of context-dependence that they incorporate is a restricted one of the
context of a word within a surrounding word sequence (usually a sentence), and this leaves open some
questions about how to model other notions of context. In this section, we briefly outline some of our
work into other directions.

5.1 Short-term context: incremental parsing

Models such as ELMo and BERT assume that sentential context is always available: a word is repre-
sented and modelled within the context of an entire surrounding word sequence, either by bidirectional
sequence modelling (ELMo) or omnidirectional connection (BERT). A rather different notion of con-
text is required for models of human language processing, particularly when viewed in the context of
spoken language (as is required in dialogue systems): humans process language incrementally, left-
to-right, with words understood and produced in the evolving context of the words heard or spoken so
far. ELMo/BERT-style approaches are therefore not suitable as models, and approaches that might suit
a left-to-right setting (e.g. unidirectional LSTMs) are not generally designed to produce representations
which match the incrementality of human perception.
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Our initial work in this direction aims to develop a model in which embeddings for an incrementally
developing sentence can be calculated by a compositional process which combines the static em-
beddings of the constituent words in a left-to-right way, producing a suitable representation at each
stage. Although currently implemented only for simple sentences, the composition depends on seman-
tic predicate-argument relations and thus can be transferred in principle to any language into which the
grammar can be transferred. Results show that its ability to incrementally disambiguate word senses
outperforms that of the standard approach used to combine static word embeddings (simple addition)
- see Figure 2. In future work we plan to investigate how this approach can be integrated with the
standard context-dependence of ELMo/BERT-style models.

Figure 2: Mean verb disambiguation accuracy, as incremental parsing proceeds left-to-right through “S V O” sen-
tences in the dataset of (Kartsaklis et al., 2013). The dotted line is the baseline standard addition method;
the others show variants of our approach. Note that the sum/copy-obj and identity/copy-obj methods give
identical average accuracy on this dataset, and thus share a line on the graph.

This work is described in full in (Purver et al., to appear), attached here as Appendix F.

5.2 Long-term context: topic and diachronic shift

Longer-term notions of context beyond the immediate sentence are required if we are to model medium-
term effects (such as the effects of topic and salience on how words are interpreted within a particular
document or conversation) and very long-term effects (such as the diachronic shift in word meaning as
usage changes over the years).

Topic and salience effects We are currently approaching the problem of topic and salience in two
ways. First, within this work package, we are analysing the ability of salience-based models to predict
the contextual effects measured by our new CoSimLex dataset and evaluation task. Models such as that
of McGregor et al. (2015) and Schockaert & Lee (2015) provide ways to identify subspaces within gen-
eral embeddings spaces, and these can be used to emphasise particular salient parts of the meaning
space, without the complexity of a BERT-like model. Our initial experiments using standard word2vec
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embeddings in this way shows that positive correlations are achieved in our GWSC Subtask 1 evaluation
(prediction of change direction); but currently this method fails to give good performance on Subtask 2
(prediction of absolute similarity ratings). We are continuing to investigate different variants.

Second, within WP4 and WP5, we are exploring the combination of topic models with BERT-style lan-
guage models in order to better account for the effect of topical context on predictions; this will be
described in the forthcoming Deliverables D3.4 (Final cross-lingual context and opinion analysis tech-
nology) and D4.5 (Final real-time multilingual news linking technology).

Diachronic effects An even longer-term notion of topic is important in diachronic analysis: modelling
the changes in meaning and use of words over periods of years or centuries. Deliverable D1.3 described
some of our initial work in this direction, in which we used mappings between time-specific embed-
dings spaces to model such changes. However, as described there, the availability of ELMo/BERT-style
models changed our approach; we have since developed new ways of using those models to model
diachronic effects, and work now performed in WP4 applies these using the models developed in Sec-
tion 2; this will be described in the forthcoming Deliverable D4.7 (Final cross-lingual news viewpoints
identification technology).

6 Conclusions and further work
This report summarizes the the work on contextual and dynamic embeddings performed in T1.2 of the
EMBEDDIA project, with a focus on the second year.

As pointed out in the previous deliverable D1.3 (Initial context-dependent and dynamic embeddings), new
developments since the EMBEDDIA project was proposed have produced effective models which are
both context-dependent and dynamic. Our work here is therefore concentrated on the two most popular
models that are able to produce contextual embeddings, ELMo and BERT. We developed new ELMo
embeddings for our project languages, as presented in deliverable D1.3; here, we evaluate them against
previously existing ELMoForManyLangs embeddings on two tasks, NER and dependency parsing, and
show that they improve performance on both. We then present our newly trained trilingual BERT mod-
els and evaluate them on the same two tasks: our models perform significantly better than existing
multilingual models, trained on 100 or more languages, and on par with or better than existing mono-
lingual models. In future work we plan to explore training BERT models with different combinations of
languages as well as our own monolingual models.

In deliverable D1.3 we introduced our goal to produce resources to allow for the intrinsic evaluation of
contextual embeddings. Both the shared competition (SemEval2020 Task3: Graded Word Similarity in
Context) and the dataset that enabled it (CoSimLex) were successfully finished during the second year.
Here, we describe the new context-dependent approach it introduces, the metrics used for their evalua-
tion, the annotation process and the CoSimLex dataset itself in English, Croatian, Slovene and Finnish.
We describe the results of the public SemEval task, including the performance relative to baselines we
created and the variety of submissions we received. We then apply this approach to evaluating our
own EMBEDDIA ELMo and BERT models, showing that they outperform existing multilingual ELMo and
BERT models, and that they would have performed competitively in the task itself.

Work in T1.2 will continue to build BERT monolingual embeddings for selected EMBEDDIA languages,
and evaluating our models. More significantly, its outputs are now being taken forward in other EMBED-
DIA work packages to enable cross-lingual and multilingual work and improved results, particularly in
comment analysis (WP3), news article analysis (WP4) and software tools for the media industry (WP6).
That work will be reported in later deliverables from the corresponding work packages.
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7 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
ELMo embeddings hdl.handle.net/11356/1277 Public (GPL v3)

CroSloEng BERT embeddings huggingface.co/EMBEDDIA/crosloengual-bert Public(CC-BY 4.0)
FinEstEng BERT embeddings huggingface.co/EMBEDDIA/finest-bert Public(CC-BY 4.0)
LatLitEng BERT embeddings huggingface.co/EMBEDDIA/litlat-bert Public(CC-BY 4.0)

Crosslingual NER github.com/EMBEDDIA/crosslingual-NER Public (GPL v3)
SuPAR ELMo dependency parser github.com/EMBEDDIA/supar-elmo Public (GPL v3)

CoSimLex dataset http://hdl.handle.net/11356/1308 Public (CC-BY-SA)
Slovenian SimLex http://hdl.handle.net/11356/1309 Public (CC-BY-SA)

BERT models are also available as individual downloads from CLARIN: please see also the project web-
site Outputs page at embeddia.eu/outputs which gives links to all pre-trained models and datasets.

Parts of this work are also described in detail in the following publications, which are attached to this
deliverable as appendices:

Citation Status Appendix
Ulčar, M. and M. Robnik-Šikonja (2020). "High Quality ELMo
Embeddings for Seven Less-Resourced Languages". Proceed-
ings of the 12th Language Resources and Evaluation Conference
(LREC 2020).

Published Appendix A

Ulčar, M. and M. Robnik-Šikonja (2020). “FinEst BERT and
CroSloEngual BERT: less is more in multilingual models.” Pro-
ceedings of Text, Speech, and Dialogue (TSD 2020).

Published Appendix B

Lau, J.H., C.S. Armendariz, S. Lappin, M. Purver, and C. Shu
(2020). “How Furiously Can Colorless Green Ideas Sleep? Sen-
tence Acceptability in Context”. Transactions of the Association
for Computational Linguistics 8: 296–310.

Published Appendix C

Armendariz, C.S., M. Purver, M. Ulčar, S. Pollak, N. Ljubešić,
M. Robnik-Šikonja, M. Granroth-Wilding, and K. Vaik (2020).
“CoSimLex: A Resource for Evaluating Graded Word Similarity
in Context”. Proceedings of the 12th Language Resources and
Evaluation Conference (LREC 2020).

Published Appendix D

Armendariz, C.S., M. Ulčar, S. Pollak, N. Ljubešić, M. Robnik
Šikonja, M. Granroth-Wilding, M. T. Pilehvar, I. Vulić, and M.
Purver (2020). “SemEval 2020 Task 3: Graded Word Similar-
ity in Context”. In: Proceedings of the International Workshop on
Semantic Evaluation (SemEval 2020).

Published Appendix E

Purver, M., M. Sadrzadeh, R. Kempson, G. Wijnholds, and J.
Hough (2021). Incremental composition in distributional seman-
tics. Journal of Logic, Language and Information (to appear).

Accepted Appendix F
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Abstract
Recent results show that deep neural networks using contextual embeddings significantly outperform non-contextual embeddings on
a majority of text classification tasks. We offer precomputed embeddings from popular contextual ELMo model for seven languages:
Croatian, Estonian, Finnish, Latvian, Lithuanian, Slovenian, and Swedish. We demonstrate that the quality of embeddings strongly
depends on the size of the training set and show that existing publicly available ELMo embeddings for listed languages shall be
improved. We train new ELMo embeddings on much larger training sets and show their advantage over baseline non-contextual fastText
embeddings. In evaluation, we use two benchmarks, the analogy task and the NER task.

Keywords: word embeddings, contextual embeddings, ELMo, less-resourced languages, analogy task, named entity recognition

1. Introduction
Word embeddings are representations of words in numer-
ical form, as vectors of typically several hundred dimen-
sions. The vectors are used as an input to machine learn-
ing models; for complex language processing tasks these
are typically deep neural networks. The embedding vec-
tors are obtained from specialized learning tasks, based on
neural networks, e.g., word2vec (Mikolov et al., 2013b),
GloVe (Pennington et al., 2014), fastText (Bojanowski et
al., 2017), ELMo (Peters et al., 2018), and BERT (Devlin
et al., 2019). For training, the embeddings algorithms use
large monolingual corpora that encode important informa-
tion about word meaning as distances between vectors. In
order to enable downstream machine learning on text un-
derstanding tasks, the embeddings shall preserve semantic
relations between words, and this is true even across lan-
guages.
Probably the best known word embeddings are produced by
the word2vec method (Mikolov et al., 2013c). The problem
with word2vec embeddings is their failure to express poly-
semous words. During training of an embedding, all senses
of a given word (e.g., paper as a material, as a newspa-
per, as a scientific work, and as an exam) contribute rel-
evant information in proportion to their frequency in the
training corpus. This causes the final vector to be placed
somewhere in the weighted middle of all words’ meanings.
Consequently, rare meanings of words are poorly expressed
with word2vec and the resulting vectors do not offer good
semantic representations. For example, none of the 50 clos-
est vectors of the word paper is related to science1.
The idea of contextual embeddings is to generate a dif-
ferent vector for each context a word appears in and the
context is typically defined sentence-wise. To a large ex-
tent, this solves the problems with word polysemy, i.e. the
context of a sentence is typically enough to disambiguate
different meanings of a word for humans and so it is for the

1This can be checked with a demo showing words corre-
sponding to near vectors computed with word2vec from Google
News corpus, available at http://bionlp-www.utu.fi/
wv_demo/.

learning algorithms. In this work, we describe high-quality
models for contextual embeddings, called ELMo (Peters
et al., 2018), precomputed for seven morphologically rich,
less-resourced languages: Slovenian, Croatian, Finnish, Es-
tonian, Latvian, Lithuanian, and Swedish. ELMo is one of
the most successful approaches to contextual word embed-
dings. At time of its creation, ELMo has been shown to
outperform previous word embeddings (Peters et al., 2018)
like word2vec and GloVe on many NLP tasks, e.g., ques-
tion answering, named entity extraction, sentiment analy-
sis, textual entailment, semantic role labeling, and corefer-
ence resolution. While recently much more complex mod-
els such as BERT (Devlin et al., 2019) have further im-
proved the results, ELMo is still useful for several reasons:
its neural network only contains three layers and the explicit
embedding vectors are therefore much easier to extract, it
is faster to train and adapt to specific tasks.
This report is split into further five sections. In section 2,
we describe the contextual embeddings ELMo. In Section
3, we describe the datasets used, and in Section 4 we de-
scribe preprocessing and training of the embeddings. We
describe the methodology for evaluation of created vectors
and the obtained results in Section 5. We present conclu-
sion in Section 6 where we also outline plans for further
work.

2. ELMo
Standard word embeddings models or representations, such
as word2vec (Mikolov et al., 2013b), GloVe (Pennington et
al., 2014), or fastText (Bojanowski et al., 2017), are fast
to train and have been pre-trained for a number of differ-
ent languages. They do not capture the context, though, so
each word is always given the same vector, regardless of
its context or meaning. This is especially problematic for
polysemous words. ELMo (Embeddings from Language
Models) embedding (Peters et al., 2018) is one of the state-
of-the-art pretrained transfer learning models, that remedies
the problem and introduces a contextual component.
ELMo model‘s architecture consists of three neural net-
work layers. The output of the model after each layer gives
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one set of embeddings, altogether three sets. The first layer
is a CNN layer, which operates on a character level. It is
context independent, so each word always gets the same
embedding, regardless of its context. It is followed by two
biLM layers. A biLM layer consists of two concatenated
LSTMs. In the first LSTM, we try to predict the following
word, based on the given past words, where each word is
represented by the embeddings from the CNN layer. In the
second LSTM, we try to predict the preceding word, based
on the given following words. The second LSTM is equiv-
alent to the first LSTM, just reading the text in reverse.
In NLP tasks, any set of these embeddings may be used;
however, a weighted average is usually employed. The
weights of the average are learned during the training of the
model for the specific task. Additionally, an entire ELMo
model can be fine-tuned on a specific end task.
Although ELMo is trained on character level and is able
to handle out-of-vocabulary words, a vocabulary file con-
taining most common tokens is used for efficiency during
training and embedding generation. The original ELMo
model was trained on a one billion word large English cor-
pus, with a given vocabulary file of about 800,000 words.
Later, ELMo models for other languages were trained as
well, but limited to larger languages with many resources,
like German and Japanese.

2.1. ELMoForManyLangs
Recently, ELMoForManyLangs (Che et al., 2018) project
released pre-trained ELMo models for a number of differ-
ent languages (Fares et al., 2017). These models, however,
were trained on significantly smaller datasets. They used
20-million-words data randomly sampled from the raw text
released by the CoNLL 2017 Shared Task - Automatically
Annotated Raw Texts and Word Embeddings (Ginter et
al., 2017), which is a combination of Wikipedia dump and
common crawl. The quality of these models is question-
able. For example, we compared the Latvian model by EL-
MoForManyLangs with a model we trained on a complete
Latvian corpus (wikidump + common crawl), which has
about 280 million tokens. The difference of each model on
the word analogy task is shown in Figure 1 in Section 5.
As the results of the ELMoForManyLangs embeddings are
significantly worse than using the full corpus, we can con-
clude that these embeddings are not of sufficient quality.
For that reason, we computed ELMo embeddings for seven
languages on much larger corpora. As this effort requires
access to large amount of textual data and considerable
computational resources, we made the precomputed models
publicly available by depositing them to Clarin repository2.

3. Training Data
We trained ELMo models for seven languages: Slove-
nian, Croatian, Finnish, Estonian, Latvian, Lithuanian and
Swedish. To obtain high-quality embeddings, we used large
monolingual corpora from various sources for each lan-
guage. Some corpora are available online under permissive
licences, others are available only for research purposes or
have limited availability. The corpora used in training are

2http://hdl.handle.net/11356/1277

a mix of news articles and general web crawl, which we
preprocessed and deduplicated. Below we shortly describe
the used corpora in alphabetical order of the involved lan-
guages. Their names and sizes are summarized in Table 1.
Croatian dataset includes hrWaC 2.1 corpus3 (Ljubešić
and Klubička, 2014), Riznica4 (Ćavar and Bro-
zović Rončević, 2012), and articles of Croatian branch of
Styria media house, made available to us through partner-
ship in a joint project5. hrWaC was built by crawling the
.hr internet domain in 2011 and 2014. Riznica is composed
of Croatian fiction and non-fiction prose, poetry, drama,
textbooks, manuals, etc. The Styria dataset consists of
570,219 news articles published on the Croatian 24sata
news portal and niche portals related to 24sata.
Estonian dataset contains texts from two sources, CoNLL
2017 Shared Task - Automatically Annotated Raw Texts
and Word Embeddings6 (Ginter et al., 2017), and news ar-
ticles made available to us by Ekspress Meedia due to part-
nership in the project. Ekspress Meedia dataset is com-
posed of Estonian news articles between years 2009 and
2019. The CoNLL 2017 corpus is composed of Estonian
Wikipedia and webcrawl.
Finnish dataset contains articles by Finnish news agency
STT7, Finnish part of the CoNLL 2017 dataset, and Ylilauta
downloadable version8 (Ylilauta, 2011). STT news articles
were published between years 1992 and 2018. Ylilauta is a
Finnish online discussion board; the corpus contains parts
of the discussions from 2012 to 2014.
Latvian dataset consists only of the Latvian portion of
the ConLL 2017 corpus, which is composed of Latvian
Wikipedia and general webcrawl of Latvian webpages.
Lithuanian dataset is composed of Lithuanian Wikipedia
articles from 2018, Lithuanian part of the DGT-UD cor-
pus9, and LtTenTen10. DGT-UD is a parallel corpus of
23 official languages of the EU, composed of JRC DGT
translation memory of European law, automatically anno-
tated with UD-Pipe 1.2. LtTenTen is Lithuanian web cor-
pus made up of texts collected from the internet in April
2014 (Jakubı́ček et al., 2013).
Slovene dataset is formed from the Gigafida 2.0 corpus
(Krek et al., 2019) of standard Slovene. It is a general lan-
guage corpus composed of various sources, mostly news-
papers, internet pages, and magazines, but also fiction and
non-fiction prose, textbooks, etc.
Swedish dataset is composed of STT Swedish articles and
Swedish part of CoNLL 2017. The Finnish news agency
STT publishes some of its articles in Swedish language.
They were made available to us through partnership in a
joint project. The corpus contains those articles from 1992
to 2017.

3http://hdl.handle.net/11356/1064
4http://hdl.handle.net/11356/1180
5http://embeddia.eu
6http://hdl.handle.net/11234/1-1989
7http://urn.fi/urn:nbn:fi:lb-2019041501
8http://urn.fi/urn:nbn:fi:lb-2016101210
9http://hdl.handle.net/11356/1197

10https://www.sketchengine.eu/
lttenten-lithuanian-corpus/
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Language Corpora Size Vocabulary size
Croatian hrWaC 2.1, Riznica, Styria articles 1.95 1.4
Estonian CoNLL 2017, Ekspress Meedia articles 0.68 1.2
Finnish STT articles, CoNLL 2017, Ylilauta downloadable version 0.92 1.3
Latvian CoNLL 2017 0.27 0.6
Lithuanian Wikipedia 2018, DGT-UD, LtTenTen14 1.30 1.1
Slovene Gigafida 2.0 1.26 1.4
Swedish CoNLL 2017, STT articles 1.68 1.2

Table 1: The training corpora used. We report their size (in billions of tokens), and ELMo vocabulary size (in millions of
tokens).

4. Preprocessing and Training
Prior to training the ELMo models, we sentence and word
tokenized all the datasets. The text was formatted in such
a way that each sentence was in its own line with tokens
separated by white spaces. CoNLL 2017, DGT-UD and
LtTenTen14 corpora were already pre-tokenized. We tok-
enized the others using the NLTK library11 and its tokeniz-
ers for each of the languages. There is no tokenizer for
Croatian in NLTK library, so we used Slovene tokenizer in-
stead. After tokenization, we deduplicated the datasets for
each language separately, using the Onion (ONe Instance
ONly) tool12 for text deduplication. We applied the tool
on paragraph level for corpora that did not have sentences
shuffled and on sentence level for the rest. We considered
9-grams with duplicate content threshold of 0.9.
For each language we prepared a vocabulary file, contain-
ing roughly one million most common tokens, i.e. tokens
that appear at least n times in the corpus, where n is be-
tween 15 and 25, depending on the dataset size. We in-
cluded the punctuation marks among the tokens. We trained
each ELMo model using the default values used to train the
original English ELMo (large) model.
ELMo models were trained on machines with either two or
three Nvidia GeForce GTX 1080 Ti GPUs. The training
took roughly three weeks for each model. The exact time
depended on the number of GPUs, size of the corpus, and
other tasks running concurrently on the same machine.

5. Evaluation
We evaluated the produced ELMo models for all languages
using two evaluation tasks: a word analogy task and named
entity recognition (NER) task. Below, we first shortly de-
scribe each task, followed by the evaluation results.

5.1. Word Analogy Task
The word analogy task was popularized by Mikolov et al.
(2013c). The goal is to find a term y for a given term x
so that the relationship between x and y best resembles the
given relationship a : b. There are two main groups of
categories: 5 semantic, and 10 syntactic. To illustrate a
semantic relationship in the category ”capitals and coun-
tries”, consider for example that the word pair a : b is given
as “Finland : Helsinki”. The task is to find the term y
corresponding to the relationship “Sweden : y”, with the

11https://www.nltk.org/
12http://corpus.tools/wiki/Onion

expected answer being y = Stockholm. In syntactic cat-
egories, the two words in a pair have a common stem (in
some cases even same lemma), with all the pairs in a given
category having the same morphological relationship. For
example, in the category “comparative adjective”, given the
word pair “long : longer”, we have an adjective in its base
form and the same adjective in a comparative form. That
task is to find the term y corresponding to the relationship
“dark : y”, with the expected answer being y = darker, that
is a comparative form of the adjective dark.
In the vector space, the analogy task is transformed into
search for nearest neighbours using vector arithmetic, i.e.
we compute the distance between vectors: d(vec(Finland),
vec(Helsinki)) and search for the word y which would give
the closest result in distance d(vec(Sweden), vec(y)). In the
analogy dataset the analogies are already pre-specified, so
we are measuring how close are the given pairs. In the eval-
uation below we use analogy datasets by Ulčar and Robnik-
Šikonja (2019), which are based on the dataset by Mikolov
et al. (2013a) and are available at Clarin repository (Ulčar
et al., 2019).
As each instance of analogy contains only four words with-
out any context, the contextual models (such as ELMo) do
not have enough context to generate sensible embeddings.
We tackled this issue with two different approaches.

5.1.1. Average over Word Embeddings
In the first approach, we calculated ELMo embeddings for
each token of a large corpus and then averaged the vectors
of all the occurences of each word, effectively creating non-
contextual word embeddings. For each language, we used
language specific Wikipedia as the corpus. The positive
side of this approach is that it accounts for many differ-
ent occurences of each word in various contexts and thus
provides sensible embeddings. The downsides are that by
averaging we lose context information, and that the process
is lengthy, taking several days per language. We performed
this approach on three languages: Croatian, Slovenian and
English. We used these non-contextual ELMo embeddings
in the word analogy task in the same way as any other non-
contextual embeddings.
We used the nearest neighbor metric to find the closest can-
didate word. If we find the correct word among the n clos-
est words, we consider that entry as successfully identified.
The proportion of correctly identified words forms a mea-
sure called accuracy@n, which we report as the result.
In Table 2, we show the results for different layers of ELMo
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models used as embeddings and their comparison with the
baseline fastText embeddings. Among ELMo embeddings,
the best result on syntactic categories are obtained by using
the vectors after 2nd layer (LSTM1), while the best result
on semantic categories are obtained using vectors after the
3rd layer of the neural model (LSTM2). Compared to fast-
Text, the results vary from language to language. In En-
glish, fastText embeddings outperform ELMo in both se-
mantic and syntactic categories. In Slovenian, ELMo em-
beddings outperform fastText embeddings, significantly so
in syntactic categories. In Croatian, ELMo outperforms
fastText on syntactic categories, but on semantic categories
fastText is a bit better.

Layer category Croatian Slovenian English
CNN semantic 0.081 0.059 0.120

syntactic 0.475 0.470 0.454
LSTM1 semantic 0.219 0.305 0.376

syntactic 0.663 0.677 0.595
LSTM2 semantic 0.214 0.306 0.404

syntactic 0.604 0.608 0.545
fastText semantic 0.284 0.239 0.667

syntactic 0.486 0.437 0.626

Table 2: The embeddings quality measured on the word
analogy task, using accuracy@1 score, where 200,000 most
common words were considered. The embeddings for each
word were obtained by averaging the embeddings of each
occurence in the Wikipedia. Results are shown for each
layer of ELMo model separately and are averaged over all
semantic (sem) and all syntactic (syn) categories, so that
each category has an equal weight (i.e. results are first aver-
aged for each category, and then these results are averaged).

5.1.2. Analogy in a Simple Sentence
In the second approach to analogy evaluation, we used
some additional text to form simple sentences using the
four analogy words, while taking care that their noun case
stays the same. For example, for the words ”Rome”,
”Italy”, ”Paris” and ”France” (forming the analogy Rome
is to Italy as Paris is to x, where the correct answer is
x =France), we formed the sentence ”If the word Rome
corresponds to the word Italy, then the word Paris corre-
sponds to the word France”. We generated embeddings for
those four words in the constructed sentence, substituted
the last word with each word in our vocabulary and gener-
ated the embeddings again. As typical for non-contextual
analogy task, we measure the cosine distance (d) between
the last word (w4) and the combination of the first three
words (w2 −w1 +w3). We use the CSLS metric (Conneau
et al., 2018) to find the closest candidate word (w4).

We first compare existing Latvian ELMo embeddings
from ELMoForManyLangs project with our Latvian em-
beddings, followed by the detailed analysis of our ELMo
embeddings. We trained Latvian ELMo using only CoNLL
2017 corpora. Since this is the only language, where we
trained the embedding model on exactly the same corpora
as ELMoForManyLangs models, we chose it for compari-

son between our ELMo model with ELMoForManyLangs.
In other languages, additional or other corpora were used,
so a direct comparison would also reflect the quality of the
corpora used for training. In Latvian, however, only the
size of the training dataset is different. ELMoForMany-
Langs uses only 20 million tokens and we use the whole
corpus of 270 million tokens.
As Figure 1 shows, the Latvian ELMo model from ELMo-
ForManyLangs project performs significantly worse than
our ELMo Latvian model (named EMBEDDIA) on all cat-
egories of word analogy task. We also include the com-
parison with our Estonian ELMo embeddings in the same
figure. This comparison shows that while differences be-
tween our Latvian and Estonian embeddings can be signif-
icant for certain categories, the accuracy score of ELMo-
ForManyLangs is always worse than either of our models.
The comparison of Estonian and Latvian models leads us
to believe that a few hundred million tokens forms a suf-
ficiently large corpus to train ELMo models (at least for
word analogy task), but 20-million token corpora used in
ELMoForManyLangs are too small.
The results for all languages and all ELMo layers, aver-
aged over semantic and syntactic categories, are shown
in Table 3. The embeddings after the first LSTM layer
(LSTM1) perform best in semantic categories. In syntac-
tic categories, the non-contextual CNN layer performs the
best. Syntactic categories are less context dependent and
much more morphology and syntax based, so it is not sur-
prising that the non-contextual layer performs well. The
second LSTM layer embeddings perform the worst in syn-
tactic categories, though they still outperform CNN layer
embeddings in semantic categories. Latvian ELMo per-
forms worse compared to other languages we trained, espe-
cially in semantic categories, presumably due to the smaller
training data size. Surprisingly, the original English ELMo
performs very poorly in syntactic categories and only out-
performs Latvian in semantic categories. The low score can
be partially explained by English model scoring 0.00 in one
syntactic category “opposite adjective”, which we have not
been able to explain. The English results strongly differ
from the results of the first method (Table 2). The simple
sentence used might have caused more problems in English
than in other languages, but additional evaluation in vari-
ous contexts and other evaluation tasks would be needed to
better explain these results.

