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1 Introduction
The main objective of task T1.3 of the EMBEDDIA project is to advance deep learning technology,
emphasizing morphologically rich, less-resourced languages. This report describes the results of the
work performed in T1.3 from M13 till M24. The initial work within T1.3 from M1 to M12 was reported
and accepted as deliverable D1.4 in M12. The work presented in this deliverable uses cross-lingual
mappings developed in T1.1 and contextual embeddings developed in T1.2.

While deep neural networks (DNNs) combined with embeddings have revolutionised modern NLP ap-
proaches, the choice of architecture is still an important consideration. Many options are available, e.g.,
recurrent neural networks (RNN), long-short-term memory networks (LSTM), convolutional neural net-
works (CNN), and transformer networks, but they are mostly tested for English, while less-resourced
languages are under-researched. This is especially true for morphologically rich languages, including
all Slavic and Baltic languages, covered in the EMBEDDIA project. Many of these languages use a sin-
gle inflectional morpheme to denote multiple grammatical, syntactic, or semantic features. Adding such
explicit morphological information to a deep neural network can be highly beneficial [Soricut and Och,
2015, Kim et al., 2016]. In T1.3, we tested adding morphological information to two state-of-the-art neu-
ral network architectures: LSTM and transformers-based BERT models. We combined these networks
with universal POS tags and universal morphological features. We tested the modified architectures on
three tasks, available across several languages: named entity recognition (NER), dependency parsing
(DP), and comment filtering (CF). The contributions to the NER and DP tasks are relevant for WP2,
which develops text enrichment technologies. At the same time, the improvements in CF contribute to
WP3, where user-generated contents are analysed.

The information on the reliability of predictions made by machine learning models is crucial in tasks that
affect humans users, such as the ones addressed in WP3 (e.g., comment filtering and hate speech pre-
diction), WP4 (e.g., text annotation), and T1.4 (explanation and visualisation of predictions). To address
these needs, we present our work on obtaining reliability scores for DNN predictions. We propose a
Bayesian method using Monte Carlo Dropout (MCD) within the attention layers of the transformer mod-
els, such as BERT, to provide well-calibrated reliability estimates. We evaluate and visualise the results
of the proposed approach in hate speech detection problems in several languages. Additionally, we
describe how this approach can be used to simplify the text annotation process. This work depends on
the embeddings and cross-lingual maps developed in T1.1 and T1.2 and is relevant for T1.4, WP3, and
WP4.

Finally, there is a strategic need for merging different information sources in machine learning. This
would overcome the weakness that even state-of-the-art DNNs can only solve tasks in individual, nar-
rowly defined domains. Due to the success of DNNs, it makes sense to transform data of many different
modalities (such as text, relational data, electronic health records, etc.) to a tabular form, suitable for
processing with DNNs. For that purpose, we present a unifying framework for data transformations into
a numerical vector space. We show that propositionalization, used in relational learning, and embed-
dings, used in text and graph learning, can be viewed as two sides of the same coin. We propose two
efficient implementations of the unifying methodology: an instance-based PropDRM approach, and a
feature-based PropStar approach based on StarSpace embeddings. The results demonstrate that the
new algorithms can outperform existing relational learners and can solve much larger problems in terms
of dataset size.

The main contributions presented in this report (in the order of appearance) are as follows.

1. Extensions of LSTM neural networks and the state-of-the-art BERT models with explicit morphol-
ogy (POS tags, morphological features), described in Section 2, and the paper by Klemen et al.
[2020] (submitted to the Natural Language Engineering journal), included in Appendix A.

2. Extensions of state-of-the-art transformer neural architectures for text processing with reliability
scores, described in Section 3. The final version of this work was accepted for publication in the
Cognitive Computation journal [Miok et al., 2021] and is included in the Appendix B, while the initial
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version was published in the ICML UDL workshop [Miok et al., 2020b] and is included in Appendix
C.

3. Two semi-supervised prediction reliability-based methods to guide the annotation process: a
Bayesian deep learning model and a Bayesian ensemble method. These methods are described
in Section 4 and the paper by Miok et al. [2020a], published in the COLING 2020 Linguistic Anno-
tation Workshop and included in Appendix D.