5.2. Named Entity Recognition
For evaluation of ELMo models on a relevant downstream
task, we used named entity recognition (NER) task. NER is
an information extraction task that seeks to locate and clas-
sify named entity (NE) mentions in unstructured text into
pre-defined categories such as the person names, organiza-
tions, locations, medical codes, time expressions, quanti-
ties, monetary values, percentages, etc. To allow compari-
son of results between languages, we used an adapted ver-
sion of this task, which uses a reduced set of labels, avail-
able in NER datasets for all processed languages. The la-
bels in the used NER datasets are simplified to a common
label set of three labels (person - PER, location - LOC, or-
ganization - ORG). Each word in the NER dataset is la-
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Figure 1: Comparison of Latvian ELMo model by ELMoForManyLangs (blue, Latvian-EFML), Latvian ELMo model
trained by us (yellow, Latvian-Embeddia), and Estonian ELMo model trained by us (black, Estonian-Embeddia). The
performance is measured as accuracy@5 on word analogy task, where categories 1 to 5 are semantic, and categories 6 to
15 are syntactic. The embeddings use weights of the first biLM layer LSTM1 (i.e. the second layer overall).

Layer CNN LSTM1 LSTM2
Category sem syn sem syn sem syn
hr 0.13 0.79 0.24 0.75 0.20 0.54
et 0.10 0.85 0.25 0.81 0.18 0.63
fi 0.13 0.83 0.33 0.74 0.25 0.54
lv 0.08 0.74 0.16 0.65 0.13 0.43
lt 0.08 0.86 0.29 0.86 0.21 0.62
sl 0.14 0.79 0.41 0.79 0.33 0.57
sv 0.21 0.80 0.25 0.60 0.22 0.34
en 0.18 0.22 0.21 0.22 0.21 0.21

Table 3: The embeddings quality measured on the word
analogy task, using accuracy@5 score. Each language is
represented with its 2-letter ISO code (first column). Re-
sults are shown for each layer separately and are averaged
over all semantic (sem) and all syntactic (syn) categories,
so that each category has an equal weight (i.e. results are
first averaged for each category, and these results are then
averaged).

beled with one of the three mentioned labels or a label ’O’
(Other, i.e. not a named entity) if it does not fit any of the
other three labels. The number of words having each label
is shown in Table 4.
To measure the performance of ELMo embeddings on the
NER task we proceeded as follows. We split the NER
datasets into training (90% of sentences) and testing (10%
of sentences) set. We embedded text sentence by sentence,

Language PER LOC ORG density N
Croatian 10241 7445 11216 0.057 506457
Estonian 8490 6326 6149 0.096 217272
Finnish 3402 2173 11258 0.087 193742
Latvian 5615 2643 3341 0.085 137040
Lithuanian 2101 2757 2126 0.076 91983
Slovenian 4478 2460 2667 0.049 194667
Swedish 3976 1797 1519 0.047 155332
English 17050 12316 14613 0.146 301418

Table 4: The number of tokens labeled with each label
(PER, LOC, ORG), the density of these labels (their sum
divided by the number of all tokens) and the number of all
tokens (N) for datasets in all languages.

producing three vectors (one from each ELMo layer) for
each token in a sentence. For prediction of NEs, we trained
a neural network model, where we used three input layers
(one embedding vector for each input). We then averaged
the input layers, such that the model learned the averaging
weights during the training. Next, we added two BiLSTM
layers with 2048 LSTM cells each, followed by a time dis-
tributed softmax layer with 4 neurons.
We used ADAM optimiser (Kingma and Ba, 2014) with
the learning rate 10−4 and 10−5 learning rate decay. We
used categorical cross-entropy as a loss function and trained
each model for 10 epochs (except Slovenian with EFML
embeddings, where we trained for 5 epochs, since it gives
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Figure 2: Comparison between fastText and EMBEDDIA ELMo embeddings on NER task. We show the relative difference
(error) between the F1 scores, in relation to the label density (left) and dataset size (right).

a much better score (0.82F1 vs. 0.68F1)). We present the
results using the Macro F1 score, that is the average of F1-
scores for each of the three NE classes (the class Other is
excluded) in Table 5.
Since the differences between the tested languages depend
more on the properties of the NER datasets than on the
quality of embeddings, we can not directly compare ELMo
models. For this reason, we take the non-contextual fast-
Text embeddings13 as a baseline and predict NEs using
them. The architecture of the model using fastText em-
beddings is the same as the one using ELMo embeddings,
except that we have one input layer, which receives 300 di-
mensional fastText embedding vectors. We also compared
performance with ELMoForManyLangs (EFML) embed-
dings, using the same architecture as with our ELMo em-
beddings. In all cases (ELMo, EFML and fastText), we
trained and evaluated prediction models five times and aver-
aged the results due to randomness in initialization of neu-
ral network models. There is no Lithuanian EFML model,
so we could not compare the two ELMo models on that
language.
Both ELMo embeddings (EFML and our EMBEDDIA)
show significant improvement in performance on NER task
over fastText embeddings on all languages, except English
(Table 5). In English, there is still improvement, but a
smaller one, in part due to already high performance using
fastText embeddings.
The difference between our ELMo embeddings and EFML
embeddings is smaller on the NER task than on the word
analogy task. On Latvian dataset, the performance is equal,
while we have observed a significant difference on the word
analogy task (Figure 1). Our ELMo embedding models,
however, show larger improvement over EFML on NER
tasks in some other languages, like Croatian.
We compared the difference in performance of EMBED-
DIA ELMo embeddings and fastText embeddings as a
function of dataset size and label density (Figure 2). Bar-
ring one outlier, there is a slight negative correlation with
regard to the dataset size, but no correlation with label den-
sity. We compared the EFML and EMBEDDIA ELMo em-
beddings in the same manner (Figure 3), with no apparent
correlation.

13https://fasttext.cc/

Language fastText EFML EMBEDDIA
Croatian 0.62 0.73 0.82
Estonian 0.79 0.89 0.91
Finnish 0.76 0.88 0.92
Latvian 0.62 0.83 0.83
Lithuanian 0.44 N/A 0.74
Slovenian 0.63 0.82 0.85
Swedish 0.75 0.85 0.88
English 0.89 0.90 0.92

Table 5: The results of NER evaluation task. The scores are
macro average F1 scores of the three named entity classes,
excluding score for class ”Other”. The columns show
fastText, ELMoForManyLangs (EFML), and EMBEDDIA
ELMo embeddings.

6. Conclusion
We prepared high quality precomputed ELMo contex-
tual embeddings for seven languages: Croatian, Estonian,
Finnish, Latvian, Lithuanian, Slovenian, and Swedish. We
present the necessary background on embeddings and con-
textual embeddings, the details of training the embedding
models, and their evaluation. We show that the size of used
training sets importantly affects the quality of produced
embeddings, and therefore the existing publicly available
ELMo embeddings for the processed languages can be im-
proved for some downstream tasks. We trained new ELMo
embeddings on larger training sets and analysed their prop-
erties on the analogy task and on the NER task. The re-
sults show that the newly produced contextual embeddings
produce substantially better results compared to the non-
contextual fastText baseline. In comparison with the exist-
ing ELMoForManyLangs embeddings, our new EMBED-
DIA ELMo embeddings show a big improvement on the
analogy task, and a significant improvement on the NER
task.
For a more thorough analysis of our ELMo embeddings,
more downstream tasks shall be considered. Unfortunately,
no such task currently exist for the majority of the seven
processed languages.

As future work, we will use the produced contextual em-
beddings on the problems of news media industry. We plan
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Figure 3: Comparison between EFML and EMBEDDIA ELMo embeddings on NER task. We show the relative difference
(error) between the F1 scores, in relation to the label density (left) and dataset size (right).

to build and evaluate more complex models, such as BERT
(Devlin et al., 2019). The pretrained EMBEDDIA ELMo
models are publicly available on the CLARIN repository14.
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Abstract. Large pretrained masked language models have become state-
of-the-art solutions for many NLP problems. The research has been
mostly focused on English language, though. While massively multi-
lingual models exist, studies have shown that monolingual models pro-
duce much better results. We train two trilingual BERT-like models,
one for Finnish, Estonian, and English, the other for Croatian, Slove-
nian, and English. We evaluate their performance on several downstream
tasks, NER, POS-tagging, and dependency parsing, using the multilin-
gual BERT and XLM-R as baselines. The newly created FinEst BERT
and CroSloEngual BERT improve the results on all tasks in most mono-
lingual and cross-lingual situations.

Keywords: contextual embeddings, BERT model, less-resourced lan-
guages, NLP

1 Introduction

In natural language processing (NLP), a lot of research focuses on numeric word
representations. Static pretrained word embeddings like word2vec [11] are re-
cently replaced by dynamic, contextual embeddings, such as ELMo [13] and
BERT [3]. These generate a word vector based on the context the word appears
in, mostly using the sentence as the context.

Large pretrained masked language models like BERT [3] and its derivatives
achieve state-of-the-art performance when fine-tuned for specific NLP tasks. The
research into these models has been mostly limited to English and a few other
well-resourced languages, such as Chinese Mandarin, French, German, and Span-
ish. However, two massively multilingual masked language models have been re-
leased: a multilingual BERT (mBERT) [3], trained on 104 languages, and newer
even larger XLM-RoBERTa (XLM-R) [2], trained on 100 languages. While both,
mBERT and XLM-R, achieve good results, it has been shown that monolingual
models significantly outperform multilingual models [20, 10]. In our work, we
reduced the number of languages in multilingual models to three, two similar
less-resourced languages from the same language family, and English. The main
reasons for this choice are to better represent each language, and keep sensible
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sub-word vocabulary, as shown by Virtanen et al. [20]. We decided against pro-
duction of monolingual models, because we are interested in using the models in
multilingual sense and for cross-lingual knowledge transfer. By including English
in each of the two models, we expect to better transfer existing prediction mod-
els from English to involved less-resourced languages. Additional reason against
purely monolingual models for less-resourced languages is the size of training
corpora, i.e. BERT-like models use transformer architecture which is known to
be data hungry.

We thus trained two multilingual BERT models: FinEst BERT was trained
on Finnish, Estonian, and English, while CroSloEngual BERT was trained on
Croatian, Slovenian, and English. In the paper, we present the creation and
evaluation of these models, which required considerable computational resources,
unavailable to most NLP researchers. We make the models which are valuable
resources for the involved less-resourced languages publicly available1.

2 Training data and preprocessing

BERT models require large quantities of monolingual data. In Section 2.1 we first
describe the corpora used, followed by a short description of their preprocessing
in Section 2.2.

2.1 Datasets

We trained two new BERT models from five languages: Finnish, Estonian, Slove-
nian, Croatian and English. To obtain high-quality models, we used large mono-
lingual corpora for each language, some of them unavailable to the general public.
For English, large corpora are readily available and they are much larger than
for other languages. However, high-quality English language models already ex-
ist and English is not the main focus of this research, we therefore did not use
all available English corpora in order to prevent English from overwhelming the
other languages in our models. Some corpora are available online under per-
missive licences, others are available only for research purposes or have limited
availability. The corpora used in training are a mix of news articles and general
web crawl, which we preprocessed and deduplicated. Details about the training
set sizes are presented in Table 1, while their description can be found in works
on the involved less-resourced languages, e,g., [18].

2.2 Preprocessing

Before using the corpora, we deduplicated them for each language separately,
using the Onion (ONe Instance ONly) tool2. We applied the tool on sentence

1 CroSloEngual BERT: http://hdl.handle.net/11356/1317
FinEst BERT: http://urn.fi/urn:nbn:fi:lb-2020061201

2 http://corpus.tools/wiki/Onion
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Table 1. The training corpora sizes in
number of tokens and the ratios for each
language.

Model CroSloEngual FinEst

Croatian 31% 0%
Slovenian 23% 0%
English 47% 63%
Estonian 0% 13%
Finnish 0% 25%

Tokens 5.9 · 109 3.7 · 109

Table 2. The sizes of corpora subsets in
millions of tokens used to create word-
piece vocabularies.

Language FinEst CroSloEngual

Croatian / 27
Slovenian / 28
English 157 23
Estonian 75 /
Finnish 97 /

level for those corpora that did have sentences shuffled, and on paragraph level
for the rest. As parameters, we used 9-grams with duplicate content threshold
of 0.9.

BERT models are trained on subword (wordpiece) tokens. We created a
wordpiece vocabulary using bert-vocab-builder tool3, which is built upon ten-
sor2tensor library [19]. We did not process the whole corpora in creating the
wordpiece vocabulary, but only a smaller subset. To balance the language rep-
resentation in vocabulary, we used samples from each language. The sizes of
corpora subsets are shown in Table 2. The created wordpiece vocabularies con-
tain 74,986 tokens for FinEst and 49,601 tokens for CroSloEngual model.

3 Architecture and training

We trained two BERT multilingual models. FinEst BERT was trained on Finnish,
Estonian, and English corpora, with altogether 3.7 billion tokens. CroSloEngual
BERT was trained on Croatian, Slovenian, and English corpora with together
5.9 billion tokens.

Both models use bert-base architecture [3], which is a 12-layer bidirectional
transformer encoder with the hidden layer size of 768 and altogether 110 million
parameters. We used the whole word masking for the masked language model
training task. Both models are cased, i.e. the case information was preserved. We
followed the hyper-parameters settings of Devlin et al. [3], except for the batch
size and total number of steps. We trained the models for approximately 40
epochs with maximum sequence length of 128 tokens, followed by approximately
4 epochs with maximum sequence length of 512 tokens. The exact number of
steps was calculated using the expression:

s =
Ntok ·E
b · λ

, where s is the number of steps the models were trained for, Ntok is the number
of tokens in the train corpora, E is the desired number of epochs (in our case 40
and 4), b is the batch size, and λ is the maximum sequence length.

3 https://github.com/kwonmha/bert-vocab-builder
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We trained FinEst BERT on a single Google Cloud TPU v3 for a total of
1.24 million steps where the first 1.13 million steps used the batch size of 1024
and sequence length 128, and the last 113 thousand steps used the batch size
256 and sequence length 512. Similarly, CroSloEngual BERT was trained on a
single Google Cloud TPU v2 for a total of 3.96 million steps, where the first 3.6
million steps used the batch size of 512 and sequence length 128, and the last
360 thousand steps were trained with the batch size 128 and sequence length
512. Training took approximately 2 weeks for FinEst BERT and approximately
3 weeks for CroSloEngual BERT.

4 Evaluation

We evaluated the two new BERT models on three downstream evaluation tasks
available for the four involved less-resourced languages: named entity recogni-
tion (NER), part-of-speech tagging (POS), and dependency parsing (DP). We
compared both models with BERT-base-multilingual-cased model (mBERT) on
sensible languages, i.e. FinEst BERT was compared with mBERT on Finnish,
Estonian, and English, while CroSloEngual BERT was compared with mBERT
on Croatian, Slovenian, and English.

4.1 Named Entity Recognition

Named entity recognition (NER) task is a sequence labeling task, which tries
to correctly identify and classify each token from an unstructured text into one
of the predefined named entity (NE) classes or, if the token is not part of a
NE, to classify it as not a named entity. Most common named entity classes are
personal names, locations and organizations. We used various datasets, which do
not cover the same set of classes. We therefore adapted the datasets to allow a
more direct comparison between languages, by reducing them to the four labels
they all have in common: PER (person), LOC (location), ORG (organization),
and O (other). All tokens, which are not named entities or belong to any NE
class other than person, location or organization, were labeled as ’O’.

For Croatian and Slovenian, we used data from hr500k [9] and ssj500k [7],
respectively. Not all sentences in ssj500k are annotated, so we excluded those
that are not annotated. English dataset comes from CoNLL 2013 shared task
[17]. For Finnish we used Finnish News Corpus for NER [15], and for Estonian
dataset we used Nimeüksuste korpus [8]. The statistics of each dataset are shown
in Table 3.

To evaluate the performance of BERT embeddings on the NER task we
trained NER models using Huggingface’s Transformer library, basing the code
on their NER example4. We fine-tuned each of our BERT models with an added
token classification head for 3 epochs on the NER data. We compared the results
with BERT-base-multilingual-cased (mBERT) model, which we fine-tuned with
exactly the same parameters on the same data.

4 https://github.com/huggingface/transformers/tree/master/examples/ner
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Language PER LOC ORG Density N

Croatian 10241 7445 11216 0.057 506457
English 17050 12316 14613 0.146 301418
Estonian 8490 6326 6149 0.096 217272
Finnish 3402 2173 11258 0.087 193742
Slovenian 4478 2460 2667 0.049 194667

Table 3. The number of tokens labeled with each label (PER, LOC, ORG), the density
of these labels (their sum divided by the number of all tokens) and the number of all
tokens (N) for datasets in all languages.

Train lang Test lang mBERT CroSloEngual

Croatian Croatian 0.795 0.894
Slovenian Slovenian 0.903 0.917
English English 0.940 0.949

Croatian English 0.793 0.866
English Croatian 0.638 0.798
Slovenian English 0.781 0.833
English Slovenian 0.736 0.843
Croatian Slovenian 0.825 0.908
Slovenian Croatian 0.755 0.847

Table 4. The results of NER evaluation task on Croatian, Slovenian, and English.
The scores are average F1 scores of the three named entity classes. A NER model was
trained on ”train language” dataset and tested on ”test language” dataset using two
different BERT models for all possible combinations of train and test languages.

We evaluated the models in a monolingual setting (training and testing on
the same language) and a crosslingual setting (training on one language, testing
on another). We present the results as macro average F1 scores of the three
NE classes, excluding ’O’ label. Comparison between CroSloEngual BERT and
mBERT is shown in Table 4, comparison between FinEst BERT and mBERT is
shown in Table 5.

The difference in performance of each BERT on English data is negligible. In
other languages, our models outperform the multilingual BERT, the difference
is especially large in Croatian. In crosslingual setting, both FinEst BERT and
CroSloEngual BERT show a significant improvement over mBERT, especially
when one of the two languages is English. This leads us to believe that mul-
tilingual BERT models with fewer languages are more suitable for crosslingual
knowledge transfer.
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Train lang Test lang mBERT FinEst

Finnish Finnish 0.922 0.959
Estonian Estonian 0.906 0.930
English English 0.940 0.942

Finnish English 0.692 0.810
English Finnish 0.770 0.901
Estonian English 0.765 0.815
English Estonian 0.762 0.839
Finnish Estonian 0.795 0.879
Estonian Finnish 0.839 0.912

Table 5. The results of NER evaluation task on Finnish, Estonian, and English. The
scores are average F1 scores of the three named entity classes. A NER model was
trained on ”train language” dataset and tested on ”test language” dataset using two
different BERT models for all possible combinations of train and test languages.

4.2 Part-of-speech tagging and dependency parsing

We evaluated BERT models on two more classification tasks: part-of-speech
(POS) tagging and dependency parsing. In the POS tagging task we attempt to
correctly classify each token within a given set of grammatical categories (verb,
adjective, punctuation, adverb, noun, etc.) Dependency parsing task attempts
to predict the tree structure, representing the syntactic relations between words
in a given sentence.

We trained classifiers on universal dependencies (UD) treebank datasets, us-
ing universal part-of-speech (UPOS) tag set. For Croatian, we used treebank by
Agić and Ljubešić [1]. For English, we used A Gold Standard Dependency Cor-
pus [16]. For Estonian, we used Estonian Dependency Treebank [12], converted
to UD. Finnish treebank used is based on the Turku Dependency Treebank [5],
which was also converted to UD [14]. Slovenian treebank [4] is based on the
ssj500k corpus [7].

We used Udify tool [6] to train both POS tagger and dependency parsing
classifiers at the same time. We finetuned each BERT model for 80 epochs on
the treebank data. We kept the tool parameters at default values, except for
”warmup steps” and ”start step” values, which we changed to equal the number
of training batches in one epoch.

We present the results of POS tagging as UPOS accuracy score in Table 6
and Table 7. The difference in performance between BERT models is very small
on this task. FinEst and CroSloEngual BERTs perform slightly better than
mBERT on all languages in monolingual setting, except Croatian, where mBERT
and CroSloEngual BERT are equal. The differences are more pronounced in
cross-lingual setting. When training on Slovenian, Finnish or Estonian data and
testing on English data CroSloEngual and FinEst BERT significantly outperform
mBERT. On the other hand, when training on English and testing Croatian,
mBERT outperforms CroSloEngual BERT.

ICT-29-2018 D1.7: Final contextual embeddings

39 of 113



FinEst BERT and CroSloEngual BERT: less is more in multilingual models 7

Train lang. Test lang. mBERT CroSloEngual

Croatian Croatian 0.983 0.983
English English 0.969 0.972
Slovenian Slovenian 0.987 0.991

English Croatian 0.876 0.869
English Slovenian 0.857 0.859
Croatian English 0.750 0.756
Croatian Slovenian 0.917 0.934
Slovenian English 0.686 0.723
Slovenian Croatian 0.920 0.935

Table 6. The embeddings quality measured on the UPOS tagging task, using UPOS
accuracy score for FinEst BERT, CroSloEngual BERT and BERT-base-multilingual-
cased (mBERT).

Train lang. Test lang. mBERT FinEst

English English 0.969 0.970
Estonian Estonian 0.972 0.978
Finnish Finnish 0.970 0.981

English Estonian 0.852 0.878
English Finnish 0.847 0.872
Estonian English 0.688 0.808
Estonian Finnish 0.872 0.913
Finnish English 0.535 0.701
Finnish Estonian 0.888 0.919

Table 7. The embeddings quality measured on the UPOS tagging task, using UPOS
accuracy score for FinEst BERT, CroSloEngual BERT and BERT-base-multilingual-
cased (mBERT).

We present the results of dependency parsing task as unlabeled attachement
score (UAS) and labeled attachment score (LAS). In monolingual setting CroSlo-
Engual BERT shows improvement over mBERT on all three languages (Table 8)
with the highest improvement on Slovenian and only a marginal improvement on
English. FinEst BERT outperforms mBERT on Estonian and Finnish, with the
biggest margin being on the Finnish data (Table 9). FinEst BERT and mBERT
perform equally on English data.

In crosslingual setting, the results are similar to those seen on the POS
tagging task. Major improvements of FinEst BERT and CroSloEngual BERT
over mBERT in English-Estonian, English-Finnish and English-Slovenian pairs,
minor improvements in Estonian-Finnish and Croatian-Slovenian pairs. Again,
mBERT outperformed CroSloEngual BERT when dependency parser was trained
on English data and tested on Croatian data.

ICT-29-2018 D1.7: Final contextual embeddings

40 of 113
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Train Test mBERT CroSloEngual
language language UAS LAS UAS LAS

Croatian Croatian 0.930 0.891 0.940 0.903
English English 0.917 0.894 0.922 0.899
Slovenian Slovenian 0.938 0.922 0.957 0.947

English Croatian 0.824 0.724 0.822 0.725
English Slovenian 0.830 0.719 0.848 0.736
Croatian English 0.759 0.627 0.782 0.657
Croatian Slovenian 0.880 0.802 0.912 0.840
Slovenian English 0.741 0.578 0.794 0.648
Slovenian Croatian 0.861 0.773 0.891 0.810

Table 8. The embeddings quality measured on the dependency parsing task. Results
are given as UAS and LAS for CroSloEngual BERT and BERT-base-multilingual-cased
(mBERT).

Train Test mBERT FinEst
language language UAS LAS UAS LAS

English English 0.917 0.894 0.918 0.895
Estonian Estonian 0.880 0.848 0.909 0.882
Finnish Finnish 0.898 0.867 0.933 0.915

English Estonian 0.697 0.531 0.768 0.591
English Finnish 0.706 0.561 0.781 0.624
Estonian English 0.633 0.492 0.726 0.567
Estonian Finnish 0.784 0.695 0.864 0.801
Finnish English 0.543 0.433 0.684 0.558
Finnish Estonian 0.782 0.691 0.852 0.778

Table 9. The embeddings quality measured on the dependency parsing task. Re-
sults are given as UAS and LAS for FinEst BERT and BERT-base-multilingual-cased
(mBERT).

5 Conclusion

We built two large pretrained trilingual BERT-based masked language models,
Croatian-Slovenian-English and Finnish-Estonian-English. We showed that the
new CroSloEngual and FinEst BERTs perform substantially better than mas-
sively multilingual mBERT on the NER task in both monolingual and cross-
lingual setting. The results on POS tagging and DP tasks show considerable
improvement of the proposed models for several monolingual and cross-lingual
pairs, while they are never worse than mBERT.

In future, we plan to investigate different combinations and proportions of
less-resourced languages in creation of pretrained BERT-like models, and use
the newly trained BERT models on the problems of news media industry.
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Sagot. CamemBERT: a tasty French language model. arXiv preprint
arXiv:1911.03894, 2019.

[11] Tomas Mikolov, Quoc V Le, and Ilya Sutskever. Exploiting similarities
among languages for machine translation. arXiv preprint 1309.4168, 2013.

ICT-29-2018 D1.7: Final contextual embeddings

42 of 113
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Abstract

We study the influence of context on sentence
acceptability. First we compare the acceptabil-
ity ratings of sentences judged in isolation,
with a relevant context, and with an irrelevant
context. Our results show that context induces
a cognitive load for humans, which com-
presses the distribution of ratings. Moreover,
in relevant contexts we observe a discourse
coherence effect that uniformly raises ac-
ceptability. Next, we test unidirectional and
bidirectional language models in their ability to
predict acceptability ratings. The bidirectional
models show very promising results, with the
best model achieving a new state-of-the-art for
unsupervised acceptability prediction. The two
sets of experiments provide insights into the
cognitive aspects of sentence processing and
central issues in the computational modeling
of text and discourse.

1 Introduction

Sentence acceptability is the extent to which a
sentence appears natural to native speakers of a
language. Linguists have often used this property
to motivate grammatical theories. Computational
language processing has traditionally been more
concerned with likelihood—the probability of a
sentence being produced or encountered. The
question of whether and how these properties
are related is a fundamental one. Lau et al.
(2017b) experiment with unsupervised language
models to predict acceptability, and they obtained
an encouraging correlation with human ratings.

This raises foundational questions about the nature
of linguistic knowledge: If probabilistic models
can acquire knowledge of sentence acceptability
from raw texts, we have prima facie support for
an alternative view of language acquisition that
does not rely on a categorical grammaticality
component.

It is generally assumed that our perception of
sentence acceptability is influenced by context.
Sentences that may appear odd in isolation can
become natural in some environments, and sen-
tences that seem perfectly well formed in some
contexts are odd in others. On the computational
side, much recent progress in language modeling
has been achieved through the ability to incor-
porate more document context, using broader
and deeper models (e.g., Devlin et al., 2019;
Yang et al., 2019). While most language modeling
is restricted to individual sentences, models can
benefit from using additional context (Khandelwal
et al., 2018). However, despite the importance of
context, few psycholinguistic or computational
studies systematically investigate how context
affects acceptability, or the ability of language
models to predict human acceptability judgments.

Tworecent studies that explore the impact of doc-
ument context on acceptability judgments both
identify a compression effect (Bernardy et al.,
2018; Bizzoni and Lappin, 2019). Sentences per-
ceived to be low in acceptability when judged
without context receive a boost in acceptability
when judged within context. Conversely, those
with high out-of-context acceptability see a reduc-
tion in acceptability when context is presented. It
is unclear what causes this compression effect. Is
it a result of cognitive load, imposed by additional
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processing demands, or is it the consequence of
an attempt to identify a discourse relation between
context and sentence?

We address these questions in this paper. To
understand the influence of context on human
perceptions, we ran three crowdsourced experi-
ments to collect acceptability ratings from human
annotators. We develop a methodology to ensure
comparable ratings for each target sentence in
isolation (without any context), in a relevant three-
sentence context, and in the context of sentences
randomly sampled from another document. Our
results replicate the compression effect, and
careful analyses reveal that both cognitive load
and discourse coherence are involved.

To understand the relationship between sen-
tence acceptability and probability, we conduct
experiments with unsupervised language models
to predict acceptability. We explore traditional
unidirectional (left-to-right) recurrent neural
network models, and modern bidirectional
transformer models (e.g., BERT). We found that
bidirectional models consistently outperform
unidirectional models by a wide margin, calling
into question the suitability of left-to-right bias for
sentence processing. Our best bidirectional model
achieves simulated human performance on the
prediction task, establishing a new state-of-the-art.