4. A novel unifying framework for data transformations into numerical vector space with two efficient
implementations of the unifying methodology, described in Section 5, and the paper by Lavrač
et al. [2020], published in the Machine Learning journal and included in Appendix E.

We present conclusions about the tested extensions to deep neural networks and other contributions of
T1.3 in Section 6 where we also outline possibilities for further work. Availability of the new resources
produced in this work is presented in Section 7.

2 Adaptations of neural networks for morphologi-
cally rich languages

Deep learning for processing natural language is becoming a standard, with excellent results in a di-
verse range of tasks. Two state-of-the-art architectures for text-related modelling are long short-term
memory (LSTM) networks [Hochreiter and Schmidhuber, 1997] and transformers [Vaswani et al., 2017].
LSTMs are recurrent neural networks that process the text sequentially, meaning that they process text
one token at a time, building up its internal representation in the network’s hidden layers. Due to the
recurrent nature of LSTM, which degrades the efficiency of parallel processing, as well as demonstrated
improvements in performance using transformer models, models based on the transformer architecture
are gradually replacing LSTMs across many tasks. Transformers can process text in parallel, using
self-attention and positional embeddings to model the text’s sequential nature.

A common trend in using transformers is to first pre-train them on large monolingual corpora with ab-
stract, general-purpose objective, and then fine-tune them for a specific task, such as text classification.
For example, the BERT (Bidirectional Encoder Representations from Transformers) architecture [Devlin
et al., 2019] uses transformers and is pretrained with masked language modelling and order of sen-
tences prediction tasks to build a general language understanding model. During the fine-tuning for
a specific downstream task, additional layers are added to the BERT model. The model is trained on
specific data to capture the specific knowledge required to perform the task.

Most of the research in the natural language processing (NLP) area focuses on English, ignoring the
fact that English is specific in terms of the low amount of information expressed through morphology
(English is a so-called analytical language). In our work, we focus on adapting modern deep neural
networks, namely LSTMs and BERT, for several morphologically rich languages by explicitly including
the morphological information. The languages we analyse contain rich information about grammatical
relations in the morphology of words instead of in particles or relative positions of words (as is the case
in English). For comparison, we also evaluate our models in English. Although previous research has
shown that the state of the art methods such as BERT already capture some information contained in
the morphology [Pires et al., 2019, Edmiston, 2020], our experiments involve several languages with
rich morphology, where neural networks could benefit from explicit morphological features.

Specifically, we present methods that combine BERT with separately encoded morphological proper-
ties: universal part of speech tags (uPOS tags) and universal features (grammatical gender, tense,
conjugation, declination, etc). We evaluate them on three downstream tasks: named-entity recognition
(NER), dependency parsing (DP), and comment filtering (CF). We perform similar experiments on LSTM
networks and compare the results for both architectures. Besides English, for each task, we analyse the
largest possible subsets of eight EMBEDDIA languages: Croatian, Estonian, Finnish, Latvian, Lithua-
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nian, Russian, Slovene, and Swedish. The choice of a subset of these languages reflects the availability
of sufficient resources (datasets, embeddings, and corpora).

Our experiments show that the addition of morphological features has mixed effects depending on the
task. Across the tasks where the added morphological features improve the performance, we show that
(a) they benefit the LSTM-based models even if the features are noisy, and (b) they benefit the BERT-
based models only when the features are of high quality (i.e. human checked), suggesting that BERT
models already capture the morphology of the language; however, there is room for improvement either
in designing pre-training objectives that can capture these properties or when high-quality features are
available.

In the subsections below, we first describe the used datasets and their properties, followed by an outline
of models with additional morphological information and their performance.

2.1 Data

This section describes the datasets used in our experiments, separately for each of the three tasks:
NER, DP, and CF.

In the NER experiments, we use datasets in eight languages: Croatian, English, Estonian, Finnish, Lat-
vian, Russian, Slovene, and Swedish. We omit the Lithuanian language from this experiment, as models
for obtaining POS tags and universal features for this language were not available in the used tools at
the time of performing the experiments. The label sets used in datasets for different languages vary,
meaning that some contain more fine-grained labels than others. To make results across different lan-
guages consistent, we trim labels in all datasets to the four common ones: location (LOC), organization
(ORG), person (PER), and “no entity” (OTHR).