2 Acceptability in Context

2.1 Data Collection

To understand how humans interpret acceptability,
we require a set of sentences with varying degrees
of well-formedness. Following previous studies
(Lau et al., 2017b; Bernardy et al., 2018), we
use round-trip machine translation to introduce a
wide range of infelicities into naturally occurring
sentences.

We sample 50 English (target) sentences and
their contexts (three preceding sentences) from the
English Wikipedia.1 We use Moses to translate
the target sentences into four languages (Czech,
Spanish, German, and French) and then back to

1We preprocess the raw dump with WikiExtractor
(https://github.com/attardi/wikiextractor),
and collect paragraphs that have ≥ 4 sentences with each
sentence having ≥ 5 words. Sentences and words are tok-
enized with spaCy (https://spacy.io/) to check for
these constraints.

English.2 This produces 250 sentences in total
(5 languages including English) for our test set.
Note that we only do round-trip translation for the
target sentences; the contexts are not modified.

We use Amazon Mechanical Turk (AMT) to
collect acceptability ratings for the target sen-
tences.3 We run three experiments where we
expose users to different types of context. For the
experiments, we split the test set into 25 HITs of
10 sentences. Each HIT contains 2 original English
sentences and 8 round-trip translated sentences,
which are different from each other and not de-
rived from either of the originals. Users are asked
to rate the sentences for naturalness on a 4-point
ordinal scale: bad (1.0), not very good (2.0),
mostly good (3.0), and good (4.0). We recruit 20
annotators for each HIT.

In the first experiment we present only the tar-
get sentences, without any context. In the second
experiment, we first show the context paragraph
(three preceding sentences of the target sentence),
and ask users to select the most appropriate
description of its topic from a list of four candi-
date topics. Each candidate topic is represented by
three words produced by a topic model.4 Note that
the context paragraph consists of original English
sentences which did not undergo translation. Once
the users have selected the topic, they move to the
next screen where they rate the target sentence for
naturalness.5 The third experiment has the same
format as the second, except that the three sen-
tences presented prior to rating are randomly sam-
pled from another Wikipedia article.6 We require
annotators to perform a topic identification task
prior to rating the target sentence to ensure that
they read the context before making acceptability
judgments.

For each sentence, we aggregate the ratings
from multiple annotators by taking the mean.
Henceforth we refer to the mean ratings collected
from the first (no context), second (real context),
and third (random context) experiments as H∅,

2We use the pre-trained Moses models from http://
www.statmt.org/moses/RELEASE-4.0/models/
for translation.

3https://www.mturk.com/.
4We train a topic model with 50 topics on 15 K Wikipedia

documents with Mallet (McCallum, 2002) and infer topics
for the context paragraphs based on the trained model.

5Note that we do not ask the users to judge the naturalness
of the sentence in context; the instructions they see for the
naturalness rating task is the same as the first experiment.

6Sampled sentences are sequential, running sentences.
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H+, and H−, respectively. We rolled out the
experiments on AMT over several weeks and pre-
vented users from doing more than one exper-
iment. Therefore a disjoint group of annotators
performed each experiment.

To control for quality, we check that users are
rating the English sentences ≥ 3.0 consistently.
For the second and third experiments, we also
check that users are selecting the topics appro-
priately. In each HIT one context paragraph has
one real topic (from the topic model), and three
fake topics with randomly sampled words as the
candidate topics. Users who fail to identify the
real topic above a confidence level are filtered out.
Across the three experiments, over three quarters
of workers passed our filtering conditions.

To calibrate for the differences in rating scale
between users, we follow the postprocessing
procedure of Hill et al. (2015), where we calculate
the average rating for each user and the overall
average (by taking the mean of all average ratings),
and decrease (increase) the ratings of a user by 1.0
if their average rating is greater (smaller) than the
overall average by 1.0.7 To reduce the impact of
outliers, for each sentence we also remove ratings
that are more than 2 standard deviations away
from the mean.8

2.2 Results and Discussion

We present scatter plots to compare the mean
ratings for the three different contexts (H∅, H+,
and H−) in Figure 1. The black line represents the
diagonal, and the red line represents the regression
line. In general, the mean ratings correlate strongly
with each other. Pearson’s r for H+ vs. H∅ = 0.940,
H− vs. H∅ = 0.911, and H− vs. H+ = 0.891.

The regression (red) and diagonal (black) lines
in H+ vs. H∅ (Figure 1a) show a compression
effect. Bad sentences appear a little more natural,
and perfectly good sentences become slightly
less natural, when context is introduced.9 This
is the same compression effect observed by

7No worker has an average rating that is greater or smaller
than the overall average by 2.0.

8This postprocessing procedure discarded a total of 504
annotations/ratings (approximately 3.9%) over 3 experi-
ments. The final average number of annotations for a sentence
in the first, second, and third experiments is 16.4, 17.8, and
15.3, respectively.

9On average, good sentences (ratings ≥ 3.5) observe a
rating reduction of 0.08 and bad sentences (ratings ≤ 1.5) an
increase of 0.45.

Bernardy et al. (2018). It is also present in the
graph for H− vs. H∅ (Figure 1b).

Two explanations of the compression effect
seem plausible to us. The first is a discourse
coherence hypothesis that takes this effect to be
caused by a general tendency to find infelicitous
sentences more natural in context. This hypothesis,
however, does not explain why perfectly natural
sentences appear less acceptable in context. The
second hypothesis is a variant of a cognitive load
account. In this view, interpreting context imposes
a significant burden on a subject’s processing
resources, and this reduces their focus on the
sentence presented for acceptability judgments. At
the extreme ends of the rating scale, as they require
all subjects to be consistent in order to achieve the
minimum/maximum mean rating, the increased
cognitive load increases the likelihood of a subject
making a mistake. This increases/lowers the mean
rating, and creates a compression effect.

The discourse coherence hypothesis would
imply that the compression effect should appear
with real contexts, but not with random ones,
as there is little connection between the target
sentence and a random context. By contrast, the
cognitive load account predicts that the effect
should be present in both types of context, as it
depends only on the processing burden imposed
by interpreting the context. We see compression
in both types of contexts, which suggests that
the cognitive load hypothesis is the more likely
account.

However, these two hypotheses are not
mutually exclusive. It is, in principle, possible that
both effects—discourse coherence and cognitive
load—are exhibited when context is introduced.

To better understand the impact of discourse
coherence, consider Figure 1c, where we compare
H− vs. H+. Here the regression line is parallel to
and below the diagonal, implying that there is a
consistent decrease in acceptability ratings from
H+ to H−. As both ratings are collected with some
form of context, the cognitive load confound is
removed. What remains is a discourse coherence
effect. Sentences presented in relevant contexts
undergo a consistent increase in acceptability
rating.

To analyze the significance of this effect, we
use the non-parametric Wilcoxon signed-rank test
(one-tailed) to compare the difference between
H+ and H−. This gives a p-value of 1.9 × 10−8,
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Figure 1: Scatter plots comparing human acceptability ratings.

indicating that the discourse coherence effect is
significant.

Returning to Figures 1a and 1b, we can see
that (1) the offset of the regression line, and (2)
the intersection point of the diagonal and the
regression line, is higher in Figure 1a than in
Figure 1b. This suggests that there is an increase
of ratings, and so, in addition to the cognitive load
effect, a discourse coherence effect is also at work
in the real context setting.

We performed hypothesis tests to compare the
regression lines in Figures 1a and 1b to see if
their offsets (constants) and slopes (coefficients)
are statistically different.10 The p-value for the
offset is 1.7 × 10−2, confirming our qualitative
observation that there is a significant discourse
coherence effect. The p-value for the slope,
however, is 3.6× 10−1, suggesting that cognitive
load compresses the ratings in a consistent way
for both H+ and H−, relative to H∅.

To conclude, our experiments reveal that con-
text induces a cognitive load for human process-
ing, and this has the effect of compressing the
acceptability distribution. It moderates the ex-
tremes by making very unnatural sentences appear
more acceptable, and perfectly natural sentences
slightly less acceptable. If the context is relevant to
the target sentence, then we also have a discourse
coherence effect, where sentences are perceived
to be generally more acceptable.

10We follow the procedure detailed in https://
statisticsbyjim.com/regression/comparing-
regression-lines/ where we collate the data points
in Figures 1a and 1b and treat the in-context ratings (H+

and H−) as the dependent variable, the out-of-context ratings
(H∅) as the first independent variable, and the type of the
context (real or random) as the second independent variable,
to perform regression analyses. The significance of the offset
and slope can be measured by interpreting the p-values of
the second independent variable, and the interaction between
the first and second independent variables, respectively.

3 Modeling Acceptability

In this section, we explore computational models
to predict human acceptability ratings. We are
interested in models that do not rely on explicit
supervision (i.e., we do not want to use the
acceptability ratings as labels in the training data).
Our motivation here is to understand the extent
to which sentence probability, estimated by an
unsupervised model, can provide the basis for
predicting sentence acceptability.

To this end, we train language models
(Section 3.1) using unsupervised objectives (e.g.,
next word prediction), and use these models
to infer the probabilities of our test sentences.
To accommodate sentence length and lexical
frequency we experiment with several simple
normalization methods, converting probabilities
to acceptability measures (Section 3.2). The
acceptability measures are the final output of our
models; they are what we use to compare to human
acceptability ratings.

3.1 Language Models

Our first model is an LSTM language model (LSTM:
Hochreiter and Schmidhuber, 1997; Mikolov
et al., 2010). Recurrent neural network models
(RNNs) have been shown to be competitive in this
task (Lau et al., 2015; Bernardy et al., 2018), and
they serve as our baseline.

Our second model is a joint topic and language
model (TDLM: Lau et al., 2017a). TDLM combines
topic model with language model in a single
model, drawing on the idea that the topical con-
text of a sentence can help word prediction in
the language model. The topic model is fashioned
as an auto-encoder, where the input is the docu-
ment’s word sequence and it is processed by
convolutional layers to produce a topic vector
to predict the input words. The language model
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functions like a standard LSTM model, but it
incorporates the topic vector (generated by its
document context) into the current hidden state to
predict the next word.

We train LSTM and TDLM on 100K uncased
English Wikipedia articles containing approxi-
mately 40M tokens with a vocabulary of 66K
words.11

Next we explore transformer-based models, as
they have become the benchmark for many NLP
tasks in recent years (Vaswani et al., 2017; Devlin
et al., 2019; Yang et al., 2019). The transformer
models that we use are trained on a much larger
corpus, and they are four to five times larger with
respect to their model parameters.

Our first transformer is GPT2 (Radford et al.,
2019). Given a target word, the input is a sequence
of previously seen words, which are then mapped
to embeddings (along with their positions) and
fed to multiple layers of ‘‘transformer blocks’’
before the target word is predicted. Much of its
power resides in these transformer blocks: Each
provides a multi-headed self-attention unit over
all input words, allowing it to capture multiple
dependencies between words, while avoiding the
need for recurrence. With no need to process a
sentence in sequence, the model parallelizes more
efficiently, and scales in a way that RNNs cannot.

GPT2 is trained on WebText, which consists of
over 8 million web documents, and uses Byte
Pair Encoding (BPE: Sennrich et al., 2016) for
tokenization (casing preserved). BPE produces
sub-word units, a middle ground between word
and character, and it provides better coverage for
unseen words. We use the released medium-sized
model (‘‘Medium’’) for our experiments.12

Our second transformer is BERT (Devlin et al.,
2019). Unlike GPT2, BERT is not a typical language
model, in the sense that it has access to both
left and right context words when predicting the
target word.13 Hence, it encodes context in a
bidirectional manner.

To train BERT, Devlin et al. (2019) propose
a masked language model objective, where a
random proportion of input words are masked

11We use Stanford CoreNLP (Manning et al., 2014) to
tokenize words and sentences. Rare words are replaced by a
special UNK symbol.

12https://github.com/openai/gpt-2.
13Note that context is burdened with two senses in the

paper. It can mean the preceding sentences of a target sen-
tence, or the neighbouring words of a target word. The
intended sense should be apparent from the usage.

and the model is tasked to predict them based on
non-masked words. In addition to this objective,
BERT is trained with a next sentence prediction
objective, where the input is a pair of sentences,
and the model’s goal is to predict whether the
latter sentence follows the former. This objective
is added to provide pre-training for downstream
tasks that involve understanding the relationship
between a pair of sentences (e.g., machine com-
prehension and textual entailment).

The bidirectionality of BERT is the core feature
that produces its state-of-the-art performance on
a number of tasks. The flipside of this encoding
style, however, is that BERT lacks the ability to
generate left-to-right and compute sentence prob-
ability. We discuss how we use BERT to produce
a probability estimate for sentences in the next
section (Section 3.2).

In our experiments, we use the largest pre-
trained model (‘‘BERT-Large’’),14 which has a
similar number of parameters (340M) to GPT2. It is
trained on Wikipedia and BookCorpus (Zhu et al.,
2015), where the latter is a collection of fiction
books. Like GPT2, BERT also uses sub-word token-
ization (WordPiece). We experiment with two
variants of BERT: one trained on cased data (BERTCS),
and another on uncased data (BERTUCS). As our
test sentences are uncased, a comparison between
these two models allows us to gauge the impact of
casing in the training data.

Our last transformer model is XLNET (Yang et al.,
2019). XLNET is unique in that it applies a novel
permutation language model objective, allowing it
to capture bidirectional context while preserving
key aspects of unidirectional language models
(e.g., left-to-right generation).

The permutation language model objective
works by first generating a possible permutation
(also called ‘‘factorization order’’) of a sequence.
When predicting a target word in the sequence,
the context words that the model has access to are
determined by the factorization order. To illustrate
this, imagine we have the sequence x = [x1, x2,
x3, x4]. One possible factorization order is: x3 →
x2 → x4 → x1. Given this order, if predicting
target word x4, the model only has access to
context words {x3, x2}; if the target word is x2,
it sees only {x3}. In practice, the target word is
set to be the last few words in the factorization

14https://github.com/google-research/bert.
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Model Configuration Training Data
Architecture Encoding #Param. Casing Size Tokenization Corpora

LSTM RNN Unidir. 60M Uncased 0.2GB Word Wikipedia
TDLM RNN Unidir. 80M Uncased 0.2GB Word Wikipedia
GPT2 Transformer Unidir. 340M Cased 40GB BPE WebText

BERTCS Transformer Bidir. 340M Cased 13GB WordPiece Wikipedia, BookCorpus
BERTUCS Transformer Bidir. 340M Uncased 13GB WordPiece Wikipedia, BookCorpus

XLNET Transformer Hybrid 340M Cased 126GB Sentence- Wikipedia, BookCorpus, Giga5
Piece ClueWeb, Common Crawl

Table 1: Language models and their configurations.

order (e.g., x4 and x1), and so the model always
sees some context words for prediction.

As XLNET is trained to work with different
factorization orders during training, it has expe-
rienced both full/bidirectional context and partial/
unidirectional context, allowing it to adapt to tasks
that have access to full context (e.g., most language
understanding tasks), as well as those that do not
(e.g., left-to-right generation).

Another innovation of XLNET is that it in-
corporates the segment recurrence mechanism of
Dai et al. (2019). This mechanism is inspired by
truncated backpropagation through time used for
training RNNs, where the initial state of a sequence
is initialized with the final state from the previous
sequence. The segment recurrence mechanism
works in a similar way, by caching the hidden
states of the transformer blocks from the previous
sequence, and allowing the current sequence to
attend to them during training. This permits XLNET

to model long-range dependencies beyond its
maximum sequence length.

We use the largest pre-trained model (‘‘XLNet-
Large’’),15 which has a similar number of param-
eters to our BERT and GPT2 models (340M). XLNET

is trained on a much larger corpus combining
Wikipedia, BookCorpus, news and web articles.
For tokenization, XLNET uses SentencePiece
(Kudo and Richardson, 2018), another sub-word
tokenization technique. Like GPT2, XLNET is trained
on cased data.

Table 1 summarizes the language models. In
general, the RNN models are orders of magnitude
smaller than the transformers in both model
parameters and training data, although they are
trained on the same domain (Wikipedia), and use
uncased data as the test sentences. The RNN
models also operate on a word level, whereas the
transformers use sub-word units.

15https://github.com/zihangdai/xlnet.

3.2 Probability and Acceptability Measure
Given a unidirectional language model, we can
infer the probability of a sentence by multiplying
the estimated probabilities of each token using
previously seen (left) words as context (Bengio
et al., 2003):

→
P (s) =

|s|∏

i=0

P (wi|w<i) (1)

where s is the sentence, and wi a token in s.
LSTM, TDLM, and GPT2 are unidirectional models,

so they all compute sentence probability as
described. XLNET’s unique permutational language
model objective allows it to compute probability
in the same way, and to explicitly mark this
we denote it as XLNETUNI when we infer sentence
probability using only left context words.

BERT is trained with bidirectional context, and as
such it is unable to compute left-to-right sentence
probability.16 We therefore compute sentence
probability as follows:

↔
P (s) =

|s|∏

i=0

P (wi|w < i, w > i) (2)

With this formulation, we allow BERT to have
access to both left and right context words
when predicting each target word, since this
is consistent with the way in which it was
trained. It is important to note, however, that
sentence probability computed this way is not
a true probability value: These probabilities do
not sum to 1.0 over all sentences. Equation (1),
in contrast, does guarantee true probabilities.
Intuitively, the sentence probability computed
with this bidirectional formulation is a measure

16Technically we can mask all right context words and
predict the target words one at a time, but because the model
is never trained in this way, we found that it performs poorly
in preliminary experiments.
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of the model’s confidence in the likelihood of the
sentence.

To compute the true probability, Wang and
Cho (2019) show that we need to sum the
pre-softmax weights for each token to score a
sentence, and then divide the score by the total
score of all sentences. As it is impractical to
compute the total score of all sentences (an
infinite set), the true sentence probabilities for
these bidirectional models are intractable. We use
our non-normalized confidence scores as stand-ins
for these probabilities.

For XLNET, we also compute sentence probab-
ility this way, applying bidirectional context, and
we denote it as XLNETBI. Note that XLNETUNI and
XLNETBI are based on the same trained model.
They differ only in how they estimate sentence
probability at test time.

Sentence probability (estimated either using
unidirectional or bidirectional context) is affected
by its length (e.g., longer sentences have lower
probabilities), and word frequency (e.g., the cat is
big vs. the yak is big). To modulate for these
factors we introduce simple normalization tech-
niques. Table 2 presents five methods to map
sentence probabilities to acceptability measures:
LP, MeanLP, PenLP, NormLP, and SLOR.

LP is the unnormalized log probability. Both
MeanLP and PenLP are normalized on sentence
length, but PenLP scales length with an exponent
(α) to dampen the impact of large values (Wu et al.,
2016; Vaswani et al., 2017). We setα = 0.8 in our
experiments. NormLP normalizes using unigram
sentence probability (i.e., Pu(s) =

∏|s|
i=0 P (wi)),

while SLOR utilizes both length and unigram
probability (Pauls and Klein, 2012).

When computing sentence probability we have
the option of including the context paragraph that
the human annotators see (Section 2). We use the
superscripts ∅, +, − to denote a model using no
context, real context, and random context, respect-
ively (e.g., LSTM∅, LSTM+, and LSTM−). Note that
these variants are created at test time, and are all
based on the same trained model (e.g., LSTM).

For all models except TDLM, incorporating the
context paragraph is trivial. We simply prepend it
to the target sentence before computing the latter’s
probability. For TDLM+ or TDLM−, the context
paragraph is treated as the document context,
from which a topic vector is inferred and fed to

Acc. Measure Equation

LP logP (s)

MeanLP
logP (s)

|s|
PenLP

logP (s)

((5 + |s|)/(5 + 1))α

NormLP − logP (s)

logPu(s)

SLOR
logP (s)− logPu(s)

|s|

Table 2: Acceptability measures for predicting
the acceptability of a sentence;P (s) is the sen-
tence probability, computed using Equa-
tion (1) or Equation (2) depending on the
model; Pu(s) is the sentence probability esti-
mated by a unigram language model; and
α =0.8.

the language model for next-word prediction. For
TDLM∅, we set the topic vector to zeros.

3.3 Implementation

For the transformer models (GPT2, BERT, and
XLNET), we use the implementation of pytorch-
transformers.17

XLNET requires a long dummy context prepended
to the target sentence for it to compute the sentence
probability properly.18 Other researchers have
found a similar problem when using XLNET for
generation.19 We think that this is likely due
to XLNET’s recurrence mechanism (Section 3.1),
where it has access to context from the previous
sequence during training.

For TDLM, we use the implementation provided
by Lau et al. (2017a),20 following their optimal
hyper-parameter configuration without tuning.

We implement LSTM based on Tensorflow’s
Penn Treebank language model.21 In terms of

17https://github.com/huggingface/pytorch-
transformers. Specifically, we employ the following
pre-trained models:gpt2-medium for GPT2, bert-large-
cased for BERTCS, bert-large-uncased for BERTUCS,
and xlnet-large-cased for XLNETUNI/XLNETBI.

18In the scenario where we include the context paragraph
(e.g., XLNET+UNI), the dummy context is added before it.

19https://medium.com/@amanrusia/xlnet-speaks-
comparison-to-gpt-2-ea1a4e9ba39e.

20https://github.com/jhlau/topically-driven-
language-model.

21https://github.com/tensorflow/models/
blob/master/tutorials/rnn/ptb/ptb word lm.py.
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hyper-parameters, we follow the configuration of
TDLM where applicable. TDLM uses Adam as the
optimizer (Kingma and Ba, 2014), but for LSTM

we use Adagrad (Duchi et al., 2011), as it produces
better development perplexity.

For NormLP and SLOR, we need to compute
Pu(s), the sentence probability based on a unigram
language model. As the language models are
trained on different corpora, we collect unigram
counts based on their original training corpus. That
is, for LSTM and TDLM, we use the 100K English
Wikipedia corpus. For GPT2, we use an open
source implementation that reproduces the origi-
nal WebText data.22 For BERT we use the full
Wikipedia collection and crawl smashwords.
com to reproduce BookCorpus.23 Finally, for
XLNET we use the combined set of Wikipedia,
WebText, and BookCorpus.24

Source code for our experiments is publicly
available at: https://github.com/jhlau/
acceptability-prediction-in-context.

3.4 Results and Discussion

We use Pearson’s r to assess how well the models’
acceptability measures predict mean human ac-
ceptability ratings, following previous studies
(Lau et al., 2017b; Bernardy et al., 2018).
Recall that for each model (e.g., LSTM), there are
three variants with which we infer the sentence
probability at test time. These are distinguished
by whether we include no context (LSTM∅), real
context (LSTM+), or random context (LSTM−). There
are also three types of human acceptability ratings
(ground truth), where sentences are judged with
no context, (H∅), real context (H+), and random
context (H−). We present the full results in Table 3.

To get a sense of what the correlation
figures indicate for these models, we compute
two human performance estimates to serve as
upper bounds on the accuracy of a model. The
first upper bound (UB1) is the one-vs-rest
annotator correlation, where we select a
random annotator’s rating and compare it to
the mean rating of the rest, using Pearson’s
r. We repeat this for a large number of trials

22https://skylion007.github.io/OpenWebTextCorpus/.
23We use the scripts in https://github.com/

soskek/bookcorpus to reproduce BookCorpus.
24XLNET also uses Giga5 and ClueWeb as part of its training

data, but we think that our combined collection is sufficiently
large to be representative of the original training data.

(1,000) to get a robust estimate of the mean
correlation. UB1 can be interpreted as the average
human performance working in isolation. The
second upper bound (UB2) is the half-vs.-half
annotator correlation. For each sentence we ran-
domly split the annotators into two groups, and
compare the mean rating between groups, again
using Pearson’s r and repeating it (1,000 times)
to get a robust estimate. UB2 can be taken as
the average human performance working collab-
oratively. Overall, the simulated human perfor-
mance is fairly consistent over context
types (Table 3), for example, UB1 = 0.75,
0.73, and 0.75 for H∅, H+, and H−,
respectively.

When we postprocess the user ratings, re-
member that we remove the outlier ratings
(≥ 2 standard deviation) for each sentence
(Section 2.1). Although this produces a cleaner set
of annotations, this filtering step does (artificially)
increase the human agreement or upper bound
correlations. For completeness we also present
upper bound variations where we do not remove
the outlier ratings, and denote them as UB

∅
1 and

UB
∅
2 . In this setup, the one-vs.-rest correlations

drop to 0.62–0.66 (Table 3). Note that all model
performances are reported based on the outlier-
filtered ratings, although there are almost no
perceivable changes to the performances when
they are evaluated on the outlier-preserved ground
truth.

Looking at Table 3, the models’ performances
are fairly consistent over different types of ground
truths (H∅, H+, and H−). This is perhaps not
very surprising, as the correlations among the
human ratings for these context types are very
high (Section 2).

We now focus on the results with H∅ as ground
truth (‘‘Rtg’’ = H∅). SLOR is generally the best
acceptability measure for unidirectional models,
with NormLP not far behind (the only exception
is GPT2∅). The recurrent models (LSTM and TDLM)
are very strong compared with the much larger
transformer models (GPT2 and XLNETUNI). In fact
TDLM has the best performance when context is
not considered (TDLM∅, SLOR = 0.61), suggesting
that model architecture may be more important
than number of parameters and amount of training
data.

For bidirectional models, the unnormalized LP
works very well. The clear winner here, however,
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Rtg Encod. Model LP MeanLP PenLP NormLP SLOR

H∅

Unidir.

LSTM∅ 0.29 0.42 0.42 0.52 0.53
LSTM+ 0.30 0.49 0.45 0.61 0.63
TDLM∅ 0.30 0.49 0.45 0.60 0.61
TDLM+ 0.30 0.50 0.45 0.59 0.60
GPT2∅ 0.33 0.34 0.56 0.38 0.38
GPT2+ 0.38 0.59 0.58 0.63 0.60

XLNET∅UNI 0.31 0.42 0.51 0.51 0.52
XLNET+UNI 0.36 0.56 0.55 0.61 0.61

Bidir.

BERT∅CS 0.51 0.54 0.63 0.55 0.53
BERT+CS 0.53 0.63 0.67 0.64 0.60
BERT∅UCS 0.59 0.63 0.70 0.63 0.60
BERT+UCS 0.60 0.68 0.72 0.67 0.63
XLNET∅BI 0.52 0.51 0.66 0.53 0.53
XLNET+BI 0.57 0.65 0.73 0.66 0.65

— UB1 / UB
∅
1 0.75 / 0.66

UB2 / UB
∅
2 0.92 / 0.88

H+

Unidir.

LSTM∅ 0.29 0.44 0.43 0.52 0.52
LSTM+ 0.31 0.51 0.46 0.62 0.62
TDLM∅ 0.30 0.50 0.45 0.59 0.59
TDLM+ 0.30 0.50 0.46 0.58 0.58
GPT2∅ 0.32 0.33 0.56 0.36 0.37
GPT2+ 0.38 0.60 0.59 0.63 0.60

XLNET∅UNI 0.30 0.42 0.50 0.49 0.51
XLNET+UNI 0.35 0.56 0.55 0.60 0.61

Bidir.

BERT∅CS 0.49 0.53 0.62 0.54 0.51
BERT+CS 0.52 0.63 0.66 0.63 0.58
BERT∅CS 0.58 0.63 0.70 0.63 0.60
BERT+CS 0.60 0.68 0.73 0.67 0.63

XLNET∅BI 0.51 0.50 0.65 0.52 0.53
XLNET+BI 0.57 0.65 0.74 0.65 0.65

— UB1 / UB
∅
1 0.73 / 0.66

UB1 / UB
∅
2 0.92 / 0.89

H−

Unidir.

LSTM∅ 0.28 0.44 0.43 0.50 0.50
LSTM− 0.27 0.41 0.40 0.47 0.47
TDLM∅ 0.29 0.52 0.46 0.59 0.58
TDLM− 0.28 0.49 0.44 0.56 0.55
GPT2∅ 0.32 0.34 0.55 0.35 0.35
GPT2− 0.30 0.42 0.51 0.44 0.41

XLNET∅UNI 0.30 0.44 0.51 0.49 0.49
XLNET−UNI 0.29 0.40 0.49 0.46 0.46

Bidir.