To test morphological neural networks on the DP task, we used datasets in nine languages (Croatian,
English, Estonian, Finnish, Latvian, Lithuanian, Russian, Slovene, and Swedish). The datasets are
obtained from the Universal Dependencies [Nivre et al., 2020].

While there exist comparable datasets across different languages for the NER and DP task, no such
standard datasets are available for the CF task. For that reason, in our experiments on CF, we used
two languages with adequate datasets: English and Croatian. For English experiments, we used a
subset of toxic comments from Wikipedia’s talk page edits1. The comments are annotated with six
possible labels: toxic, severe toxic, obscene language, threats, insults, and identity hate (making a total
of six binary target variables). As we concentrate on hate speech, we extracted comments from four
categories: toxic, severe toxic, threats, and identity hate; a total of 21, 541 instances. We randomly
chose the same amount of comments that do not fall in any of the mentioned categories, obtaining the
final dataset of 43, 082 instances. For Croatian language experiments, we formed a dataset from user
comments published in the Croatian news site 24sata. The comments used are either non-problematic
or labelled with one of the eight rules they break. We extracted all the 17, 868 comments from the third
category (the hate speech label) and approximately the same number of comments that do not break
any rules. Our final dataset contains 35, 635 instances.

2.2 Neural networks with morphological features

In this section, we describe the architectures of neural networks used in our experiments. Their common
property is that we enhance standard word embeddings based inputs with embeddings of morphologi-
cal features. We work with recent successful neural network architectures, LSTM and transformers (i.e.
BERT) models. A detailed description of architectures is available in the following subsections, sepa-
rately for each of the three evaluation tasks. For each task and architecture, we describe the baseline
architecture and the enhanced one.

1https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
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2.2.1 Named entity recognition models

In the NER task, we use two baseline neural networks (LSTM and BERT) and the same two models
with additional morphological information: POS tag embeddings and universal feature embeddings. The
baseline models and their enhancements are displayed in Figure 1.

The first baseline model (left-hand side of Figure 1) is a unidirectional (left-to-right) LSTM model, which
takes as an input a sequence of tokens, embedded using 300-dimensional fastText embeddings [Bo-
janowski et al., 2017], which are particularly suitable for morphologically rich languages as they work
with subword inputs2. For each input token, its LSTM hidden state is extracted and passed through the
linear layer to compute its NER score (probability for each of the four NER labels).

The second baseline model (right-hand side of Figure 1) is the multilingual BERT model (the base
cased variant). In our experiments, we follow the sequence tagging approach suggested by the authors
of BERT [Devlin et al., 2019]. Input sequences, starting with the special [CLS] token and ending with the
[SEP] token, are passed through the BERT model. The output of the last BERT hidden layer is passed
through the linear layer to obtain the predictions for NER labels.

Both baseline models (LSTM and BERT) are enhanced with the same morphological information: POS
tag embeddings and universal feature embeddings for each input token. We embed the POS tags using
15-dimensional embeddings. For each of the 23 universal features used (we omitted the Typo feature,
as the version of the POS tagger we used did not annotate this feature), we constructed 15-dimensional
embeddings. We computed the POS tags and morphological features using the Stanza [Qi et al., 2020]
system in the universal dependencies mode. In the enhanced architectures, we included another linear
layer before the final linear classification layer to model possible interactions.

fastText(wi)

...

UPOS(wi)

feats(wi) ... ... ...

wi

...

UPOS(wi)

feats(wi) ... ... ...

BERT

Figure 1: The baseline LSTM-based (left) and BERT-based (right) models for the NER task along with our modifi-
cations with morphological information. The dotted border of UPOS (Universal Part-of-Speech) vectors,
morphological features (feats), and the linear layer marks that their use is optional and varies across ex-
periments. The � symbol between layers represents the concatenation operation. The wi symbol stands
for token i ; in case of LSTM, tokens enter the model sequentially and we show the unrolled network,
while BERT processes all tokens simultaneously.