BERT∅CS 0.48 0.53 0.62 0.53 0.49
BERT−CS 0.49 0.52 0.61 0.51 0.47
BERT∅UCS 0.56 0.61 0.68 0.60 0.56
BERT−UCS 0.56 0.58 0.66 0.57 0.53
XLNET∅BI 0.49 0.48 0.62 0.49 0.48
XLNET−BI 0.50 0.51 0.64 0.51 0.50

— UB1 / UB
∅
1 0.75 / 0.68

UB2 / UB
∅
2 0.92 / 0.88

Table 3: Modeling results. Boldface indicates optimal performance in each row.
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is PenLP. It substantially and consistently out-
performs all other acceptability measures. The
strong performance of PenLP that we see here
illuminates its popularity in machine translation
for beam search decoding (Vaswani et al., 2017).
With the exception of PenLP, the gain from
normalization for the bidirectional models is
small, but we don’t think this can be attributed
to the size of models or training corpora, as the
large unidirectional models (GPT2 and XLNETUNI)
still benefit from normalization. The best model
without considering context is BERT∅UCS with a
correlation of 0.70 (PenLP), which is very close
to the idealized single-annotator performance UB1

(0.75) and surpasses the unfiltered performance
UB

∅
1 (0.66), creating a new state-of-the-art for

unsupervised acceptability prediction (Lau et al.,
2015, 2017b; Bernardy et al., 2018). There is still
room to improve, however, relative to the collab-
orative UB2 (0.92) or UB

∅
2 (0.88) upper bounds.

We next look at the impact of incorporating
context at test time for the models (e.g., LSTM∅ vs.
LSTM+ or BERT∅UCS vs. BERT+UCS). To ease interpret-
ability we will focus on SLOR for unidirectional
models, and PenLP for bidirectional models.
Generally, we see that incorporating context
always improves correlation, for both cases where
we use H∅ and H+ as ground truths, suggesting that
context is beneficial when it comes to sentence
modeling. The only exception is TDLM, where
TDLM∅ and TDLM+ perform very similarly. Note,
however, that context is only beneficial when it
is relevant. Incorporating random contexts (e.g.,
LSTM∅ vs. LSTM− or BERT∅UCS vs. BERT−UCS with H− as
ground truth) reduces the performance for all
models.25

Recall that our test sentences are uncased
(an artefact of Moses, the machine translation
system that we use). Whereas the recurrent models
are all trained on uncased data, most of the
transformer models are trained with cased data.
BERT is the only transformer that is pre-trained
on both cased (BERTCS) and uncased data (BERTUCS).
To understand the impact of casing, we look
at the performance of BERTCS and BERTUCS with
H∅ as ground truth. We see an improvement

25There is one exception: XLNET∅BI (0.62) vs. XLNET−BI (0.64).
As we saw previously in Section 3.3, XLNET requires a long
dummy context to work, and so this observation is perhaps
unsurprising, because it appears that context—whether it is
relevant or not—seems to always benefit XLNET.

of 5–7 points (depending on whether context is
incorporated), which suggests that casing has a
significant impact on performance. Given that
XLNET+BI already outperforms BERT+UCS (0.73 vs.
0.72), even though XLNET+BI is trained with cased
data, we conjecture that an uncased XLNET is
likely to outperform BERT∅UCS when context is not
considered.

To summarize, our first important result is the
exceptional performance of bidirectional models.
It raises the question of whether left-to-right bias is
an appropriate assumption for predicting sentence
acceptability. One could argue that this result
may be due to our experimental setup. Users
are presented with the sentence in text, and they
have the opportunity to read it multiple times,
thereby creating an environment that may simulate
bidirectional context. We could test this conjecture
by changing the presentation of the sentence,
displaying it one word at a time (with older
words fading off), or playing an audio version
(e.g., via a text-to-speech system). However, these
changes will likely introduce other confounds
(e.g., prosody), but we believe it is an interesting
avenue for future work.

Our second result is more tentative. Our experi-
ments seem to indicate that model architecture is
more important than training or model size. We
see that TDLM, which is trained on data orders
of magnitude smaller and has model parameters
four times smaller in size (Table 1), outperforms
the large unidirectional transformer models. To
establish this conclusion more firmly we will need
to rule out the possibility that the relatively good
performance of LSTM and TDLM is not due to a
cleaner (e.g., lowercased) or more relevant (e.g.,
Wikipedia) training corpus. With that said, we
contend that our findings motivate the construc-
tion of better language models, instead of increas-
ing the number of parameters, or the amount of
training data. It would be interesting to examine
the effect of extending TDLM with a bidirectional
objective.

Our final result is that our best model, BERTUCS,
attains a human-level performance and achieves
a new state-of-the-art performance in the task of
unsupervised acceptability prediction. Given this
level of accuracy, we expect it would be suitable
for tasks like assessing student essays and the
quality of machine translations.
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4 Linguists’ Examples

One may argue that our dataset is potentially
biased, as round-trip machine translation may in-
troduce particular types of infelicities or unusual
features to the sentences (Graham et al., 2019).
Lau et al. (2017b) addressed this by creating a
dataset where they sample 50 grammatical and
50 ungrammatical sentences from Adger (2003)’s
syntax textbook, and run a crowdsourced ex-
periment to collect their user ratings. Lau
et al. (2017b) found that their unsupervised
language models (e.g., simple recurrent networks)
predict the acceptability of these sentences with
similar performances, providing evidence that
their modeling results are robust.

We test our pre-trained models using this
linguist-constructed dataset, and found similar
observations: GPT2, BERTCS, and XLNETBI produce a
PenLP correlation of 0.45, 0.53, and 0.58, respec-
tively. These results indicate that these language
models are able to predict the acceptability of
these sentences reliably, consistent with our mod-
eling results with round-trip translated sentences
(Section 3.4). Although the correlations are gen-
erally lower, we want to highlight that these
linguists’ examples are artificially constructed to
illustrate specific syntactic phenomena, and so
this constitutes a particularly strong case of out-
of-domain prediction. These texts are substantially
different in nature from the natural text that the
pre-trained language models are trained on (e.g.,
the linguists’ examples are much shorter—less
than 7 words on average—than the natural texts).

5 Related Work

Acceptability is closely related to the concept
of grammaticality. The latter is a theoretical
construction corresponding to syntactic well-
formedness, and it is typically interpreted as a
binary property (i.e., a sentence is either gram-
matical or ungrammatical). Acceptability, on the
other hand, includes syntactic, semantic, prag-
matic, and non-linguistic factors, such as sentence
length. It is gradient, rather than binary, in nature
(Denison, 2004; Sorace and Keller, 2005; Sprouse,
2007).

Linguists and other theorists of language have
traditionally assumed that context affects our per-
ception of both grammaticality (Bolinger, 1968)
and acceptability (Bever, 1970), but surprisingly

little work investigates this effect systematically,
or on a large scale. Most formal linguists rely
heavily on the analysis of sentences taken in
isolation. However, many linguistic frameworks
seek to incorporate aspects of context-dependence.
Dynamic theories of semantics (Heim, 1982;
Kamp and Reyle, 1993; Groenendijk and Stokhof,
1990) attempt to capture intersentential corefer-
ence, binding, and scope phenomena. Dynamic
Syntax (Cann et al., 2007) uses incremental
tree construction and semantic type projection to
render parsing and interpretation discourse depen-
dent. Theories of discourse structure characterize
sentence coherence in context through rhetori-
cal relations (Mann and Thompson, 1988; Asher
and Lascarides, 2003), or by identifying open
questions and common ground (Ginzburg, 2012).
While these studies offer valuable insights into a
variety of context related linguistic phenomena,
much of it takes grammaticality and acceptabil-
ity to be binary properties. Moreover, it is not
formulated in a way that permits fine-grained
psychological experiments, or wide coverage
computational modeling.

Psycholinguistic work can provide more ex-
perimentally grounded approaches. Greenbaum
(1976) found that combinations of particular syn-
tactic constructions in context affect human judg-
ments of acceptability, although the small scale
of the experiments makes it difficult to draw
general conclusions. More recent work investi-
gates related effects, but it tends to focus on very
restricted aspects of the phenomenon. For exam-
ple, Zlogar and Davidson (2018) investigate the
influence of context on the acceptability of ges-
tures with speech, focussing on interaction with
semantic content and presupposition. The prim-
ing literature shows that exposure to lexical and
syntactic items leads to higher likelihood of their
repetition in production (Reitter et al., 2011), and
to quicker processing in parsing under certain cir-
cumstances (Giavazzi et al., 2018). Frameworks
such as ACT-R (Anderson, 1996) explain these
effects through the impact of cognitive activation
on subsequent processing. Most of these studies
suggest that coherent or natural contexts should
increase acceptability ratings, given that the lin-
guistic expressions used in processing become
more activated. Warner and Glass (1987) show
that such syntactic contexts can indeed affect
grammaticality judgments in the expected way for
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garden path sentences. Cowart (1994) uses com-
parison between positive and negative contexts,
investigating the effect of contexts containing
alternative more or less acceptable sentences. But
he restricts the test cases to specific pronoun
binding phenomena. None of the psycholinguistic
work investigates acceptability judgments in real
textual contexts, over large numbers of test cases
and human subjects.

Some recent computational work explores the
relation of acceptability judgments to sentence
probabilities. Lau et al. (2015, 2017b) show that
the output of unsupervised language models
can correlate with human acceptability ratings.
Warstadt et al. (2018) treat this as a semi-
supervised problem, training a binary classifier
on top of a pre-trained sentence encoder to
predict acceptability ratings with greater accuracy.
Bernardy et al. (2018) explore incorporating
context into such models, eliciting human
judgments of sentence acceptability when the
sentences were presented both in isolation and
within a document context. They find a compres-
sion effect in the distribution of the human
acceptability ratings. Bizzoni and Lappin (2019)
observe a similar effect in a paraphrase accept-
ability task.

One possible explanation for this compression
effect is to take it as the expression of cognitive
load. Psychological research on the cognitive load
effect (Sweller, 1988; Ito et al., 2018; Causse et al.,
2016; Park et al., 2013) indicates that performing
a secondary task can degrade or distort subjects’
performance on a primary task. This could cause
judgments to regress towards the mean. However,
the experiments of Bernardy et al. (2018) and
Bizzoni and Lappin (2019) do not allow us to
distinguish this possibility from a coherence or
priming effect, as only coherent contexts were
considered. Our experimental setup improves on
this by introducing a topic identification task and
incoherent (random) contexts in order to tease the
effects apart.

6 Conclusions and Future Work

We found that processing context induces a
cognitive load for humans, which creates a
compression effect on the distribution of accept-
ability ratings. We also showed that if the context
is relevant to the sentence, a discourse coherence
effect uniformly boosts sentence acceptability.

Our language model experiments indicate that
bidirectional models achieve better results than
unidirectional models. The best bidirectional
model performs at a human level, defining a new
state-of-the art for this task.

In future work we will explore alternative ways
to present sentences for acceptability judgments.
We plan to extend TDLM, incorporating a bidi-
rectional objective, as it shows significant
promise. It will also be interesting to see if our
observations generalize to other languages, and
to different sorts of contexts, both linguistic and
non-linguistic.
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Abstract
State of the art natural language processing tools are built on context-dependent word embeddings, but no direct method for evaluating
these representations currently exists. Standard tasks and datasets for intrinsic evaluation of embeddings are based on judgements of
similarity, but ignore context; standard tasks for word sense disambiguation take account of context but do not provide continuous
measures of meaning similarity. This paper describes an effort to build a new dataset, CoSimLex, intended to fill this gap. Building
on the standard pairwise similarity task of SimLex-999, it provides context-dependent similarity measures; covers not only discrete
differences in word sense but more subtle, graded changes in meaning; and covers not only a well-resourced language (English) but a
number of less-resourced languages. We define the task and evaluation metrics, outline the dataset collection methodology, and describe
the status of the dataset so far.

Keywords: corpus, annotation, semantics, similarity, context, salience, context-dependence

1. Introduction
Recent work in language modelling and word embeddings
has led to a sharp increase in use of context-dependent mod-
els such as ELMo (Peters et al., 2018) and BERT (Devlin
et al., 2019). These models, by providing representations
of words which depend on the surrounding context, allow
us to take account of the effects not only of discrete dif-
ferences in word sense but of the more graded effects of
context. However, evaluation of these models has gener-
ally been in terms of either their performance as language
models, or their effect on downstream tasks such as senti-
ment classification (Peters et al., 2018): there are few re-
sources available which allow evaluation in terms of the
properties of the embeddings themselves, or in terms of
their ability to model human perceptions of meaning. There
are established methods to evaluate word embedding mod-
els intrinsically via their ability to reflect human similar-
ity judgements (see e.g. WordSim-353 (Finkelstein et al.,
2002) and SimLex-999 (Hill et al., 2015)) or model analo-
gies (Mikolov et al., 2013); however, these have generally
ignored context and treated words in isolation. The few
that do provide context (e.g. SCWS (Huang et al., 2012)
and WiC (Pilehvar and Camacho-Collados, 2019)) focus
on word sense and discrete effects, thus missing some of
the effects that context has on words in general, and some
of the benefits of context-dependent models. To evaluate
current models, we need a way to evaluate their ability to
reflect similarity judgements in context: how well do they
model the effects that context has on word meaning?

In this paper we present our ongoing efforts to define and
build a new dataset that tries to fill that gap: CoSimLex
(Armendariz et al., 2020). CoSimLex builds on the fa-
miliar pairwise, graded similarity task of SimLex-999, but
extends it to pairs of words as they occur in context, and
specifically provides two different shared contexts for each
pair of words. This will provide a dataset suitable for in-
trinsic evaluation of state-of-the-art contextual word em-
bedding models, by testing their ability to reflect human
judgements of word meaning similarity in context, and cru-
cially, the way in which this varies as context is changed. It
goes beyond other existing context-based datasets by tak-
ing the gradedness of human judgements into account, thus
applying not only to polysemous words, or words with dis-
tinct senses, but to the phenomenon of context-dependency
of word meaning in general. The dataset is also multi-
lingual, and includes three less-resourced European lan-
guages: Croatian, Finnish and Slovene. It is to be used as
the gold standard for evaluation of a task at SemEval2020:
Task 3, Graded Word Similarity in Context.1

2. Background
From the outset, our main motivation for the development
of this dataset came from an interest in the cognitive and
psychological mechanisms by which context affects our
perception of the meaning of words. There have been many
different ways in the literature to look at this phenomenon,

1https://competitions.codalab.org/competitions/20905
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which lie in the intersection of several different fields of re-
search, and a detailed discussion of the different approaches
to this problem is out of the scope of this paper; here, we
present two of the most prominent ideas that helped define
what we were trying to capture, and made an impact in the
design of the dataset and its annotation process. We then
look at previous datasets that deal with similarity in con-
text.

2.1. Contextual Modulation
Within the field of lexical semantics, Cruse (1986) pro-
posed an interesting compromise between those linguists
that saw words as associated with a number of discrete
senses and those that thought that the perceived discrete-
ness of lexical senses is just an illusion. He distinguishes
two different manners in which sentential context modifies
the meaning of a word. First, the context can select for
different discrete senses; if that is the case, the word is de-
scribed as ambiguous, and the process is referred as con-
textual selection of senses. This effect is well known, and
is the basis of many word-sense disambiguation tasks.

1. We finally reached the bank.

2. At this point, the bank was covered with brambles.

In example (1), the word bank can have the financial or
riverbank sense; and here, the context doesn’t really help
us select the correct sense. This creates some tension on
the part of the reader: we need to select a sense in order
for the sentence to properly work, and without this we may
feel that the sentence has not been fully understood. This
is an example of ambiguity. In example (2), in contrast, the
context makes one of the senses more normal than the other.
Cruse (1986) sees the evaluation of contextual normality as
the main mechanism for sense selection.
The second way in which context can modify the meaning
of a word works within the scope of a single sense, mod-
ifying it in an unlimited number of ways by highlighting
certain semantic traits and backgrounding others. This pro-
cess is called contextual modulation of meaning, and the
word is said to be general with respect to the traits that are
being modulated. This effect is by nature not discrete but
continuous and fluid, and since every word is general to
some extent: it can be argued that a word has a different
meaning in every context in which it appears.

3. Sue is visiting her pregnant cousin.

4. Peter doesn’t like his cousin.

5. Arthur poured the butter into a dish.

In example (3), the context tells us that the cousin is female.
The meaning of cousin is being modulated by the context to
promote the “female” trait. Cousin is a general word that
includes male and female, but also tall, short, happy and
sad cousins. However, as we can see in example (4), the
absence of information about these traits doesn’t produce
the type of tension we saw in (1) above; there is a distinc-
tion between meaning modulation and sense selection.
The last example (5) is another case of contextual modula-
tion in which poured highlights the “liquid” trait for butter.

It is interesting to notice that in this case not only “liquid”
is highlighted, related traits like “warm” can be highlighted
as a consequence.
It seems clear that the contextual selection of senses would
modify human judgements of similarity. For example, the
word bank, when used in a context which selects its fi-
nancial institution sense, should be scored as more simi-
lar to other kinds of financial institution (e.g. building so-
ciety) than when in a context which selects the geographic
sense of the word. However, we should also expect that a
word like butter, when contextually modulated to highlight
its “liquid”, “hot” and “frying” traits, should score more
similar to vegetable oil than when contextually modulated
to highlight its “animal sourced”, “dairy”, and “creamy”
traits. This kind of hypothesis would be testable given a
new context-dependent similarity dataset.
Both sense selection and meaning modulation happen very
commonly together, with the same context forcing a sense
and then modulating its expression. Many different expla-
nations have been proposed for the emergence of these dis-
crete senses, and some may have their origins in very com-
monly modulated meaning but, according to Cruse, once a
discrete sense is established it becomes something different
and follows different rules:

6. John prefers bitches to dogs.

7. John prefers bitches to canines.

8. Mary likes mares better than horses.

Here example (6) works because one of the discrete senses
associated to the word dog refers only to male dogs. This
cannot be explained by contextual modulation: if that was
the case, example (7), which replaces dog with canine,
should also work, as canine could be modulated in the same
way that dog was; and similarly example (8). However,
both seem unnatural at best. The fact that neither canine
nor horse can be modulated in this same way indicates that
meaning modulation and sense selection are two, strongly
interconnected, but distinctive mechanisms of contextual
variability.
A final interesting point about Cruse’s view is that he
doesn’t find the contrast between polysemy and homonymy
particularly helpful, and dislikes the use of these terms be-
cause they promote the idea that the primary semantic unit
is some common lexeme and each of the different senses
are just variants of it. He instead believes the primary se-
mantic unit should be the lexical units, a union of a single
sense and a lexical form, and finds it more useful to look
at the contrast between discrete and continuous semantic
variability.

2.2. Salience Manipulation
Until now we have looked at contextual variability as an ex-
clusively linguistic phenomenon, a point of view rooted in
lexical semantics. We looked at how the context of the sen-
tence affects the meaning of the word. In contrast, cognitive
linguistics, and the more specific cognitive semantics, look
at language and meaning as a more general expression of
human cognition (Evans and Green, 2018).
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This approach champions concepts, more specifically con-
ceptual structures, as the true recipient of meaning, replac-
ing words or lexical units. These linguistic units no longer
refer to objects in an external world but to concepts in the
mind of the speaker. Words get their meaning only by asso-
ciation with conceptual structures in our minds. The pro-
cess by which we construct meaning is called conceptual-
isation, an embodied phenomenon based in social interac-
tion and sensory experience.
Cognitive linguists gravitate to themes that focus on the
flexibility and the ability of the interaction between lan-
guage and conceptual structures to model continuous phe-
nomena, like prototyping effects, categories, metaphor the-
ory and new ways to look at polysemy. Within the cogni-
tive tradition, the idea of conceptual spaces, characterised
by conceptual dimensions, has been especially influential
(Gärdenfors, 2000; Gärdenfors, 2014). These dimensions
can range from concrete ones like weight, temperature and
brightness, to very abstract ones like awkwardness or good-
ness. Once a domain, or selection of dimensions is estab-
lished, a concept is defined as a region (usually a convex
one) of the conceptual space. An example would be to de-
fine the colour brown as a region of a space made of the
dimensions Red, Green and Blue. This geometric approach
lends itself perfectly to model phenomena like prototyping
(central point of the region), similarity (distance), metaphor
(projection between different dimensions) and, more im-
portantly for our concerns here, fluid changes in meaning
due to the effects of context.
Warglien and Gärdenfors (2015) use conceptual spaces to
look at meaning negotiation in conversation. They inves-
tigate the mechanisms, consciously or unconsciously, em-
ployed by the people involved in conversation to negotiate
meaning of vague predicates, in order to satisfy the coordi-
nation needed for communication. These tools help them
to decide areas in which they don’t agree as well. All these
processes work by manipulating the conceptual dimensions
in which meaning is represented. We will refer to them as
salience manipulation because their main role is to dy-
namically rise or lower the perceived importance of certain
conceptual dimensions.
The main mechanism by which speakers can modify
salience of conceptual dimensions are the automatic prim-
ing effects described by, for example, Pickering and Garrod
(2004): mentioning specific words early in the conversation
can make the dimensions associated with such words more
relevant. Speakers can also explicitly try to remove di-
mensions from the domain in order to promote agreement,
or bring in new dimensions by using metaphoric projec-
tions. Because metaphors can be understood as mappings
that transfer structure from one domain to another, they can
introduce new dimensions and meaning to the conversation.

The lion Ulysses emphasizes Ulysses’ courage
but hides his condition of a castaway in Ogiya.
Thus metaphors act by orienting communication
and selecting dimensions that may be more or
less favorable to the speaker. By suggesting that
a storm hit the financial markets, a bank man-
ager can move the conversation away from di-

mensions pertaining to his own responsibilities
and instead focus on dimensions over which he
has no control. (Warglien and Gärdenfors, 2015)

From this perspective, then, the change in meaning is no
longer a change in the meaning of a specific word, but a
change in the mind of the hearer (or reader), a change in
their mental state triggered by their interaction with the
context. We saw an example of the meaning of the word
“butter” being contextually modulated before, lets see some
examples of salience manipulation having an effect on the
same word:

9. My muffins were a failure, I should have used butter
or margarine instead of olive oil.

10. Vegan chefs replace animal fats, like butter, with plant
based ones like olive oil or margarine.

11. Vegan influencers believe the consumption of animal
products is cruel and unnecessary.

In example (9), in the context of a baking recipe, important
dimensions are related to the physical properties of butter,
margarine and olive oil. When focusing on these type of di-
mensions butter and margarine seem more similar because
they are both solid while olive oil is liquid. In contrast, in
the following example (10) we bring up ideas about vegan-
ism and the dimension of animal versus based plant prod-
ucts becomes very salient. This could bring margarine and
olive oil closer together and distance both of them from but-
ter, which is an animal product.
There are important differences between this salience ma-
nipulation effect and the similarly “graded” contextual
modulation effect. In the previous example (5) poured
modulated the meaning of the word butter by promoting its
“liquid” trait. This effect is limited to the word butter. On
the contrary, if the context triggers changes in the salience
of conceptual dimensions, any word the annotator evaluates
after the change takes place will be affected by it. Once
the idea of animal vs plant based is introduced, the change
takes place in the mind of the annotator and the percep-
tion of the meaning of not only butter, but margarine and
olive oil is impacted as well. Our hypothesis is that, by us-
ing salience manipulation, a context like example (11) can
have a impact in the scoring of the similarity of butter, mar-
garine and olive oil without these words even being present
in the context. Something that would be impossible if we
were looking only at the contextual modulation and sense
selection effects.
The expectation that priming is the main mechanism for
modifying salience has its own implications: Branigan et
al. (2000) found that priming effects are much stronger in
the context of as natural dialog as possible, when speak-
ers had no time constraints and could respond at their own
pace. These results were taken into account when designing
our dataset and annotation methodology: it is crucial for us
to create an annotation process in which the annotator in-
teracts with the context, and does so in as natural a way as
possible, before they rate the similarity. Because priming
is an automatic process, them knowing that they should be
annotating similarity in context becomes a lot less impor-
tant.
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Word1: bank Word2: money
Context1
Located downtown along the east bank of the Des Moines River ...
Context2
This is the basis of all money laundering, a track record of depositing clean money before slipping through dirty money ..

Figure 1: Example from the SCWS dataset, the focus is in the different senses of the word bank and there is one independent
context per word.

2.3. Existing Datasets
There are a few examples of datasets which take context
into account. However, so far these have been motivated by
discrete sense disambiguation, and therefore take a view
of word meaning as discrete (taking one of a finite set of
senses) rather than continuous; they are therefore not suited
for the more graded effects we are interested to look into.
The Stanford Contextual Word Similarity (SCWS)
dataset (Huang et al., 2012) does contain graded similar-
ity judgements of pairs of words in the context of organ-
ically occurring sentences (from Wikipedia). However it
was designed to evaluate a discrete multi-prototype model,
so the focus was on the contexts selecting for one of the
word senses. This resulted in them presenting each of the
two words of the pair in their own distinct context. From
our point of view this approach has some drawbacks: First,
even in the cases where they annotated the same pair twice,
we find ourselves with four different contexts, each affect-
ing the meaning of each of the instances of the words in-
dependently, and it is not possible to produce a system-
atic comparison of contextual effects on pairwise similar-
ity. Second, beyond the independent lexical semantics of
each word being affected by their independent local con-
text, the annotator is being presented with two completely
independently occurring contexts at the same time. Even
if the two contexts did organically occur on their own, this
combination of the two did not, and we have seen before
how crucial we think keeping the interaction with the con-
text as natural as possible is. There is no easy way to know
how this newly assembled global context affects the cog-
nitive state of the annotators and their perception of sim-
ilarity. The same goes for the contextually-aware models
trying to predict their results. Joining the contexts before
feeding them to the model could create conflicting, difficult
to predict effects, but feeding each context independently
is fundamentally different to what humans annotators were
presented with.
In addition to these limitations of the independent contexts
approach, the scores found in SCWS show a worryingly
low inter-rater agreement (IRA), measured as the Spearman
correlation between different annotators. As pointed out by
(Pilehvar and Camacho-Collados, 2019), the mean IRA be-
tween each annotator and the average of the rest, which is
considered a human-level upper bound for model’s perfor-
mance, is 0.52; while the performance of a simple context-
independent model like word2vec (Mikolov et al., 2013)
is 0.65. Examining the scores more in detail, we find that
many scores show a very large standard deviation, with an-
notators rating the same pair very differently. One possible
reason for this may lie in the annotation design: the task it-

self does not directly enforce engagement with the context,
and the words were presented to annotators highlighted in
boldface, making it easy to pick them out from the context
without reading it; thus potentially leading to a lack of en-
gagement of the annotators with the context.
A lot of these limitations were addressed by the more recent
Words-in-Context (WiC) dataset (Pilehvar and Camacho-
Collados, 2019). With a more direct and straightforward
take on word sense disambiguation, each entry of the
dataset is made of two lexicographer examples of the same
word. The entry is completed with a positive value (T) if
the word sense in the two examples/context is the same, or
with a negative value (F) if the contexts point to different
word senses. One advantage of this design is that it forces
engagement with the context; another is that it creates a
task in which context-independent models like word2vec
“would perform no better than a random baseline”. Human
annotators are shown to produce healthy inter-rater agree-
ment scores for this dataset. However the dataset is again
focused in looking at discrete word senses and cannot there-
fore capture continuous effects of context in the judgements
of similarity between different words.
These datasets are also available only in English, and do not
allow models to be evaluated across different languages.

3. Dataset and Task Design
CoSimLex will be based on pairs of words from SimLex-
999 (Hill et al., 2015); the reliability and common use of
this dataset makes it a good starting point and allows com-
parison of judgements and model outputs to the context-
independent case. For Croatian and Finnish we use existing
translations of Simlex-999 (Mrkšić et al., 2017; Venekoski
and Vankka, 2017; Kittask, 2019). In the case of Slovene,
we have produced our own new translation (Pollak et al.,
2020), following the methodology used by Mrkšić et al.
(2017) for Croatian.
The English dataset consists of 333 pairs; the Croatian,
Finnish and Slovene datasets of 111 pairs each. Each pair
is rated within two different contexts, giving a total of 1554
scores of contextual similarity. This poses a difficult task:
to find suitable, organically occurring contexts for each
pair; this task is more pronounced for languages with less
resources, and as a result the selection of pairs is different
for each language.
Each line of CoSimLex will be made of a pair of words se-
lected from Simlex-999; two different contexts extracted
from Wikipedia in which these two words appear; two
scores of similarity, each one related to one of the contexts;
and two scores of standard deviation. Please see Figure 2
for an example from our English pilot.
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Word1: population Word2: people SimLex: µ 7.68 σ 0.80
Context1 Context1: µ 6.49 σ 1.40
Disease also kills off a lot of the gazelle population. There are many people and domesticated animals that come onto their
land. If they pick up a disease from one of these domesticated species they may not be able to fight it off and die. Also, a
big reason for the decline of this gazelle population is habitat destruction.
Context2 Context2: µ 7.73 σ 1.77
But the discontent of the underprivileged, landless and the unemployed sections remained even after the reforms. The
crumbling industries give rise to extreme unemployment, in addition to the rapidly growing population. These people
mostly belong to the SC/ST or the OBC. In most cases, they join the extremist organizations, mentioned earlier, as an
alternative to earn their livelihoods.

Figure 2: Example from the English pilot, showing a word pair with two contexts, each with mean and standard devia-
tion of human similarity judgements. The original SimLex values for the same word pair without context are shown for
comparison.

Evaluation Tasks and Metrics The first practical use
of CoSimLex will be as a gold standard for the public
SemEval 2020 task 3: Graded Word Similarity in Con-
text. The goal of this task is to evaluate how well mod-
ern context-dependent embeddings can predict the effect of
context in human perception of similarity. In order to do so
we define two subtasks and two metrics:

Subtask 1 - Predicting Changes: In subtask 1, partici-
pants must predict the change in similarity ratings between
the two contexts. In order to evaluate it we calculate the
difference between the scores produced by the model when
the pair is rated within each one of the two contexts. We
do the same with the average of the scores produced by
the human annotators. Finally we calculate the uncentered
Pearson correlation. A key property of this method is that
any context-independent model will predict no change and
get strongly penalised in this task.

Subtask 2 - Predicting Ratings: In subtask 2, partici-
pants must predict the absolute similarity rating for each
pair in each context. This will be evaluated using Spear-
man correlation with gold-standard judgements, follow-
ing the standard evaluation methodology for similarity
datasets (Hill et al., 2015; Huang et al., 2012). Good
context-independent models could theoretically give com-
petitive results in this task, however we still expect context-
dependent models to have a considerable advantage.

4. Annotation Methodology
As starting point for our annotation methodology, we
adapted the annotation instructions used for SimLex-999.
This way we benefit from its tested method of explaining
how to focus on similarity rather than relatedness or asso-
ciation (Hill et al., 2015). As explained in their original
paper, cup and mug are very similar, while coffee and cup
are strongly related but not similar at all. For English we
adopted a modified version of their crowd-sourcing pro-
cess: we use Amazon Mechanical Turk, with the same
scoring scale (0 to 6), the same post-processing and clean-
ing of the data (a necessary step when working with this
kind of crowd-sourcing platform), and achieve similarly
good inter-annotator agreement. For the less-resourced lan-
guages, crowdsourcing is not a viable option due to lack of
available speakers, and we recruit annotators directly. This
means fewer annotators (for Croatian, Finnish and Slovene,

12 annotators vs 27 in English), however the average qual-
ity of annotation is a lot higher and the data requires less
post-processing - see Section 5. for details.

4.1. Finding Suitable Contexts
For each word pair we need to find two suitable con-
texts. These contexts are extracted from each language’s
Wikipedia. They are made of three consecutive sentences
and they need to contain the pair of words, appearing only
once each. English is by far the easiest language to work
with, not only because of the amount and quality of the
text contained in the English version of Wikipedia but be-
cause the other four languages are highly inflected (Croat-
ian, Finnish and Slovene). To overcome this, we work with
data from (Ginter et al., 2017)2 which contains tokenised
and lemmatised versions of Wikipedia for 45 languages.
We first find all the possible candidate contexts for each
word pair, and then select those candidates that are most
likely to produce different ratings of similarity. The dif-
ferences are expected to be small, especially in words that
don’t present several senses and are not highly polysemous,
so we need a process that has the most chances of find-
ing contexts that make a difference. We use a dual process
in which we use ELMo and BERT to rate the similarity
between the target pair within each of the candidate con-
texts. Then we select the 2 contexts in which ELMo scored
the pair as the most similar, and the 2 contexts in which it
scored them as most different. We do the same using BERT
scores. This gives us 4 contexts in which our target words
are scored as very similar by the models and 4 contexts in
which they are scored as very different.
The final selection of two contexts is made by expert hu-
man annotators, one per language. We construct online sur-
veys with these 8 contexts and ask them to select the two
in which they think the word pair is the most and the least
similar, trying to maximise the potential contrast in simi-
larity. In addition, we ask them how much potential for a
difference they see in the contexts selected. This gives us
not only the contexts we need, but a predicted performance
and direction of change for use in later analysis.
In the case of less resourced languages, the smaller size
and lower quality of the Wikipedia text resources require
some extra steps to ensure the quality of the final annota-

2http://hdl.handle.net/11234/1-1989
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Word1: čovjek (adult male) Word2: dijete (child)
Context1 Context1: µ 2.5 σ 1.76
Špinat ima dosta željeza, ali i oksalne kiseline. Oksalna kiselina veže kalcij i čini ga neupotrebljivim za ljudski organi-
zam. Prema novijim istraživanjima, špinat se ne preporuča kao česta hrana mladim osobama i djeci, ali je izvrsna hrana
za starije ljude.
(Spinach has plenty of iron but also oxalic acid. Oxalic acid binds calcium and renders it unusable for the human body.
According to recent research, spinach is not recommended as a common food for younger people and children, but it is
an excellent food for older people.)
Context2 Context2: µ 4.25 σ 0.95
Nakon što su ljudi u selu saznali da je trudna, počinju sumnjati na dr. Richardsona jer je on proveo najviše vremena s
njom. Kako vrijeme prolazi, pritisak glasina na kraju prisiljava liječnika da se preseli. Odluči se oženiti s Belindom i
uzeti dijete sa sobom.
(After people in the village find out she is pregnant, they begin to suspect Dr. Richardson because he spent the most
time with her. As time goes on, the pressure of the rumors eventually forces the doctor to move. He decides to marry
Belinda and take her child with him.)

Figure 3: Example from the Croatian pilot, showing the word pair with two contexts, each with mean and standard deviation
of human similarity judgements. This example showed one of the most significant contextual effects in the pilot; it went
in the opposite direction to the one predicted by the expert annotator. Note the effect of stemming: the target word čovjek
appears in both cases via its irregular plural, ljudi (nominative) or ljude (accusative); and dijete appears in Context 1 in its
dative plural form djeci. English translations (generated using Google Translate with manual post-correction) are shown
here for exposition purposes but are not part of the dataset.

tion. For these languages we run the contexts through a set
of heuristic filters to try to remove badly constructed ones.
In addition we produce 16 candidates instead of 8 for the
expert annotators to choose from, and we add the possibil-
ity for them to delete parts of the context in order to make
them easier to read. Adding text is not allowed, in order to
ensure that contexts are natural.

4.2. Contextual Similarity Annotation
The next step is to obtain the contextualised similarity an-
notations. Our goal is to capture the kind of contextual
phenomena discussed in Section 2.: lexical meaning mod-
ulation and conceptual salience manipulation. In order to
maximise our chances we define three goals:

• We want the interaction with the context to be as natu-
ral as possible, so as to maximise priming effects and
capture the potential change in the salience of concep-
tual dimensions.

• We need a way in which annotators have the chance to
account for lexical modulation within the sentence.

• We need to avoid the apparent lack of engagement we
saw in the SCWS annotators.

With these goals in mind we designed a two-step mixed an-
notation process. Our online survey interface is composed
of two pages per pair of words and context (each annotator
scores only one of the contexts). In the first page the an-
notators are presented with the context, and asked to read
it and come up with two words “inspired by it”. Once this
is complete, the second page shown presents the context
again, but with the pair of words now highlighted in bold;
they are now asked to rate the similarity of the pair of words
within the sentence.
The second page is the main scoring task; it is designed
to capture changes in scores of similarity due both to lexi-
cal modulation and — because we hope the annotators are

still primed by their recent previous engagement with the
context — the changes in the salience of conceptual di-
mensions. The separate task on the first page is intended
to make annotators engage fully with the whole context,
while maintaining a natural interaction with it to maximise
any priming effects. One of the possible problems we iden-
tified in the the SCWS annotation process is the fact that
the words were always highlighted in bold, making it easy
for annotators (Amazon Mechanical Turk workers) to just
look at the pair of words in isolation and to not read the rest
of the contexts. Our initial task is designed to prevent this
(the words are not bold in the first page).
In English, given the resources available, we follow
SimLex-999 closely: we will use Amazon Mechanical Turk
to get 27 annotators per pair and context. Annotators do
not score the same pair twice: 27 annotators score the pair
within one context and another 27 in the other. This means
the whole dataset can be annotated at the same time. Re-
liability of annotations will be ensured by an adapted ver-
sion of SimLex-999’s post-processing, which includes rat-
ing calibration and the filtering of annotators with very low
correlation to the average rating. In addition, we will use re-
sponses to the first annotation question to check annotator
engagement with the context text and thus filter low quality
raters.
For Croatian, Finnish and Slovene we recruit annotators di-
rectly: this means we have less of them (12 vs 27) but we
expect the quality of the annotation to be better (and pilots
confim this – see below). It also means, howeve, that we
must use the same annotators to rate the two contexts of
each pair. This has an avantage, because it controls for the
variation in the particular judgement of different annota-
tors, but means that we introduce a week’s delay in between
annotations in order to make sure they don’t remember, and
are influenced by, their own previous score.
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Word1 Word2 Context1 Context2 STDev1 STDev2 P-Value
water ice 2.57 8.13 2.60 1.82 2.18E-08∗∗

friendly generous 4.44 3.92 2.85 3.56 0.258
keep protect 2.50 3.75 2.66 2.22 0.036∗∗

pact agreement 8.73 8.97 1.89 1.53 0.302
narrow broad 0.42 1.97 1.19 2.60 0.012∗∗

arm neck 3.81 1.27 2.89 1.97 0.002∗∗

cottage cabin 8.07 9.56 2.37 0.94 0.003∗∗

inform notify 9.31 9.80 0.97 0.55 0.019∗∗

mother guardian 3.94 7.28 3.15 2.54 0.0001∗∗

car bicycle 4.12 4.85 2.58 2.46 0.169

Table 1: Example results from the English dataset showing the mean similarity, standard deviation and p-value calculated
using the Mann-Whitney U test.

Word1 Word2 Context1 Context2 STDev1 STDev2 P-Value
nadbiskup biskup 6.67 6.30 2.66 2.61 0.325
sretan mlad 1.50 0.30 2.28 0.67 0.099∗

kost čeljust 6.00 3.33 2.38 2.24 0.013∗∗

zvijer životinja 9.44 6.30 1.09 3.09 0.004∗∗

priča tema 2.59 7.64 1.88 2.51 0.0004∗∗

Table 2: Example results from the Croatian dataset showing the mean similarity, standard deviation and p-value calculated
using the Mann-Whitney U test.

Figure 4: First page shown for each word pair annotation task: annotators must read the context and come up with two
words inspired by it. At this point, the word pair to be scored is not known to the annotator.

Figure 5: Second page shown for each word pair annotation task: the same context is now shown with the target words in
bold, and annotators must give a similarity score for the word pair within that particular context.
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5. Current Status
Methodology prototyping We have run three pilots with
13 pairs of words each to confirm the annotation design
and methodology. Each study tested a slight variation: in
the first pilot, annotators rated relatedness in addition to
similarity; the second focused on similarity, and tested the
use of contexts related to the target words but not containing
them; the third experimented with marking the target words
in the context paragraphs using boldface font.
The first pilot confirmed that (as with SimLex) similarity is
a more useful metric for this task than relatedness, display-
ing a higher inter-annotator agreement and more variation
between contexts; we therefore use similarity as the basis
of our dataset, as described above.
The results of the second pilot saw significant contextual
effects in many examples, including some in which the tar-
get words weren’t included in the contexts. This indicates
that our method seems suitable for capturing priming ef-
fects and salience manipulation, or at least some kind of
cognitive effects different from lexical contextualisation.
The third pilot showed much lower agreement and lower
difference between contexts: we take this as confirmation
of our suspicion (from analysis of SCWS) that marking the
target words makes it easy for annotators to ignore the rest
of the context paragraph, and therefore use the two-stage
annotation methodology described above, in which target
words are not initially marked.

Results The dataset contains 341 entries in English, 113
in Croatian, 112 in Slovene and 25 in Finnish. Each of the
entries contains a pair of words evaluated in two different
contexts. Please see Table 1 for examples from the English
results and Table 2 for Croatian.
Inter-rater agreement (IRA) is measured as Spearman cor-
relation between each rating and the average values. Af-
ter post-processing the data our dataset’s IRA is surpris-
ingly similar between the different languages: for English,
Croatian and Slovene the mean is ρ = 0.77, while Finnish
achieves ρ = 0.80 (likely due to the small sample); these
compare well to other related datasets (SimLex-999 ρ =
0.78, SCWS ρ = 0.52). The crowd-sourced nature of En-
glish data results in a higher percentage of annotations be-
ing dropped in the post-processing. However the fact that
both methods converge to the same IRA is encouraging,
and seems to indicate that both methods achieve compara-
ble results.
The statistical significance of the difference in similarity
evaluation between contexts was assessed using the Mann-
Whitney U test. In English, from the 341 entries, 220 re-
sults showed a statistically significant difference at p < 0.1
(ratio = 0.65), and 208 did so at p < 0.05 (ratio = 0.61). The
results again where quite similar for Croatian and Slovene
with 73 and 65 statistically significant results at p < 0.1
(ratio = 0.65 and 0.58). Finnish results showed a much
smaller ratio of statistically significant results (8 entries, ra-
tio = 0.33), which could be due to the small sample but
may deserve further investigation. However, as in the case
of the inter-rater agreement, the fact that English, Croatian
and Slovene results are very similar is a good sign for both
methodologies: the English crowd-sourced annotation and

the smaller sample of better quality annotation we used for
Croatian and Slovene.

6. Conclusion
The growing use of context-dependent language mod-
els and representations in NLP motivates the need for a
dataset against which they can be evaluated, and which can
test their ability to reflect human perceptions of context-
dependent meaning. CoSimLex will provide such a dataset,
and do so across a number of less-resourced languages as
well as English. The full dataset was provided for the eval-
uation stage of SemEval 2020 at the beginning of February
2020, and will be made public when the competition is over
(before the LREC2020 conference).

7. Acknowledgements
This research is supported by the European Union’s
Horizon 2020 research and innovation programme under
grant agreement No 825153, project EMBEDDIA (Cross-
Lingual Embeddings for Less-Represented Languages in
European News Media). The results of this publication re-
flect only the authors’ views and the Commission is not
responsible for any use that may be made of the informa-
tion it contains. The first author is also supported by the
EPSRC and AHRC Centre for Doctoral Training in Media
and Arts Technology (EP/L01632X/1); the second author is
also supported by the EPSRC project Streamlining Social
Decision Making for Improved Internet Standards (SoDe-
Stream, EP/S033564/1).

ICT-29-2018 D1.7: Final contextual embeddings

66 of 113



8. Bibliographical References
Branigan, H. P., Pickering, M. J., and Cleland, A. A.

(2000). Syntactic co-ordination in dialogue. Cognition,
75(2):B13–B25.

Cruse, D. A. (1986). Lexical semantics. Cambridge uni-
versity press.

Devlin, J., Chang, M.-W., Lee, K., and Toutanova, K.
(2019). Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceedings of
the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Pa-
pers), pages 4171–4186.

Evans, V. and Green, M. (2018). Cognitive linguistics: An
introduction. Routledge.

Finkelstein, L., Gabrilovich, E., Matias, Y., Rivlin, E.,
Solan, Z., Wolfman, G., and Ruppin, E. (2002). Placing
search in context: The concept revisited. ACM Transac-
tions on information systems, 20(1):116–131.

Gärdenfors, P. (2000). Conceptual Spaces: The Geometry
of Thought. MIT Press.

Gärdenfors, P. (2014). The geometry of meaning: Seman-
tics based on conceptual spaces. MIT Press.
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Abstract

This paper presents the Graded Word Similarity in Context (GWSC) task which asked participants
to predict the effects of context on human perception of similarity in English, Croatian, Slovene
and Finnish. We received 15 submissions and 11 system description papers. A new dataset
(CoSimLex) was created for evaluation in this task: it contains pairs of words, each annotated
within two short text passages. Systems beat the baselines by significant margins, but few did well
in more than one language or subtask. Almost every system employed a Transformer model, but
with many variations in the details: WordNet sense embeddings, translation of contexts, TF-IDF
weightings, and the automatic creation of datasets for fine-tuning were all used to good effect.

1 Introduction

Contextualised word embeddings, produced by models such as ELMo (Peters et al., 2018) and BERT
(Devlin et al., 2019), have quickly become the standard in NLP systems. They deliver impressive
performance in language modeling and downstream tasks; but there are few resources available which
allow intrinsic evaluation in terms of the properties of the embeddings themselves, or their ability to
model human perception of meaning, and how these depend on context. For non-contextualised models,
resources like WordSim-353 (Finkelstein et al., 2002) and SimLex-999 (Hill et al., 2015) were instrumental
to evaluate their ability to reflect human similarity judgements. However these datasets treat pairs of words
in isolation, and thus cannot tell us much about the effect of context. The few resources that work with
context, like SCWS (Huang et al., 2012), WiC (Pilehvar and Camacho-Collados, 2019), and WSim (Erk
et al., 2013), focus on word sense and discrete effects, thus missing the more graded effects that context
has on words in general, and that approaches like ELMo and BERT would seem well suited to model.
Further, USim (Erk et al., 2013) focuses on separate sentential contexts only in the English language.

The goal of SemEval-2020 Task 3: Graded Word Similarity in Context, was to move towards filling
that gap. We created a new dataset, CoSimLex (Armendariz et al., 2020), which builds on the familiar
pairwise, graded similarity task of SimLex-999, but extends it to pairs of words as they occur in context;
specifically, each pair of words appears together in two different shared contexts (see Figure 1). The task
was designed to test the ability of participating systems to reflect human judgements of word meaning
similarity in context, and crucially, the way in which this varies as context is changed. In addition,
since CoSimLex takes the gradedness of human judgements into account, the task applies not only to
polysemous words, or words with distinct senses, but to the phenomenon of context-dependency of word

This work is licensed under a Creative Commons Attribution 4.0 International Licence. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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meaning in general. The dataset is also multi-lingual: besides English, it includes three less-resourced
European languages, Croatian, Finnish, and Slovene.

Word1: man Word2: warrior SimLex: µ 4.72 σ 1.03
Context1 Context1: µ 7.88 σ 2.07
When Jaimal died in the war, Patta Sisodia took the command, but he too died in the battle. These young
men displayed true Rajput chivalry. Akbar was so impressed with the bravery of these two warriors that
he commissioned a statue of Jaimal and Patta riding on elephants at the gates of the Agra fort.
Context2 Context2: µ 3.27 σ 2.87
She has a dark past when her whole family was massacred, leaving her an orphan. By day, Shi Yeon is an
employee at a natural history museum. By night, she’s a top-ranking woman warrior in the Nine-Tailed
Fox clan, charged with preserving the delicate balance between man and fox.

P-Value: 1.3 × 10−6

Figure 1: Example from the English dataset, showing a word pair with two contexts, each with mean and standard deviation of
human similarity judgements. The original SimLex values for the same word pair without context are shown for comparison.
The P-Value shown is the result of a Mann-Whitney U test.

2 Background

Our motivation lies in the cognitive and psychological mechanisms by which context affects our perception
of word meaning. Here, we present two of the most prominent ideas that helped define the task and
dataset, and explain why previous datasets for similarity in context are not well suited to test them.

2.1 Contextual Modulation

One debate in lexical semantics is whether the discreteness of lexical senses is fundamental or just a
perception. Cruse (1986) proposed a compromise, distinguishing two different manners in which sentential
context modifies the meaning of a word. First, the context can select for different discrete senses; in this
case, the word is described as ambiguous, and the process as contextual selection of senses (familiar
from many word sense disambiguation tasks). Second, the context can modify meaning within the scope
of a single sense by highlighting certain semantic traits and backgrounding others. This is described as
contextual modulation of meaning, and the word as general with respect to the traits being modulated.
This latter effect is not discrete, but continuous or graded; every word is general to some extent, and thus
has a different meaning in every context in which it appears.

1. At this point, the bank was covered with brambles.
2. Sue is visiting her pregnant cousin.
3. Arthur poured the butter into a dish.

The main effect of the context in example (1) is to select one of the discrete senses associated with the
word bank. In contrast, in examples (2) and (3), the contexts modulate the meanings of the words cousin
and butter: for cousin, promoting the “female” trait, and for butter, the “liquid” trait. This is possible
because of the general quality of these words. Other traits could be promoted in different contexts: cousin
includes male and female, but also tall, short, happy and sad cousins. Related traits can be promoted as a
consequence of this modulation: we understand the butter as not only liquid, but warm. We expect this to
affect similarity judgements.

2.2 Salience Manipulation

In contrast to this purely linguistic view, we can take a cognitive perspective on language and meaning,
seeing it as a more general expression of human cognition (Evans and Green, 2018). In this view,
the units of interest are the conceptual structures associated with words or lexical units, rather than
the words themselves. One approach is to see these in terms of conceptual spaces characterised by
quality dimensions (Gärdenfors, 2000; Gärdenfors, 2014). These dimensions may be concrete (weight,
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temperature, brightness) or abstract (awkwardness, goodness), and concepts are defined as regions (usually
convex) within the space. This space is not fixed: when we communicate we constantly re-negotiate the
dimensions framing the conversation and their salience (Warglien and Gärdenfors, 2015). This salience
manipulation changes their perceived importance. Priming effects are proposed as the main mechanism
that facilitates this process (Pickering and Garrod, 2004). This type of semantic effect was first reported
by Meyer and Schvaneveldt (1971) when they found that their lexical decision task was responded to
faster when the subjects were primed with words associated to the target words.

From this perspective, then, context affects meaning not via the presence of specific words, but via a
change in the mental state of the hearer/reader.

1. My muffins were a failure, I should have used butter or margarine instead of olive oil.
2. Vegan chefs replace animal fats, like butter, with plant based ones like olive oil or margarine.
3. Vegan influencers believe the consumption of animal products is cruel and unnecessary.

In example (1), the context of baking increases the salience of dimensions related to physical properties
of ingredients; butter and margarine (both solid) therefore seem more similar to each other than to olive
oil (liquid). In contrast, example (2)’s context of veganism makes the animal vs. plant-based dimension
very salient; margarine and olive oil now seem more similar to each other than to the animal-based butter.

The effects of salience manipulation and contextual modulation have important differences. The effect
in example (3) is introduced by the word poured and limited to the word butter, but the effect in example
(1) seems more general: once a context triggers changes in the salience of conceptual dimensions, any
word thereafter is affected. Our hypothesis is that the salience manipulation effect applies even when
the target words are not present: a context like example (3) will impact later perceptions of similarity of
butter, margarine and olive oil. We hope to test such predictions in later analyses.

2.3 Related Work
The Stanford Contextual Word Similarity (SCWS) dataset (Huang et al., 2012), and the similar USim
dataset (Erk et al., 2013) contain graded similarity judgements of pairs of words in the context of naturally
occurring sentences (e.g., from Wikipedia with SCWS). However, the datasets were designed to evaluate
a discrete multi-prototype model, so the focus was on contexts that select for discrete word senses, and
each word in a pair was presented in its own distinct context. This prevents a systematic comparison of
contextual effects on pairwise similarity. In addition, inter-rater agreement (IRA) on SCWS, measured as
the Spearman correlation between different annotators, shows worryingly low scores. As Pilehvar and
Camacho-Collados (2019) point out, the mean IRA between each annotator and the average of the rest,
considered a human-level upper bound for model performance, is 0.52; while the performance of a simple
context-independent model like word2vec (Mikolov et al., 2013) is 0.65. Many scores also show a very
large standard deviation, with annotators rating the same pair very differently. One possible reason may
lie in the annotation design: the task itself does not directly enforce engagement with the context, and the
target words were presented to annotators highlighted in boldface, making it easy to pick them out from
the context without reading it.

Some of these limitations were addressed by the more recent Words-in-Context (WiC) dataset (Pile-
hvar and Camacho-Collados, 2019). With a more direct and straightforward take on word sense dis-
ambiguation, each entry of the dataset is made of two lexicographer examples of the same word, and
labelled as to whether the word sense in the two examples/contexts is the same or different. This forces
engagement with the context; it also creates a task in which context-independent models like word2vec
“would perform no better than a random baseline”; and inter-rater agreement scores are much more healthy.
However, as the dataset focuses on discrete word senses, it cannot capture graded effects of context.

These datasets are also available only in English. Multi-lingual similarity datasets exist: in SemEval-
2017 Task 2: Multilingual and Cross-lingual Semantic Word Similarity, Camacho-Collados et al.
(2017) used five different languages, and even used pairs in which each word was presented in a different
language. A more recent Multi-SimLex dataset (Vulić et al., 2020) comprises similarity ratings for 1,888
concept pairs aligned across 13 typologically diverse languages. However, the pairs in both datasets were
annotated out of context, preventing analysis of contextual effects.
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3 Task Description

Our dataset is based on pairs of words from SimLex-999 (Hill et al., 2015). Each instance is a naturally-
occurring context, taken from Wikipedia, in which both words in the pair appear, labelled with a similarity
score given by human annotators. For each pair, the dataset contains two different contexts (see Section 4
for more detail on dataset and choice of contexts). We proposed two different subtasks: first, to predict the
change in similarity score between the two different contexts for each pair; second, to predict the similarity
scores themselves. These are related but independent tasks that use the same input data, but each subtask
had its own phases and leaderboards. Submissions for each subtask were independent and participants
were able to use different models for each subtasks and each language. The tasks were unsupervised, and
so no training data was released; However, we released a small practice kit which contained a practice
dataset, a script to generate the baseline and evaluation scripts so participants could easily reproduce
results, and understand how the dataset looked and how the task was evaluated.

3.1 Subtask 1: Predicting Change
In the first subtask, participants were asked to predict the change in the similarity ratings of a pair of
words when the human annotators are presented with the same word pair within two different contexts.
This task directly addresses our main question. It evaluates how well systems are able to model the effect
that context has in human perception of similarity. Theoretically a model could perform very well at
modelling change without actually being able to accurately predict the ratings themselves. On the other
hand, any context-independent model will predict no change and perform poorly in this task.

3.2 Subtask 2: Predicting Contextual Ratings
In the second subtask, participants were asked to predict the absolute similarity rating for each pair in
each context. This is a more traditional task which evaluates systems’ ability to model both similarity of
words and the effect that context has on it. Good context-independent models could theoretically give
reasonably competitive results in this task, however we still expect context-dependent models to have a
considerable advantage.

4 Dataset

CoSimLex (Armendariz et al., 2020) is based on pairs of words from SimLex-999 (Hill et al., 2015); the
reliability and common use of SimLex makes it a good starting point and allows comparison of judgements
and model outputs to the context-independent case. For Croatian and Finnish we use existing translations
of SimLex-999 (Mrkšić et al., 2017; Venekoski and Vankka, 2017; Kittask, 2019). In the case of Slovene,
we have produced our own new translation,1 following Mrkšić et al. (2017)’s methodology for Croatian.

The dataset consists of 340 pairs in English, 112 in Croatian, 111 in Slovene and 24 in Finnish. Each
pair is rated within two different contexts, giving a total of 1174 scores of contextual similarity. This
poses a difficult task: to find suitable, organically occurring contexts; this task is even more challenging
for languages with less resources, and as a result the selection of pairs is different for each language.

Each line of CoSimLex is made of a pair of words selected from SimLex-999; two different contexts
extracted from Wikipedia in which these two words appear; two scores of similarity, each one related to
one of the contexts, calculated as the mean of annotator ratings for that context; two scores of standard
deviation; the p-value given by applying the Mann-Whitney U test to the two score distributions; and
the four inflected forms of the words exactly as they appear in the contexts (including case; note that in
the morphologically rich languages, many inflections are possible). To the best of our knowledge, this
is the first reasonably sized dataset in which differences in contextual similarity between two words are
supported with a test of statistical significance. Figure 1 shows an example from the English dataset.

4.1 Context Selection
For each word pair we needed to find two suitable contexts. These contexts were extracted from each
language’s Wikipedia. They are made of three consecutive sentences and they needed to contain the pair

1Available from http://hdl.handle.net/11356/1309
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of words, appearing only once each. English is by far the easiest language to work with, not only because
of the amount and quality of the text contained in the English version of Wikipedia but because the other
three languages are highly inflected (Croatian, Finnish and Slovene). To overcome this, we worked with
data from (Ginter et al., 2017)2 which contains tokenised and lemmatised versions of Wikipedia for 45
languages.

The differences were expected to be small; to maximise the chance of finding contexts that produced
different ratings of similarity, we used a dual process based on ELMo and BERT models. First, we used a
model to rate the similarity between the target words within each of the candidate contexts; then selected
the context in which it scored the pair as the most similar, and the context in which it scored them as most
different. We repeated the process using both ELMo and BERT scores. This gave us 4 promising contexts.
Then we added 4 randomly selected contexts for a total of 8 candidate contexts.

The final selection of two contexts was made by expert human annotators, one per language. Our
experts were presented with 8 candidate contexts and asked to select the two that maximised the potential
contrast in similarity. In the case of less-resourced languages, the smaller size and lower quality of the
Wikipedia text resources required some extra steps to ensure the quality of the final annotation. A set
of heuristic filters were used to try to remove badly constructed contexts. In addition we produce 16
candidates instead of 8 for the expert annotators to choose from.

4.2 Annotation
As starting point for our annotation methodology, we adapted the instructions used for SimLex-999. This
way we benefited from its tested method of explaining how to focus on similarity rather than relatedness
or association (Hill et al., 2015). As explained in their original paper, cup and mug are very similar, while
coffee and cup are strongly related but not similar at all. For English we adopted their crowd-sourcing
process: we used Amazon Mechanical Turk, with the same initial scoring scale (0 to 6), which is later
transformed to a 0 to 10 scale. For the less-resourced languages, crowdsourcing is not a viable option
due to lack of available speakers, and we recruited annotators directly. This means fewer annotators (for
Croatian, Finnish and Slovene, 12 annotators vs 27 in English), however the average quality of annotation
is higher and the data requires less post-processing.

In regards to the annotation process itself, our goal is to capture the kind of contextual phenomena
discussed in Section 2: lexical meaning modulation and conceptual salience manipulation. In order to
maximise our chances we defined three goals:

• Interaction with the context should be as natural as possible, so as to maximise priming effects and
capture the potential change in the salience of conceptual dimensions.

• Annotators should have the chance to account for lexical modulation within the sentence.
• The process should ensure that the annotators engage fully with the context.

With these goals in mind we designed a two-step mixed annotation process. Our online survey interface
is composed of two pages per pair of words and context (each annotator scores only one of the contexts).
In the first page the annotators are presented with the context, and asked to read it and come up with two
words “inspired by it”. Once this is complete, the second page shown presents the context again, but
with the target words now highlighted in bold; they are now asked to rate the similarity of target words
within the sentence. Notice these target words are completely independent to the ones that were chosen as
“inspired by the context” (see Apendix A for an example of the survey).

The second page is the main scoring task; it is designed to capture changes in scores of similarity due
both to lexical modulation and — because we hope the annotators are still primed by their recent previous
engagement with the context — the changes in the salience of conceptual dimensions. The separate task
on the first page is intended to make annotators engage fully with the whole context, while maintaining a
natural interaction with it to maximise any priming effects. One of the possible problems we identified in
the previous SCWS annotation process is the fact that the words were always highlighted in bold, making
it easy for annotators (Amazon Mechanical Turk workers) to just look at the pair of words in isolation and

2Available from http://hdl.handle.net/11234/1-1989
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Dataset #pairs Sim StDev Spearman’s ρ Change (Abs) p < 0.1 p < 0.05

SimLex-999 999 4.56 1.27 0.78 - - -
English CoSimLex 340 5.54 2.24 0.77 2.16 65% 61%
Croatian CoSimLex 112 4.39 2.23 0.76 2.32 65% 54%
Slovene CoSimLex 111 4.90 2.17 0.77 1.96 59% 46%
Finnish CoSimLex 24 4.08 2.16 0.81 1.75 33% 29%

Table 1: Similarity, standard deviation, Spearman’s ρ and change are average values. The two rightmost columns denote the
proportion of pairs whose differences of scores with the original values are statistically significant at p-value < 0.1 and p-value
< 0.05.

Figure 2: (a) (b): Differences in the distribution of similarity between SimLex-999 and the English CoSimLex; (c): Change in
the scoring of similarity between contexts categorized by language and part of speech

to not read the rest of the contexts. Our initial task is designed to prevent this (the words are not in bold in
the first page).

4.3 Post-Processing

Post-processing and cleaning the data is especially important when relying on crowd-sourcing platforms
to source annotators. Reliability of annotation was ensured by an adapted version of SimLex-999’s
post-processing method, which includes rating calibration and the filtering of annotators with very low
correlation to the rest, see the original paper for details (Hill et al., 2015). In addition, we were able to use
responses to the first annotation question to check annotator engagement with the context.

In English there were instances in which a block of annotations resulted in especially bad data. In those
cases the only solution was repeating the annotation of the whole block. In our experience, obtaining
good annotation using Amazon Mechanical Turk is not straightforward, but can be improved by a few
strategies to attract good annotators. It is possible to engage with quality annotators and create private
tasks for them inside the platform, which produces better data and allows higher payment for the worker.
We encourage other researchers to use similar strategies when possible. This was not an issue with the
rest of the languages, where annotators were sourced directly. After the post-processing steps the English
dataset retained an average of 21 annotations per entry (from a starting point of 27) while the rest of the
languages kept an average of 10 annotations (from the starting 12).

4.4 Basic Analysis

The difficulty of finding contexts for the less-resourced languages restricted the selection of pairs available.
As a consequence the overlap of pairs between different languages is smaller than originally intended (86
pairs appear in two languages, 12 in three and only 4 appear in all languages). However we were still able
to replicate SimLex-999’s proportions of nouns, verbs and adjectives (about two thirds nouns, two ninths
verbs and one ninth adjectives). In English we checked other metrics, namely concreteness, standard
deviation and out-of-context similarity. The first were kept in similar ranges to SimLex, however for
out-of-context similarity we decided to lower the proportion of antonyms and low similarity score pairs,
which as noted by Camacho-Collados et al. (2017) were substantially overrepresented (see Figure 2).
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We expected that the relative complexity of the annotation process and the increased confounding
effects could affect inter-rater agreement; however, as we can see in Table 1, the different CoSimLex
datasets show correlation scores very close to SimLex-999’s IRA (ρ = 0.77 vs ρ = 0.78 in English). In the
same table we can see the standard deviation is higher. Differences in the average similarity score are
mainly due to the pair selection. After the post-processing and cleaning of the data both the crowdsourced
and directly sourced annotation produced similar IRA and standard deviation. We wondered if the highly
inflected nature of some of the languages might increase the contextual effects; but as can be seen in the
table, the average change is very similar, even lower for Slovene and Finnish. However an interesting
phenomenon seems to appear when we look at the distribution by part of speech; Chart (c) in Figure 2
suggest that verbs and adjectives in Croatian, Slovene and Finnish do see an increased effect of context
compared with English ones. Importantly, the global percentage of statistically significant results is high
(indeed, higher than we expected), with a global 62% of pairs showing statistically significant differences
between contexts.

One potential confounding effect is the separation between words as presented in context (the number
of intervening words between the target pair): it is possible this could affect annotators’ perception of
similarity. There is a very small negative correlation between similarity ratings and distance (Pearson r =
-0.13). The source of this could be annotator bias, a linguistic effect or a combination of the two; but the
effect seems small enough to ignore for current purposes.

5 Evaluation Metrics

The first subtask looked at the change in similarity between the two contexts, therefore it was important to
preserve the difference between positive and negative values since it reflected in which of the two context
the system believed the two words to be more or less similar. Consequently the most appropriate metric
was Uncentered Pearson Correlation which looks at the deviation from zero instead of the mean.

CCuncentered =

∑n
i=1(xi)(yi)√

(
∑n

i=1 xi)
2(
∑n

i=1 yi)
2

For the second subtask, which looked at the more traditional absolute value of similarity in context, we
followed (Camacho-Collados et al., 2017) and used the harmonic mean of the Pearson and the Spearman
correlations between the system’s results and the average of the human annotations.

6 Baselines

Our task studies contextual effects in four different languages, which made Multiligual BERT the perfect
candidate for our baseline. Released shortly after the original BERT model (Devlin et al., 2019), it
employs its same architecture while being trained in more than 100 different languages, our four languages
between them. The original model introduced an innovative masking strategy that for the first time allowed
for a bidirectional Transformer language model. BERT models are renowned for their ability to capture
contextual effects, ability which is often blamed for an important part of their performance improvements.
For the baseline of our task we used the uncased version of the model, and as a common strategy we
used the contents of the last layer to form our embeddings. BERT creates sub-word tokens for the out of
vocabulary words, in those cases our strategy was simply averaging the sub-word vectors to form a word
embeddings.

Additionally, the results achieved by ELMo are added to Tables 2 and 3 as a reference. This model
precedes BERT and was one of the first to produce contextualised embeddings (Peters et al., 2018), in this
case using a bidirectional LSTM. The original ELMo dataset was only trained in English, however we
used ELMo models recently trained in Croatian, Slovene and Finnish (Ulčar and Robnik-Šikonja, 2020).

7 Participants & Results

The task received a total of 14 submissions for the first subtask and 15 submissions for the second. From
those, 11 teams submitted system description papers for review. In order to be considered for the official
rankings we asked participants to fill a form with some basic information about their systems. Teams that
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SUBTASK 1
English Croatian Slovene Finnish

Ferryman 0.774 BabelEnconding 0.74 Hitachi 0.654 will_go 0.772
will_go 0.768 Hitachi 0.681 BRUMS 0.648 Ferryman 0.745
MultiSem 0.76 BRUMS 0.664 BabelEnconding 0.646 BabelEnconding 0.726
LMMS 0.754 Ferryman 0.634 CiTIUS-NLP 0.624 BRUMS 0.671
BRUMS 0.754 LMMS 0.616 Ferryman 0.606 CiTIUS-NLP 0.671
Hitachi 0.749 will_go 0.597 will_go 0.603 MultiSem 0.593
BabelEnconding 0.73 CiTIUS-NLP 0.587 LMMS 0.56 Hitachi 0.574
CiTIUS-NLP 0.721 MineriaUNAM 0.374 MineriaUNAM 0.328 MineriaUNAM 0.389
MineriaUNAM 0.544 MultiSem - MultiSem - LMMS 0.36
JUSTMasters 0.738 0.44 0.512 0.546
UZH 0.765 - - -
mBERT_uncased 0.713 0.587 0.603 0.671
ELMo 0.570 0.662 0.452 0.550

Table 2: Subtask 1 Final Ranking: The values are calculated as the Pearson Uncentered Correlation between the system’s scores
and the average human annotation. It represents the system’s ability to predict the change in perception produced by the contexts.
Since different annotators looked at each context, human performance couldn’t be calculated for this subtask. JUSTMasters and
UZH are not part of the official ranking since they were able to optimise their systems with more than the competition’s limit of
9 submissions.

SUBTASK 2
English Croatian Slovene Finnish

MineriaUNAM 0.723 BabelEnconding 0.658 BabelEnconding 0.579 BRUMS 0.645
LMMS 0.72 Hitachi 0.616 BRUMS 0.573 BabelEnconding 0.611
AlexU-Aux-Bert 0.719 MineriaUNAM 0.613 CiTIUS-NLP 0.538 MineriaUNAM 0.597
MultiSem 0.718 LMMS 0.565 will_go 0.516 MultiSem 0.492
BRUMS 0.715 BRUMS 0.545 AlexU-Aux-Bert 0.516 Ferryman 0.357
will_go 0.695 CiTIUS-NLP 0.496 Hitachi 0.514 LMMS 0.354
Hitachi 0.695 AlexU-Aux-Bert 0.402 MineriaUNAM 0.487 will_go 0.35
CiTIUS-NLP 0.687 will_go 0.402 LMMS 0.483 Hitachi 0.335
BabelEnconding 0.634 Ferryman 0.397 Ferryman 0.345 CiTIUS-NLP 0.289
Ferryman 0.437 MultiSem - MultiSem - AlexU-Aux-Bert 0.289
JUSTMasters 0.725 0.443 0.44 0.68
mBERT_uncased 0.573 0.402 0.516 0.289
ELMo 0.510 0.529 0.407 0.516
Human 0.77 0.76 0.77 0.81

Table 3: Subtask 2 Final Ranking: The values are calculated as the harmonic mean of the Spearman and Pearson correlation
between the system’s scores and the average human annotation. It represents the system’s ability to predict contextual human
perception of similarity. Human performance is the average value when comparing each annotator against the average of the rest.
JUSTMasters is not part of the official ranking since they were able to optimise their system with more than the competition’s
limit of 9 submissions.

neither filled the form nor submitted a system description paper do not appear in the official rankings
(Tables 2 and 3). We will discuss here the results of the remaining 11 systems.

First, we describe a group of systems designed around sense embeddings created using WordNet
(Miller, 1995) as a guide. The most successful was the submission by LMMS. They employed a similar
strategy to the one set out in (Loureiro and Jorge, 2019), creating pretrained embeddings for each sense in
WordNet, this time using XLM-R (Conneau et al., 2019) and SemCor augmented with their own UWA
dataset (Loureiro and Camacho-Collados, 2020). This approach achieved second place in the English
Subtask 1 and fourth in the English Subtask 2. UZH (Tang, 2020) submitted (after the competition had
ended) a system based on the original BERT sense embeddings created for (Loureiro and Jorge, 2019) but
improved their performance by combining them with contextualised embeddings. Finally for this group
AlexU-AUX-BERT (Mahmoud and Torki, 2020) created new sense embeddings for the competition
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target words. In order to do so they sourced additional contexts for the top WordNet synsets. Their system
scored third in the English Subtask 2. The pretrained WordNet sense embedding proved highly successful
in this task, especially in Subtask 2, predicting the similarity scores themselves. The biggest weakness of
the approach is their reliance on linguistic resources that don’t exist for most languages other than English.

Related to these systems, the submission by MineriaUNAM (Gomez-Adorno et al., 2020) won the
English Subtask 2. They proposed a system in which they calculated K-Means inspired centroids from
the words in the context and used them to modify the original SimLex-999 non contextualised similarity
scores. The approach, even if very successful, seems to rely on having out of context human annotations,
perhaps not realistic in the general case. The fact that the system did very poorly in Subtask 1, which
asked to predict change, seems to indicate much of the success is coming from the human annotations. A
related strategy could perhaps be used with embeddings or computed predictions instead of human scores.

The next group focused on testing a variety of models and parameters. BRUMS (Hettiarachchi and
Ranasinghe, 2020) worked with ELMo, BERT, Flair (Akbik et al., 2018), Transformer-XL (Dai et al.,
2019) and XLNet (Yang et al., 2019). Their final submission made use of stacked embeddings proposed
by Akbik et al. (2018). They won the Finnish Subtask 2, ended second in the two Slovene ones and
performed very well in the two English ones. The Hitachi team (Morishita et al., 2020) looked at BERT
and XML-R. Their main insight was that for every language, the layers from the center to the end where
always the best performing ones, however while BERT performed best in the last layer, XLM-R did in
the center one, suggesting their inner structure is organised differently. They won the Slovene Subtask
1, finished second in the two Croatian subtasks and performed competitively in the English ones. To
conclude with this group JUSTMasters (Al-Khdour et al., 2020) tested several models, parameters and
their own strategy to combine models. They achieved very good performance, especially in the English
Subtask 2. However, in order to optimise their system, they made many more submissions than allowed in
the competition; we therefore leave them out of the official ranking.

With a more multilingual approach, BabelEncoding (Costella Pessutto et al., 2020) proposed a solution
in which they translated the contexts and target words to many languages and then used a weighted
combination of monolingual pretrained non contextualised embeddings and BERT embeddings. Their
idea is that the translation not only brings new resources but the process itself can produce useful
information, for example to disambiguate. The approach works very well for the less resourced languages,
being clearly the best system in that category, in both Subtask 1 and 2. Their system won Subtask 1 and 2
for Croatian (by a healthy margin) and 2 for Slovene, ending third in the Slovene Subtask 1 and third and
second in the two Finnish ones.

The MultiSem team (Soler and Apidianaki, 2020) collected 5 different datasets in order to fine-tune
their BERT models, most of them automatically generated from previous datasets to increase contextual
influence. As an example, ukWaC-subs was created by substituting target words by either: a correct
substitute; a word that could be the right substitute in other circumstances but it is not in this context;
or a random word. The datasets included WiC, which when used to fine tune the model resulted in the
best performance for Subtask1, giving them a third place. The approach works very well, giving a very
consistent performance in all categories, and significantly improving the non fine-tuned model from a
ρ=0.715 and 0.661 per subtask, to a ρ=0.760 and 0.718 respectively.

Ferryman’s focus (Chen et al., 2020) was clearly the English Subtask 1, which they won with a
modification of BERT in which they fed the TF-IDF score of the words to the model, thus incorporating
information about the general importance of words. The system does very well at predicting the change
between contexts, but surprisingly poorly at predicting similarity itself, ending last in the English Subtask
2 and second from the last in Croatian and Slovene.

The starting point of CitiusNLP (Gamallo, 2020) was the idea that, even if BERT seems to be able
to encode syntactic structure, it doesn’t seem to make use of it. They created a linguistically motivated
system that relied in dependency to create predictions. However, its performance was considerably worse
than BERT’s and their actual submissions are based on a standard BERT model.

Finally, the Will_Go team (Bao et al., 2020) looked at different ways to measure similarity between
embeddings, mixing euclidean distance with the most common cosine similarity and several others not
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described in their paper. The combination works well, they achieved a second place in the English Subtask
1 and won the Finnish Subtask 1.

8 Conclusion

We resented the SemEval-2020 Task on Graded Word Similarity in Context and introduced our new dataset
CoSimLex. We provided the motivation behind their design choices and described the annotation process.
The task received a good number of submissions and system description papers (15 and 11 respectively).
We hope both the task and the dataset will be useful for researchers looking into how state-of-the-art
systems capture context, and help promote the use of psychologically and cognitively inspired ideas in
our field. Some of the interesting highlights were good performance of WordNet-based sense embeddings,
the improvements achieved in less-resourced languages by simply translating the input, how the explicit
feeding of an “old-fashioned” feature like TF-IDF improved a very modern system’s performance, and
the power of well designed, automatically created datasets for fine-tuning.

Additional and more detailed analyses of the dataset and task results will follow as part of future work.
Areas to be investigated include the impact of different similarity ranges and degrees of polysemy, and
more detailed qualitative analysis of the differences in annotation and between systems.
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Nikola Mrkšić, Ivan Vulić, Diarmuid Ó Séaghdha, Ira Leviant, Roi Reichart, Milica Gašić, Anna Korhonen, and
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A Appendix: Survey Example

Figure 3: First page shown for each word pair annotation task: annotators must read the context and come up with two words
inspired by it. At this point, the word pair to be scored is not known to the annotator.

Figure 4: Second page shown for each word pair annotation task: the same context is now shown with the target words in bold,
and annotators must give a similarity score for the word pair within that particular context.

B Appendix: Less-resourced Examples

B.1 Croatian

Word1: nov Word2: svjež SimLex (English): µ 6.83 σ 1.2
Context1 Context1: µ 9.49 σ 1.05
U jesen 1175. Fridrik je zamolio svježe trupe iz Njemačke. Prije svega Henrik Lav kao najmoćniji
knez i vladar Bavarske odbio je caru poslati nove vojnike uvjetujući to prepuštanjem Goslara s bogatim
rudnicima srebra.
Context2 Context2: µ 1.85 σ 2.42
Proučavanje upalnih promjena dokazao je da ulaženje bijelih krvnih tjelešaca u tkivo uzrokuje gnojenje.
Po njegovoj teoriji, rak nastaje iz emrionalnih stanica, razbacanih po organizmu. Uveo je nove metode
istraživanja, npr. smrzavanje svježeg tkiva i pravljenje mirkoskopskih rezova.

P-Value: 2.4 × 10−5

Figure 5: Example from the Croatian dataset, showing a word pair with two contexts, each with mean and standard deviation of
human similarity judgements. The P-Value shown is the result of a Mann-Whitney U test.
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B.2 Slovene

Word1: zgodba Word2: tema SimLex (English): µ 5 σ 1.7
Context1 Context1: µ 0.167 σ 0.527
V zgodbi Čajanka za psa mačka in papagaja, se cunjasta dvojčica Nina sooča s strahom. Ker je še
majhna deklica se boji teme, toda na pomoč ji prihiti punčka in škratje Copatki, ki Nini predlagajo naj se
poveselijo in priredijo čajanko. Skupaj s papagajem, psom in mačkom priredijo čajanko in pozabijo na
strah.
Context2 Context2: µ 6.3 σ 1.11
Koreografijo je sestavil Jamal Sims, ki je z Miley Cyrus sodeloval že pri plesu za pesem »Hoedown
Throwdown«. Miley Cyrus in Jamal Sims sta skupaj sestavila koreografijo, ki bi se ujemala z zgodbo
v pesmi, in nazadnje vse skupaj predstavila Robertu Halsu, ki si je »takoj zamislil, kako bo vse skupaj
izgledalo«. V zvezi s temo videospota je Miley Cyrus povedala: »Mislim, da videospot razloži, da moje
življenje ne izključuje življenj drugih ljudi.

P-Value: 5.1 × 10−5

Figure 6: Example from the Slovene dataset, showing a word pair with two contexts, each with mean and standard deviation of
human similarity judgements. The P-Value shown is the result of a Mann-Whitney U test.

B.3 Finnish

Word1: rikos Word2: varkaus SimLex (English): µ 7.53 σ 1.32
Context1 Context1: µ 4.33 σ 2.38
Valistuksen vaikutuksesta häpeärangaistuksista vähitellen luovuttiin. Esimodernissa Euroopassa häpeäran-
gaistuksiin johtivat etupäässä pienehköt rikokset, kuten solvaukset ja häiritsevä juopumus, mutta myös
esimerkiksi aviorikos ja varkaus. Häpeärangaistuksien toteuttamistavat vaihtelivat alueellisesti.
Context2 Context2: µ 0 σ 0
Tekoja voidaan siis pitää pääosin laittomina, koska tuolloin ei ollut käytettävissä kuolemanrangaistuksen
sallivaa, asianmukaista lainsäädäntöä. Sisällissodan jälkeen laaditulla armahduslailla vapautettiin myös
valkoisen osapuolen edustajat vastuusta mahdollisesti tekemistään rikoksista, joten jonkinlainen ymmär-
rys teloitusten laittomuudesta oli ollut olemassa jo tuolloin. Kuolemantuomioiden langettamista jatkoi
Varkauden kenttäoikeus, jonka lainmukaisuudesta voidaan olla myös hyvin erimielisiä.

P-Value: 3.3 × 10−5

Figure 7: Example from the Finnish dataset, showing a word pair with two contexts, each with mean and standard deviation of
human similarity judgements. The P-Value shown is the result of a Mann-Whitney U test. This is a very particular example,
while "rikos" translates as "crime" and "varkaus" as "theft", there is a town named "Varkaus", which is the meaning of the word
in the second context. This is the reason why all the annotators, accurately scored the similarity of the two words as 0 in the
second context.
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Abstract

Despite the incremental nature of Dynamic Syntax (DS), the semantic
grounding of it remains that of predicate logic, itself grounded in set the-
ory, so is poorly suited to expressing the rampantly context-relative nature
of word meaning, and related phenomena such as incremental judgements
of similarity needed for the modelling of disambiguation. Here, we show
how DS can be assigned a compositional distributional semantics which
enables such judgements and makes it possible to incrementally disam-
biguate language constructs using vector space semantics. Building on a
proposal in our previous work, we implement and evaluate our model on
real data, showing that it outperforms a commonly used additive baseline.
In conclusion, we argue that these results set the ground for an account
of the non-determinism of lexical content, in which the nature of word
meaning is its dependence on surrounding context for its construal.

1 Introduction
At the core of Dynamic Syntax (DS) as a grammar formalism has been the
claim that the traditional concept of syntax — principles underpinning a set

∗This is a post-peer-review, pre-copyedit version of an article published in the Journal of
Logic, Language and Information. The final authenticated version will be available online at:
http://dx.doi.org/TBD.
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of structures inhabited by strings — should be replaced by a dynamic perspec-
tive in which syntax is a set of procedures for incrementally building up rep-
resentations of content relative to context. Central to this claim has been the
concept of underspecification and update, with partial content-representations
being progressively built up on a word-by-word basis, allowing the emergence
of progressively established content. Being a grammar formalism, DS under-
pins both speaker actions and hearer actions, with the immediate consequence
of being able to characterise directly the to-and-fro dynamic of conversational
dialogue. In informal conversations, people fluently switch between speaking
and listening in virtue of each agent constructing incrementally evolving repre-
sentations as driven by the words uttered and the procedures they induce. As
a result, any one of them is able to adopt the lead role in this process at any
stage. This was one of many confirmations of the general stance of incorporat-
ing within the grammar formalism a reflection of time incrementality (Kempson
et al., 2016, inter alia).

Within this framework, words have been defined as inducing procedures for
developing tree-theoretic representations of content (Cann et al., 2005; Kemp-
son et al., 2001, 2011). However throughout much of the DS development there
has been one major conservatism. The concept of semantic representation was
taken, along broadly Fodorian lines, as involving a simple word-concept map-
ping. This was defined by Kempson et al. (2001) as a mapping onto expres-
sions of the epsilon calculus, with its set-theoretically defined semantics (an
epsilon term being defined as denoting a witness for the constructed arbitrary
name manipulated in natural deduction systems of predicate calculus), a stance
adopted as commensurate with the broadly proof-theoretic perspective of DS,
and additionally motivated by the character of epsilon terms under develop-
ment as displaying a growing reflection of the context within which they are
constructed. Though attractive in matching the characteristic entity-typing of
noun phrases, such a concept of word meaning is both too narrow in reflect-
ing only what is expressible within predicate logic terms, and yet too strong
in defining fixed extensions as content of the individual expressions, a move
which provides no vehicle for addressing how content words display consider-
able context-dependence. In effect, the problem of explaining what meaning can
be associated with a word as the systematic contribution it makes to sentence
meaning without positing a veritable Pandora’s box of ambiguities was not ad-
dressed. The same is true in many other frameworks: formal semanticists have
by and large remained content with defining ambiguities whenever denotational
considerations seemed to warrant them; and Partee (2018) cites the context-
dependence of lexical semantics as a hurdle for which such a methodology does
not appear to offer any natural means of addressing. And even within pragmat-
ics, with its dedicated remit of explicating context-particular effects external
to a standard competence model of grammar, and recent work on polysemy
probing what this amounts to (Recanati, 2017; Carston, 2019), there neverthe-
less remains a tendency to invoke ambiguity involving discrete token-identical
forms in the face of multiple interpretation potential, thereby leaving the phe-
nomenon of natural language plasticity unexplained (Fretheim, 2019). For DS
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as defined in (Kempson et al., 2001; Cann et al., 2005; Kempson et al., 2011),
polysemy would thus also seem to remain a hurdle despite accounts of anaphora
and ellipsis (see Kempson et al., 2015).

The challenge is this: words of natural language (NL) can have extraordi-
narily variable interpretations (even setting the problem of metaphor aside). A
‘fire’ in a grate is a warm welcome upon entering a house while a ‘fire’ in sur-
rounding countryside causes widespread alarm. A ‘burning’ of a scone denotes a
quite different process leading to quite different effects than ‘burning’ of a frying
pan, or indeed ‘burning’ of a forest. The substance of the way in which such NL
tokens are understood is deeply embedded within the contingent and culture-
specific variability of perspectives which individual members of that community
bring to bear in interaction with each other based on both supposedly shared
knowledge of that language and their own practical and emotional experience.
And such variation can occur when, within a single exchange, even a single
speaker is able to shift construal for a single word, fragment by fragment as the
participants finesse what they are talking. This is shown by the potential sur-
face ungrammaticality of shared utterances (or compound contributions, Howes
et al., 2011) which is in fact perfectly grammatical across speakers:

(1) A: I’ve almost completely burned the kitchen.
B: Did you burn..?
A: (interrupting) Myself? No, fortunately not. Well, only my hair

Yet, as long as the assumption that knowledge of language has to be mod-
elled in some sense as prior to, hence independent of, any model of how that
knowledge is put to use, this endemic context-relativity of even the basic units
of language remains deeply intransigent; and the assumptions underpinning
the long-held competence performance distinction have until very recently only
been subject to minor modification amongst formal semanticists, despite the
advocacy of need for more radical change from conversation analysts such as
Schegloff (1984), psycholinguists such as Clark (1996) and Healey et al. (2018),
and increasingly within cognitive neuroscience (e.g. Anderson, 2014).

Though DS purports to provide a general framework for modelling NL gram-
mar in incremental terms, it was not until Purver et al. (2011) combined DS with
Type Theory with Records (DS-TTR) that it became able to fully capture the
incremental compositionality of semantic representation required to explain, for
example, how people interactively co-construct shared utterances (see Purver
et al., 2014). Even then, however, the challenge of modelling rampant lexical
ambiguity was not addressed, and the attendant process of disambiguation also
remained an open issue.

In previous work (Sadrzadeh et al., 2017, 2018b,a) we showed how in prin-
ciple one can address these problems within the DS framework via the use of
distributional or vector space semantics (VSS). By representing word meanings
as vectors within a continuous space, VSS approaches can provide not only
quantitative tools for measuring graded relations between words such as relat-
edness and similarities of meaning, but also a natural way to express the non-
determinism of a word’s construal from a denotational perspective, even relative
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to context (see e.g. Coecke, 2019, for initial work on how such an approach can
model the change of meaning through discourse). Moreover, we believe that the
combination of a vector-space rendition of word meaning with the DS process-
oriented characterisation of NL syntax is timely and of cross-disciplinary sig-
nificance, as it promises to fill a niche within cognitive neuroscience where the
emphasis is increasingly one of defining cognitive abilities in processual rather
than representational terms – see discussion in Section 6.

In that earlier work, we outlined a theoretical approach to incorporating
VSS within DS (Sadrzadeh et al., 2017, 2018b); we then demonstrated with toy
examples how this approach might work to capture incremental measures of
plausibility, and suggested that it might also be applied to word sense disam-
biguation (Sadrzadeh et al., 2018a). In this paper, we first review that approach
(Sections 2 and 3), and then continue to explore this research program by ex-
tending that work: in Section 4 we show in detail how the proposed model can
be applied to a word sense disambiguation task, and in Section 5 we imple-
ment the theoretical model using real data, and evaluate it on existing datasets
for word sense disambiguation. Our approach addresses the polysemy problem
directly by adopting the presumption that even relatively unorthodox cases of
putative ambiguity such as the verbs slump, tap, and dribble can be analysed
from a unitary processual base (these cases are where Vector Space Semantics,
since its early days, has been known to apply most successfully; see e.g. the
original work of Schütze, 1998). We take the corpus-based approach to word
meaning with vector spaces deducible from possible containing contexts within
large scale corpora as a formal analogue to the contingent and highly culture-
specific variability of word meanings and usages. We provide evidence from the
corpora on degrees of similarities between variations of finished and unfinished
utterances, present accuracy results, and explore the effect of incrementality
on an existing disambiguation dataset. In conclusion, we reflect on how VSS
combined with DS assumptions opens up the possibility of modelling the gen-
eral non-determinism of NL meaning in the light of this incremental interactive
perspective with its shift away from direct pairings of string and denotational
content to a more dynamic and non-deterministic stance.

2 Background
2.1 Dynamic Syntax and Incremental Semantic Parsing
Dynamic Syntax (DS) provides a strictly incremental formalism relating word
sequences to semantic representations. Conventionally, these are seen as trees
decorated with semantic formulae that are terms in a typed lambda calculus
(Kempson et al., 2001, chapter 9):
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“mary …” “…likes …”
?Ty(t)

Ty(e), Fo(mary) ?Ty(⟨e, t⟩),♢

?Ty(t)

Ty(e), Fo(mary) ?Ty(⟨e, t⟩)

?Ty(e),♢ Ty(⟨e, ⟨e, t⟩⟩), Fo(λyλx.like(x, y))

“…john”
Ty(t), Fo(like(mary, john)),♢

Ty(e), Fo(mary) Ty(⟨e, t⟩), Fo(λx.like(x, john))

Ty(e), Fo(john) Ty(⟨e, ⟨e, t⟩⟩), Fo(λyλx.like(x, y))

Figure 1: DS parsing as semantic tree development, for an utterance of the
simple sentence “Mary likes John”.

O(X3,O(X1, X2))

X3 O(X1, X2)

X1 X2

“In this paper we will take the operation O
to be function application in a typed lambda
calculus, and the objects of the parsing process
[…] will be terms in this calculus together with
some labels; […]”

This permits analyses of the semantic output of the word-by-word parsing pro-
cess in terms of partial semantic trees, in which nodes are labelled with types Ty
and semantic formulae Fo, or with requirements for future development (e.g.
?Ty. ?Fo), and with a pointer ♢ indicating the node currently under devel-
opment. This is shown in Figure 1 for the simple sentence Mary likes John.
Phenomena such as conjunction, apposition and relative clauses are analysed
via Linked trees (corresponding to semantic conjunction). For reasons of space
we do not present an original DS tree for these here (see section 2.5 of the intro-
duction to this volume); an example of a non-restrictive relative clause linked
tree labelled with vectors is presented in Figure 4.

The property of strict word-by-word incrementality inherent in all versions
of DS makes it a good candidate for modelling language in natural human
interaction. Speakers and hearers in dialogue can swap roles during sentences,
without holding to notions of traditional syntactic or semantic constituency
(see Howes et al. (2011) and example (1)). Speakers often produce incomplete
output, and hearers manage to understand the meaning conveyed so far. In
order to perform these ordinary feats, a suitable parsing and generation model
must deal in incremental representations which capture the semantic content
built at any point, and reflect grammatical constraints appropriately, and this
is something DS does well (Cann et al., 2007). Accordingly, DS analyses of
many dialogue phenomena have been produced: for example, shared utterances
(Purver et al., 2014), self-repair (Hough and Purver, 2012), and backchannelling
(Eshghi et al., 2015).

Much recent work in dialogue understanding takes a purely machine-learning
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approach, learning how to encode input utterances into representations which
can be decoded into appropriate follow-ups, without requiring prior knowledge
of dialogue phenomena or structure (see e.g. Vinyals and Le, 2015). However,
while these models can show good accuracy in terms of understanding speaker
intentions and generating suitable output, their representations are suitable only
for the task and domain for which they are learned, and do not learn meaningful
information about important linguistic phenomena like self-repair (Hupkes et al.,
2018). Structured grammar-based approaches like DS can therefore contribute
more general, informative models, from which robust versions can be learned
(Eshghi et al., 2017).

2.2 DS and Semantic Representation
As presented above, however, and in its original form, DS assumes semantic
formulae expressed in a standard symbolic predicate logic, and therefore not
well suited to the problems of non-determinism, (dis)similarity and shift in word
meanings discussed in Section 1. But the DS formalism is in fact considerably
more general. To continue the quotation above:

“[…] it is important to keep in mind that the choice of the actual
representation language is not central to the parsing model devel-
oped here. […] For instance, we may take X1, X2, X3 to be feature
structures and the operation O to be unification, or X1, X2, X3 to be
lambda terms and O Application, or X1, X2, X3 to be labelled cate-
gorial expressions and O Application: Modus Ponens, or X1, X2, X3

to be DRSs and O Merging.”

This generality has been exploited in more recent work: Purver et al. (2010,
2011) outlined a version in which the formulae are record types in Type The-
ory with Records (TTR, Cooper, 2005) in DS-TTR; and Hough and Purver
(2012) show how this can confer an extra advantage – the incremental decora-
tion of the root node, even for partial trees, with a maximally specific formula
via type inference, using the TTR merge operation ⋗ as the composition func-
tion. In the latter account, underspecified record types decorate requirement
nodes, containing a type judgement with the relevant type (e.g. [x : e ] at type
?Ty(e) nodes)– see Fig. 2 for a DS-TTR parse of “Mary likes John”. Hough and
Purver (2017) show that this underspecification can be given a precise semantics
through record type lattices: the dual operation of merge, the minimum com-
mon super type (or join) ⋖ is required to define a (probabilistic) distributive
record type lattice bound by ⋗ and ⋖ . The interpretation process, including
reference resolution, then takes the incrementally built top-level formula and
checks it against a type system (corresponding to a world model) defined by a
record type lattice. Implicitly, the record type on each node in a DS-TTR tree
can be seen to correspond to a potential set of type judgements as sub-lattices
of this lattice, with the appropriate underspecified record type (e.g. [x : e ]) as
their top element, with a probability value for each element in the probabilistic
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“mary …” “…likes …”
[

x : mary
]

[
x : mary

]
♢




x : mary
y : e
p : like(x, y)




[
x : mary

]
λr′[x : e]




x=r′.x : e
y : e
p : like(x, y)




♢λr : [x : e]λr′[x : e]




x=r′.x : e
y=r.x : e
p : like(x, y)




“…john”


x : mary
y : john
p : like(x, y)


 ,♢

[
x : mary

]
λr′[x : e]




x=r′.x : e
y : john
p : like(x, y)




[
x : john

]
λr : [x : e]λr′[x : e]




x=r′.x : e
y=r.x : e
p : like(x, y)




Figure 2: DS-TTR parse of “Mary likes John”

TTR version. Building on this, Sadrzadeh et al. (2018b) took the first steps
in showing how equivalent underspecification, and narrowing down of meaning
over time can be defined for vector space representations with analogous oper-
ations to ⋗ and ⋖ — this gives the additional advantages inherent in vector
space models such as established techniques for computing similarity judgements
between word, phrase and sentence representations.

3 Compositional Vector Space Semantics for DS
Vector space semantics are commonly instantiated via lexical co-occurrence,
based on the distributional hypothesis that meanings of words are represented
by the distributions of the words around them; this is often described by Firth’s
claim that ‘you shall know a word by the company it keeps’ (Firth, 1957). More
specifically, the methodology of distributional semantics has involved taking
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very large corpus collections as the data source and defining the content of a
word as a function of the number of times it occurs in relation to other rele-
vant expressions in that collection, as determined by factors such as similarity
and dependency relations with such expressions. This can be implemented by
creating a co-occurrence matrix (Rubenstein and Goodenough, 1965), in which
the columns are labelled by context words and the rows by target words; the
entry of the matrix at the intersection of a context word c and a target word
t is a function (such as TF-IDF or PPMI) of the number of times t occurred
in the context of c (as defined via e.g. a lexical neighbourhood window, a de-
pendency relation, etc.). The meaning of each target word is represented by its
corresponding row of the matrix. These rows are embedded in a vector space,
where the distances between the vectors represent degrees of semantic simi-
larity between words (Schütze, 1998; Lin, 1998; Curran, 2004). Alternatively,
rather than instantiating these vectors directly from co-occurrence statistics,
the vectors can be learned (usually via a neural network) in order to predict
co-occurrence observations and thus encode meaning in a similar way (see e.g.
Baroni et al., 2014b, for a comparison of these methods).

Distributional semantics has been extended from word level to sentence level,
where compositional operations act on the vectors of the words to produce a
vector for the sentence. Existing models vary from using simple additive and
multiplicative compositional operations (Mitchell and Lapata, 2010) to opera-
tors based on fully fledged categorial grammar derivations, e.g. pregroup gram-
mars (Coecke et al., 2010; Clark, 2013), the Lambek Calculus (Coecke et al.,
2013), Combinatory Categorial Grammar (CCG) (Krishnamurthy and Mitchell,
2013; Baroni et al., 2014a; Maillard et al., 2014) and related formalisms, such as
multimodal Lambek Calculi (Moortgat and Wijnholds, 2017). However, most
work done on distributional semantics has not been directly compatible with in-
cremental processing, although first steps were taken in Sadrzadeh et al. (2017)
to develop such an incremental semantics, using a framework based on a cat-
egorial grammar as opposed to in the DS formalism, i.e. one in which a full
categorial analysis of the phrase/sentence was the obligatory starting point.

Compositional vector space semantic models have a complementary prop-
erty to DS. Whereas DS is agnostic to its choice of semantics, compositional
vector space models are agnostic to the choice of the syntactic system. Co-
ecke et al. (2010) show how they provide semantics for sentences based on the
grammatical structures given by Lambek’s pregroup grammars (Lambek, 1997);
Coecke et al. (2013) show how this semantics also works starting from the parse
trees of Lambek’s Syntactic Calculus (Lambek, 1958); Wijnholds (2017) shows
how the same semantics can be extended to the Lambek-Grishin Calculus; and
(Krishnamurthy and Mitchell, 2013; Baroni et al., 2014a; Maillard et al., 2014)
show how it works for CCG trees. These semantic models homomorphically
map the concatenation and slashes of categorial grammars to tensors and their
evaluation/application/composition operations, as shown by (Maillard et al.,
2014), all of which can be reduced to tensor contraction.

In DS terms, structures X1, X2, X3 are mapped to general higher order ten-
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sors, e.g. as follows:

X1 7→ Ti1i2···in ∈ V1 ⊗ V2 ⊗ · · ·Vn

X2 7→ Tinin+1···in+k
∈ Vn ⊗ Vn+1 ⊗ · · ·Vn+k

X3 7→ Tin+kin+k+1···in+k+m
∈ Vn+k ⊗ Vn+k+1 ⊗ · · ·Vn+k+m

Each Ti1i2···in abbreviates the linear expansion of a tensor, which is normally
written as follows:

Ti1i2···in ≡
∑

i1i2···in
Ci1i2···ine1 ⊗ e2 ⊗ · · · ⊗ en

for ei a basis of Vi and Ci1i2···in its corresponding scalar value. The O operations
are mapped to contractions between these tensors, formed as follows:

O(X1, X2) 7→ Ti1i2···inTinin+1···in+k

∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn−1 ⊗ Vn+1 ⊗ · · · ⊗ Vn+k

O(X3,O(X1, X2)) 7→ Ti1i2···inTinin+1···in+k
Tin+kin+k+1···in+k+m

∈ V1 ⊗ V2 ⊗ · · · ⊗ Vn−1 ⊗ Vn+1 ⊗ · · ·
· · · ⊗ Vn+k−1 ⊗ Vn+k+1 ⊗ · · · ⊗ Vn+k+m

In their most general form presented above, these formulae are large and the
index notation becomes difficult to read. In special cases, however, it is often
enough to work with spaces of rank around 3. For instance, the application of
a transitive verb to its object is mapped to the following contraction:

Ti1i2i3Ti3 = (
∑

i1i2i3

Ci1i2i3e1 ⊗ e2 ⊗ e3)(
∑

i3

Ci3e3) =
∑

i1i2

Ci1i2i3Ci3e1 ⊗ e2

This is the contraction between a cube Ti1i2i3 in X1⊗X2⊗X3 and a vector Ti3

in X3, resulting in a matrix in Ti1i2 in X1 ⊗X2.
We take the DS propositional type Ty(t) to correspond to a sentence space

S, and the entity type Ty(e) to a word space W . Given vectors Tmary
i , T john

k

in W and the (cube) tensor T like
ijk in W ⊗ S ⊗W , the tensor semantic trees of

the DS parsing process of “Mary likes John” become as in Fig. 3.1
A very similar procedure is applicable to the linked structures, where con-

junction can be interpreted by the µ map of a Frobenius algebra over a vector
space, e.g. as in (Kartsaklis, 2015), or as composition of the interpretations of
its two conjuncts, as in (Muskens and Sadrzadeh, 2016). The µ map has also
been used to model relative clauses (Clark et al., 2013; Sadrzadeh et al., 2013,
2014). It combines the information of the two vector spaces into one. Figure 2
shows how it combines the information of two contracted tensors Tmary

i T sleep
ij

and Tmary
i T snore

ij .
DS requirements can now be treated as requirements for tensors of a particu-

lar order (e.g. ?W , ?W ⊗S as above). If we can give these suitable vector-space
1There has been much discussion about whether sentence and word spaces should be the

same or separate. In previous work, we have worked with both cases, i.e. when W ̸= S and
when W = S.
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“mary …” “…likes …” “…john”
?S

W,Tmary
i ?W ⊗ S,♢

?S

W,Tmary
i ?W ⊗ S

?W,♢ W ⊗ S ⊗W,T likes
ijk

S, Tmary
i T like

ijk T john
k ,♢

W,Tmary
i W ⊗ S, T like

ijk T john
k

W,T john
k W ⊗ S ⊗W,T like

ijk

Figure 3: A DS with Vector Space Semantics parse of “Mary likes John”.

representations, we can then provide a procedure analogous to that of Hough
and Purver (2012)’s incremental type inference procedure, allowing us to com-
pile a partial tree to specify its overall semantic representation (at its root node).
One alternative would be to interpret them as picking out an element which is
neutral with regards to composition: the unit vector/tensor of the space they
annotate. A more informative alternative would be to interpret them as enu-

“mary, …” “…who …”

?S

W,Tmary
i ,♢ ?W ⊗ S

?S

W,Tmary
i ?W ⊗ S

?S

W,Tmary
i ,♢

“…sleeps, …”
?S

W,Tmary
i ?W ⊗ S,♢

S, Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

“…snores …”
S, µ(Tmary

i T sleep
ij , Tmary

i T snore
ij ),♢

W,Tmary
i W ⊗ S, T snore

ij

W,Tmary
i T sleep

ij

W,Tmary
i W ⊗ S, T sleep

ij

Figure 4: A DS with Vector Space Semantics parse of “Mary, who sleeps,
snores‘’.
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merating all the possibilities for further development. This can be derived from
all the word vectors and phrase tensors of the space under question — i.e. all the
words and phrases whose vectors and tensors live in W and in W⊗S in this case
— by taking either the sum T+ or the direct sum T⊕ of these vectors/tensors.
Summing will give us one vector/tensor, accumulating the information encoded
in the vectors/tensors of each word/phrase; direct summing will give us a tuple,
keeping this information separate from each other. This gives us the equiva-
lent of a sub-lattice of the record type lattices described in (Hough and Purver,
2017), with the appropriate underspecified record type as the top element, and
the attendant advantages for incremental probabilistic interpretation.

These alternatives all provide the desired compositionality, but differ in the
semantic information they contribute. The use of the identity provides no extra
semantic information beyond that contributed by the words so far; the sum
gives information about the “average” vector/tensor expected on the basis of
what is known about the language and its use in context (encoded in the vector
space model); the direct sum enumerates/lists the possibilities. In each case,
more semantic information can arrive later as more words are parsed. The best
alternative will depend on task and implementation. In the experiments below,
we implement and compare all these three methods.

4 Incremental Disambiguation
In this section, we show how our model can be applied to a common task in
compositional distributional semantics: disambiguation of verb meanings.

4.1 A Disambiguation Task
Verbs can have more than one meaning and their contexts, e.g. their subjects,
objects and other elements, can help disambiguate them. In compositional dis-
tributional semantics, this has been modelled by comparing different hypothe-
sized paraphrases for a sentence, one for each of the meanings of the verb, and
then measuring the degree of semantic similarity between the vectors for these
hypothesized paraphrased sentences and the original sentence (the one contain-
ing the ambiguous verb). The sentence that is closer to the original sentence
will then be returned as the one containing the disambiguated meaning of the
verb. For instance, consider the verb slump; it can mean ‘slouch’ in the con-
text of an utterance with “shoulders” as its subject, or it can mean ‘decline’
in the context of an utterance with “sales” as its subject. This procedure is
implemented in compositional distributional semantics by building vectors for
the following sentences:

“Shoulders slumped”, “Shoulders slouched”, “Shoulders declined”.
“Sales slumped”, ‘Sales slouched”, “Sales declined”

The semantic distances, e.g. the cosine distance, between these vectors are
employed to see which ones of these sentences are closer to each other. If “x
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slumped” is closest to “x slouched”, then it is concluded that an utterance of
“slump” means ‘slouch’ in the context of “x”. This idea was used by Mitchell
and Lapata (2010) to disambiguate intransitive verbs using their subjects as
context. They showed that the compositional distributional methods work bet-
ter than simple distributional methods: comparing distances between composed
sentence representations gives more accurate paraphrase disambiguation than
simply comparing the vectors of the individual verbs.

To test this, they used a dataset of sentences arranged in pairs:

Sentence1 Sentence2 Landmark

shoulders slumped shoulders declined LOW
shoulders slumped shoulders slouched HIGH

sales slumped sales declined HIGH
sales slumped sales slouched LOW

Each entry of the dataset consists of a pair of sentences and a similarity
landmark (LOW, HIGH). Each sentence in the pair is created by replacing the
verb of the first sentence with each of its two most orthogonal meanings. The
meanings and the degrees of their orthogonality are drawn from WordNet and
the synsets of the original verbs.

This dataset has been extended to transitive verbs, first by Grefenstette and
Sadrzadeh (2011), using a set of frequent verbs from the British National Corpus
(BNC, Burnard, 2000) and two of their meanings which are furthest apart using
WordNet distances; and then by Kartsaklis and Sadrzadeh (2013) using a set
of genuinely ambiguous verbs and their two eminent meanings introduced in
(Pickering and Frisson, 2001) using eye tracking. Examples of the verbs of
these are as follows:

Sentence1 Sentence2 Landmark

fingers tap table fingers knock table HIGH
fingers tap table fingers intercept table LOW
police tap telephone police knock telephone LOW
police tap telephone police intercept telephone HIGH

babies dribble milk babies drip milk HIGH
babies dribble milk babies control milk LOW
footballers dribble ball footballers control ball HIGH
footballers dribble ball footballers drip ball LOW
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In compositional distributional semantics, one can build vectors for the
words of these sentences and add or pointwise multiply them to obtain a vec-
tor for the whole sentence (Mitchell and Lapata, 2008). Alternatively, one can
build vectors for nouns and tensors for adjectives and verbs (and all other words
with functional types) and use tensor contraction to build a vector for the sen-
tence (Grefenstette and Sadrzadeh, 2015; Kartsaklis and Sadrzadeh, 2013). It
has been shown that some of the tensor-based models improve on the results
of the additive model, when considering the whole sentence (Grefenstette and
Sadrzadeh, 2015; Kartsaklis and Sadrzadeh, 2013; Wijnholds and Sadrzadeh,
2019); here, we focus on incremental composition as described above to investi-
gate how the disambiguation process works word-by-word.

In the intransitive sentence datasets (Mitchell and Lapata, 2008), the dis-
ambiguation context only consists of the subject and verb, and the incremental
process is fairly trivial (the ambiguity is only introduced when the verb is pro-
cessed, and at that point the sentence is complete). We use intransitive examples
to explain the principle first, but thereafter work with the transitive sentence
datasets and their different variants.

4.2 An Incremental Disambiguation Procedure
In a nutshell, the disambiguation procedure is as follows: when we hear the
word “shoulders” uttered, we can build a vectorial interpretation for the as-
yet incomplete utterance, using the compositional distributional semantics of
Dynamic Syntax as explained in Section 3 (and using either neutral identity
information, or (direct) sum information about all the intransitive verbs and
verb phrases that can follow). After we hear the verb “slump”, our uttered
sentence is complete and we form a vector for it, again by using the composi-
tional distributional semantics of DS (or the more traditional methods; the two
should result in the same semantics for complete utterances). We can check the
incremental behaviour of this process by one or more of the following steps:

1. The semantic vector of the unfinished utterance “shoulders · · · ” should be
closer to the semantic vector of the sentence with the correct meaning of “slump”
(i.e. to “Shoulders slouched”) than to the vector of the sentence with the in-
correct meaning of “slump” (i.e. to “Shoulders declined”). Formally, using the
cosine similarity measure of distributional semantics, the following should be
the case:

cos(
−−−−−−−−→shoulders · · ·,−−−−−−−−−−−−−→shoulders slouched) ≥ cos(

−−−−−−−−→shoulders · · ·,−−−−−−−−−−−−−→shoulders declined)

Of course, the complete utterance “shoulders slumped” should also be closer to
“shoulders slouched”. This is not incremental and has been verified in previous
work (Mitchell and Lapata, 2008). We do not experiment with this case here,
although, we might also expect, and could check, that it is closer to the full
correct paraphrase than is the partial sentence:

cos(
−−−−−−−−−−−−−→shoulders slumped,−−−−−−−−−−−−−→shoulders slouched) ≥ cos(

−−−−−−−−→shoulders · · ·,−−−−−−−−−−−−−→shoulders slouched)
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2. Conversely, for an example in which the other verb paraphrase is appropriate:
the semantic vector of the unfinished utterance sales · · · should be closer to the
vector of the sentence sales declined than to that for sales slouched, and a full
sentence be closer than an incomplete one:

cos(
−−−−−→sales · · ·,−−−−−−−−−→sales declined) ≥ cos(

−−−−−→sales · · ·,−−−−−−−−−−→sales slouched)

cos(
−−−−−−−−−→sales slumped,−−−−−−−−−→sales declined) ≥ cos(

−−−−−→sales · · ·,−−−−−−−−−→sales declined)

3. We can also compare between the examples: the semantic vector of the
unfinished utterance shoulders · · · should also be closer to the vector of the full
sentence shoulders slouched than the vector of the unfinished utterance “sales
· · · ” is to that of the complete sentence “sales slouched”:

cos(
−−−−−−−−→shoulders · · ·,−−−−−−−−−−−−−→shoulders slouched) ≥ cos(

−−−−−→sales · · ·,−−−−−−−−−−→sales slouched)

And the other way around should also hold, that is, the vector of the unfinished
utterance sales · · · should be closer to the vector of the uttered sentence sales
declined than the vector of shoulders · · · is to shoulders declined.

cos(
−−−−−→sales · · ·,−−−−−−−−−→sales declined) ≥ cos(

−−−−−−−−→shoulders · · ·,−−−−−−−−−−−−−→shoulders declined)

A symbolic generalisation of the above procedure for the Sbj Vrb Obj cases,
which is the case we will experiment with, is presented below. In Section 5, we
then provide evidence from real data, first giving a worked example for each of
these cases, and then a large scale experimental evaluation.

Consider a verb Vrb that is ambiguous between two meanings Vrb1 and Vrb2;
suppose further that a subject Sbj makes more sense with the first meaning of
the verb, that is with Vrb1, rather than with its second meaning, that is with
Vrb2. This is because Sbj has more associations with Vrb1, e.g. since it has
occurred more with Vrb1 (or with verbs with similar tensors to Vrb1) than with
Vrb2 in a corpus. These correlations are interpreted in our setting as follows:

cos(
−−−→Sbj · · ·,−−−−−−−−→Sbj Vrb1 · · ·) ≥ cos(

−−−→Sbj · · ·,−−−−−−−−→Sbj Vrb2 · · ·)

We can extend this when we incrementally proceed and parse the verb Vrb.
Now we can check the following:

cos(
−−−−−−−→Sbj Vrb · · ·,−−−−−−−−→Sbj Vrb1 · · ·) ≥ cos(

−−−−−−−→Sbj Vrb · · ·,−−−−−−−−→Sbj Vrb2 · · ·)
Here, we are incrementally disambiguating the unfinished utterance Sbj Vrb

using the vector semantics of its subject Sbj, the tensor meaning of its verb Vrb,
and the contraction (read composition) of the two. As we add more context and
finish the incremental parsing of the utterances, similar regularities to the above
are observed and we expect the corresponding degrees of semantic similarity to
become more sharply distinguished as the object meaning Obj is added:
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cos(
−−−→Sbj · · ·,−−−−−−−−−→Sbj Vrb1 Obj) ≥ cos(

−−−→Sbj · · ·,−−−−−−−−−→Sbj Vrb2 Obj)
cos(

−−−−−−−→Sbj Vrb · · ·,−−−−−−−−−→Sbj Vrb1 Obj) ≥ cos(
−−−−−−−→Sbj Vrb · · ·,−−−−−−−−−→Sbj Vrb2 Obj)

cos(
−−−−−−−−→Sbj Vrb Obj,−−−−−−−−−→Sbj Vrb1 Obj) ≥ cos(

−−−−−−−−→Sbj Vrb Obj,−−−−−−−−−→Sbj Vrb2 Obj)

The fronted object cases, Obj Sbj Vrb, such as in the sentence The milk the
baby dribbled can also be dealt with, but are left to future work.

5 Evidence from Real Data
Of course, the real test is whether similarities calculated this way reflect those
we would intuitively expect. In this section, we test this with some selected
example sentences, using vectors and tensors calculated from real corpus data.

Our noun vectors are produced using word2vec, a commonly used neural net-
work model for learning word vector representations (Mikolov et al., 2013): we
use 300-dimensional vectors learned from the Google News corpus.2 Our verb
tensors are derived using the method of Grefenstette and Sadrzadeh (2011):
the tensor −→

V is the sum of −→
S ⊗ −→

O over the subject noun vectors −→
S and ob-

ject noun vectors −→
O observed to co-occur with the verb in question in a large

parsed corpus. Here we take the verb-subject/verb-object occurrences from the
dependency-parsed version of UKWaC (Baroni et al., 2009), and use the same
word2vec noun vectors; our verb tensors are therefore 300x300-dimensional ma-
trices. To compose a sentence representation −→

A , we again follow Grefenstette
and Sadrzadeh (2011), using point-wise multiplication of the verb tensor with
the Kronecker product of the subject and object vectors (other methods are
possible, and we explore these in the next section):

−→
A =

−→
V ⊙ (

−→
S ⊗−→

O )

We start with an example from the dataset of Kartsaklis et al. (2013b): the
ambiguous verb dribble has a different sense in the sentence Footballers dribble
balls than in the sentence Babies dribble milk. If we take these senses to be
roughly paraphrased as ‘control’ and ‘drip’, respectively, we can examine not
only whether the full sentence representations are more similar to the appro-
priate paraphrases (as in the experiments of Kartsaklis et al., 2013b), but also
whether this disambiguation is exhibited incrementally. Here, we take the op-
tion described above of representing unsatisfied requirements with the identity
tensor I; we express similarities using the cosine similarity measure:

similarity = cos(
−→
A,

−→
B ) =

−→
A · −→B

∥−→A∥∥−→B∥
=

n∑
i=1

AiBi

√
n∑

i=1

A2
i

√
n∑

i=1

B2
i

2Taken from: https://code.google.com/archive/p/word2vec/
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First, we note that the expected pattern is observable between completed
utterances (as expected, given the results of Mitchell and Lapata (2008) and
Kartsaklis et al. (2013b)), with the representation for the complete sentence
being more similar to the correct paraphrase (following Kartsaklis et al. (2013b)
we simplify here by ignoring inflections such as plural suffixes and use the vectors
and tensors for noun and verb root forms):

cos(
−−−−−−−−−−−−−−−→footballer dribble ball,−−−−−−−−−−−−−−−→footballer control ball) = 0.3664

cos(
−−−−−−−−−−−−−−−→footballer dribble ball,−−−−−−−−−−−−−→footballer drip ball) = 0.2260

We can check the incremental behaviour by calculating and comparing sim-
ilarities at incremental stages. First, after parsing only the subject, we see that
“Footballers · · · ” has a closer semantic similarity with “Footballers control · · · ”
than with “Footballers drip · · · ”: that as you add to your unfinished utterances,
its semantics builds up in a coherent way:

cos(
−−−−−−−−→footballer · · ·,−−−−−−−−−−−−−−→footballer control · · ·) = 0.0860

cos(
−−−−−−−−→footballer · · ·,−−−−−−−−−−−−→footballer drip · · ·) = 0.0498

Next, after parsing the subject and verb, we again see the expected effect:

cos(
−−−−−−−−−−−−−−→footballer dribble · · ·,−−−−−−−−−−−−−−→footballer control · · ·) = 0.3392

cos(
−−−−−−−−−−−−−−→footballer dribble · · ·,−−−−−−−−−−−−→footballer drip · · ·) = 0.2407

Similarly we can examine similarities with possible complete utterances, giv-
ing us a notion of incremental expectation in parsing; again we see an effect in
the expected direction – the unfinished utterance “Footballers · · · ” is seman-
tically closer to “Footballers dribble balls” than to “Footballers dribble milk”,
which is of course what semantically makes sense:

cos(
−−−−−−−−→footballer · · ·,−−−−−−−−−−−−−−−→footballer dribble ball) = 0.0046

cos(
−−−−−−−−→footballer · · ·,−−−−−−−−−−−−−−−−→footballer dribble milk) = 0.0019

And this also holds when the verb is parsed, i.e. as we carry on finishing the
utterance, we get higher more reasonable similarity degrees:

cos(
−−−−−−−−−−−−−−→footballer dribble · · ·,−−−−−−−−−−−−−−−→footballer dribble ball) = 0.2246

cos(
−−−−−−−−−−−−−−→footballer dribble · · ·,−−−−−−−−−−−−−−−−→footballer dribble milk) = 0.0239

Similarly, for the unfinished utterance “Babies · · · ” we obtain the following
desirable results that agree with semantic incrementality:
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cos(
−−−−−−−−−−→baby dribble · · ·,−−−−−−−−→baby drip · · ·) = 0.3269

cos(
−−−−−−−−−−→baby dribble · · ·,−−−−−−−−−−→baby control · · ·) = 0.3239

cos(
−−−−−−−−−−−−→baby dribble milk,−−−−−−−−−−→baby drip milk) = 0.3468

cos(
−−−−−−−−−−−−→baby dribble milk,−−−−−−−−−−−−→baby control milk) = 0.3291

However, this is not always the case; for the same utterance, the similarities
calculated after parsing only the subject point in the opposite direction to that
expected:

cos(
−−−−→baby · · ·,−−−−−−−−→baby drip · · ·) = 0.0573

cos(
−−−−→baby · · ·,−−−−−−−−−−→baby control · · ·) = 0.0932

It seems, therefore, that it must be the verb dribble and then even more strongly,
the combination with the object milk that provides much of the disambiguating
information in this case – perhaps babies alone are no more likely to drip than
to control.

We have a similar situation for the ambiguous verb tap, its two meanings
‘knock’ and ‘intercept’, and the subject “finger” which disambiguates “tap” to
its ‘knock’ meaning:

cos(
−−−−−−→finger · · ·,−−−−−−−−−−−→finger knock · · ·) = 0.0667

cos(
−−−−−−→finger · · ·,−−−−−−−−−−−−−→finger intercept · · ·) = 0.0534

cos(
−−−−−−−−−→finger tap · · ·,−−−−−−−−−−−→finger knock · · ·) = 0.6751

cos(
−−−−−−−−−→finger tap · · ·,−−−−−−−−−−−−−→finger intercept · · ·) = 0.4320

cos(
−−−−−−−−−−−→finger tap wood,−−−−−−−−−−−−−→finger knock wood = 0.7154

cos(
−−−−−−−−−−−→finger tap wood,−−−−−−−−−−−−−−−→finger intercept wood) = 0.4735

For the case when “tap” is disambiguated to its ‘intercept’ meaning, we do
not yield the expected cosine correlations. For instance, “police . . . ” is not
semantically closer to “police intercept . . . ” than to “police knock . . . ”, as one
would expect. This might be since policemen knock many objects, such as
tables and doors, and also since tap is too strongly associated with its knocking
meaning than with its intercepting meaning.
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cos(
−−−−−→police · · ·,−−−−−−−−−−→police knock · · ·) = 0.0740

cos(
−−−−−→police · · ·,−−−−−−−−−−−−−→police intercept · · ·) = 0.0599

cos(
−−−−−−−−−→police tap · · ·,−−−−−−−−−−→police knock · · ·) = 0.6630

cos(
−−−−−−−−−→police tap · · ·,−−−−−−−−−−−−−→police intercept · · ·) = 0.4597

cos(
−−−−−−−−−−−→police tap phone,−−−−−−−−−−−−−→police knock phone) = 0.6662

cos(
−−−−−−−−−−−→police tap phone,−−−−−−−−−−−−−−−−→police intercept phone) = 0.4954

Because of these individual mismatches, we require a larger scale evaluation
to get a more general picture, which we perform in the following section.

5.1 Larger-Scale Evaluation
We apply this method for incremental disambiguation in the full versions of the
above mentioned datasets to see how well it scales up. Previous work on com-
positional distributional semantics provides three preliminary datasets suitable
for this task: in each, sets of transitive S-V-O sentences in which the verb V is
ambiguous are paired with human judgements of similarity between each given
sentence and two possible paraphrases (e.g. for the sentence “footballer drib-
bles ball”, the possible paraphrases ‘footballer carries ball’ and ‘footballer drips
ball’). Grefenstette and Sadrzadeh (2011) provide a dataset with 32 paraphrase
examples (hereafter GS2011); Grefenstette and Sadrzadeh (2015) a modification
and extension of this to 97 paraphrase examples (GS2012); and Kartsaklis et al.
(2013a) a further 97 examples on a different verb set (KSP2013).3

The GS2011 dataset is small, and contains judgements from only 12 an-
notators per example; the authors found it not to show significant differences
between additive baselines and more complex compositional methods. The ex-
tended GS2012 version provides a larger set of 97 examples, each with 50 an-
notators’ judgements; we expect it to provide a more reliable test. KSP2013
is then the same size, but selects the verbs using a different method. While
Grefenstette and Sadrzadeh (2015) chose verbs which spanned multiple senses
in WordNet (Fellbaum, 1998), taking the paraphrases as two of their most dis-
tant senses, Kartsaklis et al. (2013a) chose verbs specifically for their ambiguity,
based on psycholinguistic evidence collected by eye tracking and human evalua-
tion by Pickering and Frisson (2001). We therefore expect the KSP2013 dataset
to provide an evaluation which is not only robust but a more direct test of the
task of disambiguation in natural dialogue.

Again, we use the same 300-dimensional word2vec vectors and 300x300-
dimensional verb tensors derived from them. For sentence composition, we

3Note that despite the date of the associated publication (Grefenstette and Sadrzadeh,
2015), the GS2012 dataset was created in 2012 and came second in the series. All datasets
are publicly available; we provide information on how to download them, together with the
software used here for our experiments, for replication purposes at https://osf.io/hby4e/.
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now compare the method used in the previous section, from (Grefenstette and
Sadrzadeh, 2011), which we term “G&S” below; with alternatives proposed by
Kartsaklis et al. (2013b) termed “copy-subj” and “copy-obj”. Here, ⊙ denotes
pointwise multiplication and ⊗ the Kronecker product as before, and × denotes
matrix multiplication:

G&S :
−→
A =

−→
V ⊙ (

−→
S ⊗−→

O )

copy-subj : −→A =
−→
S ⊙ (

−→
V ×−→

O )

copy-obj : −→A =
−→
O ⊙ (

−→
V T ×−→

S )

The latter alternatives have been shown to perform better in some compo-
sitional tasks (see e.g. Kartsaklis et al., 2013b; Milajevs et al., 2014). We also
compare the use of the identity I and sum T+ to represent nodes with un-
satisfied requirements; given our disambiguation task setting here, the natural
way to use the direct sum T⊕ is to average the resulting distances over its out-
put tuples, thus making it effectively equivalent to using the sum in this case.
We compare these options to a simple, but often surprisingly effective, additive
baseline (Mitchell and Lapata, 2008): summing the vectors for the words in the
sentence. In this case, verbs are represented by their word2vec vectors, just as
nouns (or any other words) are, viz. without taking their grammatical role into
account; and incremental results are simply the sum of the words seen so far.

We evaluate the accuracy of these approaches by comparing to the human
judgements in terms of the direction of preference indicated for the two pos-
sible paraphrases.4 As several human judges were used for each sentence, we
compare to the mean judgement for each sentence-paraphrase pair. Accuracy
can therefore be calculated directly in terms of the percentage of sentences for
which the most similar paraphrase is correctly identified. Given our incremental
setting, we can make this comparison at three points in each S-V-O sentence
(after parsing the subject S only; after parsing S and V; and after parsing the
full S-V-O), at each point comparing the similarity between the (partial) sen-
tence and each of the (partial) paraphrase sentences. Note though that after
parsing S only, all methods are equivalent: the only information available is the
vector representing the subject noun, the ambiguous verb has not even been
observed, and disambiguation is therefore a random choice with 50% accuracy;
the performance then diverges at S-V and S-V-O points.

Results Results for the small Grefenstette and Sadrzadeh (2011) dataset are
shown in Figure 5; while none of our compositional approaches beat the additive
baseline, it appears that the incremental performance after S-V may be reason-
able compared to the full-sentence performance S-V-O. However, none of the

4We do not attempt to evaluate whether the magnitude of the preference matches the
magnitude of human preferences, but only whether the direction is correct: in other words,
we treat this as a classification rather than a regression task.
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Figure 5: Mean disambiguation accuracy over the GS2011 dataset (Grefenstette
and Sadrzadeh, 2011), as incremental parsing proceeds left-to-right through “S
V O” sentences. Note that the sum/G&S and identity/G&S methods give
identical average accuracy on this dataset, and thus share a line on the graph.

differences are statistically significant (a χ2 test shows χ2
(1) = 1.56, p = 0.21 for

the largest difference, identity/G&S vs. add at the S-V point), given the small
size of the dataset, and conclusions are therefore hard to draw. One thing that,
however, stands out, is that disambiguation accuracy increases from S-V to S-
V-O for the relational G&S model and the copy-subject model. The additive
model stays almost the same after adding the verb and after adding the object,
while the copy-object method gets worse; these may be undesirable properties
in terms of providing a good model of incrementality.

For the larger datasets, results are shown in Tables 1, 2 and depicted in Fig-
ures 6, 7. For GS2012, all methods do significantly better than chance (taking
p < 0.05 for significance, χ2

(1) = 5.08, p = 0.024 for the worst method, add); the
compositional methods outperform the additive baseline, and although the im-
provement is not statistically significant at the p < 0.05 level it suggests an effect
(p < 0.15, with χ2

(1) = 2.51, p = 0.11 for the best method, identity/copy-obj at
the V-O point). The copy-object method seems to do best, outperforming copy-
subject and the G&S method, and particularly to perform well incrementally
at the mid-sentence S-V point (76% accuracy, with 72% after S-V-O). Again,
similar to GS2011, and despite the fact that copy-object does best on the over-
all accuracy, the identity/G&S and identity/copy-subj models seem to do best
in terms of incremental accuracy development; their accuracies increase more
when going from S-V to S-V-O, and seem to increase more smoothly through
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Figure 6: Mean disambiguation accuracy over the GS2012 dataset (Grefenstette
and Sadrzadeh, 2015), as incremental parsing proceeds left-to-right through
“S V O” sentences. Note that the sum/G&S and identity/G&S methods
give identical average accuracy on this dataset, as do the sum/copy-subj and
identity/copy-subj methods, and thus those pairs share lines on the graph.

the sentence, whereas the copy-obj models increase to S-V and then decrease.
For KSP2013, the task seems harder: here, the additive baseline performs

almost at chance level with about 52%, but all the tensor-based compositional
methods do better; the best improvement being significant at p < 0.1, although
not at p < 0.05 (χ2

(1) = 2.77, p = 0.096 for identity/copy-obj at S-V-O). Again,
the copy-object composition method seems to perform best, giving good accu-
racy at S-V and S-V-O points (62% accuracy); the G&S method does better this
time, particularly at the mid-sentence point; but copy-subject does well for the
full sentence but not incrementally. Copy-object with identity, the model that
provides the best accuracy, also shows a steady increase in accuracy through the
sentence, although copy-subject with identity still shows the steepest increase
from S-V to S-V-O. This latter method shows the steepest increase in all the
datasets.

Accuracy comparisons between the identity and sum/direct sum methods
show little difference. As we see in Tables 1 and 2, whenever there is a dif-
ference in results among the different requirement representations, the identity
approach gives slightly higher accuracy. An explanation of this is that the iden-
tity is only used as a mechanism to be able to compute a sentence representation
in a compositional way, but without contributing information by itself. On the
contrary, the sum and direct sum methods introduce averages of vectors found

21

ICT-29-2018 D1.7: Final contextual embeddings

102 of 113



Figure 7: Mean disambiguation accuracy over the KSP2013 dataset (Kartsak-
lis et al., 2013a), as incremental parsing proceeds left-to-right through “S V
O” sentences. Note that the sum/copy-obj and identity/copy-obj methods give
identical average accuracy on this dataset, and thus share a line on the graph.

in the corpus, which is akin to adding noisy information to the sentence repre-
sentation; remember that the datasets we use here (from which we must take
our information about the possible continuations that we average over) are very
small compared to the large corpora used to build standard word vectors. It
is encouraging that all methods perform well; it may be that in larger datasets
the sum methods will improve, given more information about the possible dis-
tributions over continuations, and in other tasks which depend on more than
just average sentence distances, the sum and direct sum methods will diverge.

Discussion and comparison The main point of interest here, of course, is
the intermediate point after processing S-V (but before seeing the object O):
here the additive baseline does approximately as well as with full sentences,
suggesting that most disambiguating information comes from the verb vector
in these datasets. The compositional tensor-based methods on the other hand,
particularly copy-object, seem able to use information from the combination of
S-V to improve on that, and then to incorporate further information from O
to improve again (at least with KSP2013). Composition therefore allows useful
information from all arguments to be included; and it seems that our method
allows that to be captured incrementally as the sentence proceeds.

An error analysis showed that in the majority of cases our overall best
performing models (sum/copy-obj, identity/copy-obj) either correctly disam-
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Composition Representation of Accuracy
Method Requirements S S+V S+V+O
Addition (N/A) 0.500 0.660 0.660

G&S Identity 0.500 0.680 0.711
Sum / Direct Sum 0.500 0.680 0.711

Copy-Sbj Identity 0.500 0.691 0.711
Sum / Direct Sum 0.500 0.691 0.711

Copy-Obj Identity 0.500 0.763 0.722
Sum / Direct Sum 0.500 0.753 0.722

Table 1: Mean disambiguation accuracy over the GS2011 dataset (Grefenstette
and Sadrzadeh, 2011), as incremental parsing proceeds left-to-right through “S
V O” sentences

Composition Representation of Accuracy
Method Requirements S S+V S+V+O
Addition (N/A) 0.500 0.526 0.515

G&S Identity 0.500 0.588 0.567
Sum / Direct Sum 0.500 0.567 0.567

Copy-Sbj Identity 0.500 0.526 0.588
Sum / Direct Sum 0.500 0.515 0.588

Copy-Obj Identity 0.500 0.577 0.619
Sum / Direct Sum 0.500 0.577 0.619

Table 2: Mean disambiguation accuracy over the KSP2013 dataset (Kartsaklis
et al., 2013a), as incremental parsing proceeds left-to-right through “S V O”
sentences

biguated both the S-V and the S-V-O pairs, or got it wrong in both cases; in
other words, the incremental accuracy was as good (or bad) as that for complete
sentences. In a minority of cases, though, the incremental behaviour diverged
(either S-V was disambiguated correctly, while S-V-O was not, or vice versa).
These are the cases of interest here (for discussion of the behaviour of different
compositional models for full sentences, see Kartsaklis et al., 2013b).

Interestingly, a prominent erratic ambiguous verb was to file, where in some
cases, the smooth meaning was expected but the model wrongly computed it
to be the register meaning, and in the other cases, the register meaning was
expected whereas the model wrongly computed it to be the smooth meaning.
Examples of the data set entries were (all words in stem form):

(1) woman file nail
englishman file steel

(2) state file declaration
union file lawsuit
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where the smooth meaning is expected in (1) and register in (2). For (1) ex-
amples, the copy-obj models predicted correctly at the S-V point, and then
incorrectly at the S-V-O point. These seem to be examples where most disam-
biguating information intuitively comes in the object. We therefore suspect that
although the S-V subject and verb tensor combination itself contains sufficient
information about the kind of object in these cases (see Kartsaklis et al. 2013b
for discussion of how the copy-obj method encodes more object information),
these particular objects did not occur frequently enough in the corpus with this
verb meaning, but had more occurrences in the context of other verbs. In the
case of file nail, for instance, the noun nail may occur more with verbs such as to
hammer or to sell, or to cut, rather than the verb to file. The copy-subj models
performed the opposite way, predicting incorrectly at S-V and then correctly
with the full S-V-O sentence: here, the S-V composition themselves encode less
information about the disambiguating object (hence incorrectness at S-V), and
this can be supplied later on S-V-O composition, while giving the object less
weight than with the copy-obj method.

We observed the same pattern for our most smoothly incremental models:
copy-subject with sum and identity. In the majority of cases, these models
either got the meaning of the verb correctly for both S-V and S-V-O, or got it
wrong, again for both S-V and S-V-O. Their mistakes, i.e. cases where S-V was
correctly disambiguated, but S-V-O was not, were more varied, apart from the
verb to file, they also had instances of to cast, to tap and to lace, in the following
contexts:

(3) company file account
boat cast net
palace cast net
monitor tap conversation
child lace shoe

In all of these cases, the object provided in the data set has occurred more
frequently with contexts of other verbs, e.g. account in the first sentence above
has occurred more in the context of verbs such as funded or issued; net in
the second and third examples is itself ambiguous and occurred much more
frequently in its financial sense (where it contrasts with gross) in the very large
naturally occurring dataset taken as base. Similarly for conversation and shoe,
which occurred more with had and wore respectively, than tapped and laced.

Differences between the sum and identity methods are smaller and thus
harder to investigate in a conclusive manner. Some verbs, such as dribble, show
interesting differences: for woman dribble wine, identity seems to give better
accuracy at the S-V stage than at S-V-O; for player dribble ball it is the opposite.

Overall, following the Kartsaklis et al. (2013b) demonstration that copy-obj
outperforms others for full-sentence disambiguation in virtue of encoding more
information about the object, the results here, which incorporate in addition
an incrementality factor, also indicate that copy-obj does better overall, and
for similar reasons, though here based on probability rather than encoding.
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However, with some verbs getting disambiguated with their objects better than
with their subject and some verbs the other way round, it is hard to evaluate
which model’s performance is really most desirable. In future work we would
hope to investigate comparisons with human ratings of disambiguation at the
S-V stage, but this raises complex questions about datasets and about bias in
the vector/tensor corpora which are beyond the scope of this paper.

6 Discussion
Although the theoretical predictions of the model have only been verified on S-
V-O triples, they are immediately applicable to sentences of greater complexity.
Of importance here, however, are utterances arising within natural dialogue, and
of those, particularly unfinished and interrupted instances. These kinds of ut-
terance have not been dealt with in the commonly used type-logical vector space
approaches so far, as those rely on a sentential level of grammaticality. As our
simple experiment shows, our setting does not rely on sentential grammaticality:
we have theoretically prescribed how to build vector representations for any DS
tree; on the practical side, we have applied these prescriptions to subject-only,
subject-verb, and subject-verb-object strings. This is the first time it has been
shown that disambiguation of unfinished utterances can be computed incremen-
tally in vector space semantics, not only opening the practical possibilities of
real-time distributional semantic processing for spoken Natural Language Un-
derstanding tasks, but also allowing for a more realistic simulation of human
processing than previously possible. The match that our setting provides for
human disambiguation judgements is being derived solely on the basis of ob-
served co-occurrences between words and syntactic roles in a corpus, without
any specification of content intrinsic to the word itself. Further experiments will
be needed to extend this approach to larger datasets and to dialogue data and
examine its effectiveness, perhaps using the work extending DS grammars to di-
alogue (Eshghi et al., 2017), and possibly evaluating on the similarity dataset of
Wijnholds and Sadrzadeh (2019) that extends the transitive sentence datasets
used in this paper to a verb phrase elliptical setting.

Our assumption from the outset of this work was that distributions across
a sufficiently large corpus can be taken to provide an analogue and basis for
formal modelling of the observation that interpretation of words depends on
contingent, contextual and encyclopaedic facts associated with objects. To place
these results and the adopted methodology in a psychological perspective, the
way in which these statistical methods show that discrete facets of meaning of an
individual word are progressively distinguishable in an incremental way provides
at least partial confirmation that the meaning that words have is recoverable
from affordances made available in the contingent contexts in which they occur,
these being anticipations routinely associated with the word in question over
many uses that they come to constitute, including the actions triggered by the
word.5 Moreover, the underlying concept of a context of affordances has the

5The original Gibsonian concept of affordance, ‘perceivable relations between an organism’s
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cross-temporal, cross-spatial attributes shared by “big-data” corpora.
We thus take the results as provisionally confirming a thin concept of mean-

ing, not associated with some intrinsically fixed encoded content, but merely a
non-deterministic set of associations which the word triggers for the individual
agent(s). We also expect to be able to deal with cases when an interpretation
shifts during the incremental process (say, when uttering “The footballer drib-
bled beer down his chin”), when the incoming input acts as a filter over-riding
an otherwise accumulating default. This is exactly what one would expect of an
account with a basis in non-deterministic meanings, the underpinnings allow-
ing variability as the interpretation gradually consolidates, directly in line with
a range of Radical Embodied Cognition perspectives (Clark, 2016; Bruineberg
and Rietveld, 2014; Kempson and Gregoromichelaki, 2019). It also gives us
hope that such an approach (although we currently have no direct model of
this) should extend to modelling the more general shifts in understanding that
occur within the ubiquitous coordinating to-and-fro between interlocutors in di-
alogue (Healey et al., 2018). In the mean time, we hope these provisional results
make a contribution towards grounding the claim that languages are defined as
procedures for inducing growth of specifications of content in real time, with
plasticity of such constituent parts playing an irreducible role.

Acknowledgements
The contributions of this paper reflect joint work with a number of people over
a considerable period. In particular we thank Arash Eshghi for extensive illu-
minating discussions during the writing of this paper and of other related work
in this line of research, and Eleni Gregoromichelaki for ongoing insights into
the relevance of the issues raised for the larger cognitive perspective. Special
thanks go to the anonymous reviewers of this paper, and the editors, for helpful
comments which led to substantial improvements. Purver is partially supported
by the EPSRC under grant EP/S033564/1, and by the European Union’s Hori-
zon 2020 program under grant agreements 769661 (SAAM, Supporting Active
Ageing through Multimodal coaching) and 825153 (EMBEDDIA, Cross-Lingual
Embeddings for Less- Represented Languages in European News Media). The
results of this publication reflect only the authors’ views and the Commission
is not responsible for any use that may be made of the information it contains.

This is a post-peer-review, pre-copyedit version of an article published in the
Journal of Logic, Language and Information. The final authenticated version
will be available online at: http://dx.doi.org/TBD.

abilities and the properties of the environment’ (Anderson, 2014), was restricted to that
of affordances for motor activity made available by the environment to the individual in
question, but following Bruineberg and Rietveld inter alia we take affordances to be all types
of possibility relevant to an agent for action within the environment provided (Clark, 2016;
Bruineberg and Rietveld, 2014; Rietveld et al., 2018), including words and the grammar.
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