2The precomputed embeddings are available at https://fasttext.cc/docs/en/crawl-vectors.html.
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2.2.2 Dependency parsing models

As the baseline model in the DP task, we use the deep biaffine graph-based dependency parser [Dozat
and Manning, 2016]. The enhancements with the morphological information are at the input level. The
baseline model and its enhancements are shown in Figure 2.

Biaffine layer
(arcs)

HEADDEP.

......

Biaffine layer
(arc labels)

HEADDEP.

...

fastText(wi)

BERT(wi)

LSTM(wi)

UPOS(wi)

feats(wi) ... ... ... ... ...

...

Figure 2: The deep biaffine graph-based dependency parser along with our enhancements at the input level. The
dotted border of input embedding vectors, UPOS vectors, and morphological features (feats) is optional
and varies across experiments. The � symbol between layers represents the concatenation operation.
The wi symbol stands for token i ; tokens enter the LSTM model sequentially, and we show the unrolled
network.

The baseline parser combines a multi-layer bidirectional LSTM network with a biaffine attention mecha-
nism to jointly optimize the prediction of arcs and arc labels. We leave most baseline architectural hyper-
parameters at values described in the original paper (3-layer bidirectional LSTM with 100-dimensional
input word embeddings, and the hidden state size of 400).

In our experiments, we concatenate the non-contextual word embeddings with various types of addi-
tional information. The first additional input is contextual word embeddings, which we obtain either by
using the hidden states of an additional single-layer unidirectional LSTM or by using a learned linear
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combination of all hidden states of BERT. Although the LSTM layers are already present in the baseline
parser, we included an additional layer at the input level to keep the experimental settings similar across
our three evaluation tasks. The second additional input is universal POS embeddings (UPOS), and the
third one are universal feature embeddings (feats). These embeddings are concatenated separately
for each token in the sentences. The sizes of the additional LSTM layer, POS tag embeddings, and
universal feature embeddings are treated as tunable hyperparameters. As the baseline input embed-
dings, we used pre-trained 100-dimensional fastText embeddings, which we obtained by reducing the
dimensionality of the publicly available 300-dimensional vectors with the fastText’s built-in dimensionality
reduction tool.

In DP experiments, we used POS tags and morphological features from two sources. The first source
is human annotations provided in the used datasets. The second source of morphological information
is predictions of Stanza models [Qi et al., 2020]. These two types of annotations are used to assess
the quality of morphological information; namely, we check if manual human annotations provide any
benefit compared to automatically determined POS tags and features.

2.2.3 Comment filtering models

In the NER evaluation task, we add additional morphological information to standard LSTM and BERT
models. The baseline models and enhanced models for this task are similar to those in the NER evalu-
ation. However, we operate at the sequence level here as opposed to the token level in the NER task.
The architecture of models is shown in Figure 3.

As baselines, we take a single layer unidirectional LSTM network (the top part of Figure 3) and the
multilingual base uncased BERT model (the bottom part of Figure 3). The difference in the used BERT
dialect (uncased as opposed to the cased in the NER task) is due to better performance detected in
preliminary experiments on a separate Croatian validation set.

In the LSTM baseline model, the words of the input sequence are embedded using pre-trained 300-
dimensional fastText embeddings. As the representation of the whole sequence, we take the output
of the last hidden state, which then passes through the linear layer to obtain the prediction scores. In
the BERT baseline model, we take the sequence classification approach suggested by the authors of
BERT. The input sequence is prepended with the special [CLS] token and passed through BERT. The
sequence representation corresponds to the output of the last BERT hidden layer for the [CLS] token,
which is passed through a linear layer to obtain the prediction scores.

As in other tasks, we augment the baseline models with POS tags and universal feature embeddings.
We obtain the embeddings for each token separately from UDPipe models [Straka and Straková, 2017].
The reason for not using Stanza in this set of experiments is that we started experimenting before its
release. Additional testing with Stanza did not show any difference in performance, so we kept the UD-
Pipe models for this set of experiments. We aggregate the obtained embeddings using three different
pooling mechanisms: mean, weighted combination, or LSTM pooling. Given the POS tag or universal
feature embeddings, the mean pooling outputs the mean of all token embeddings; the weighted pooling
outputs the weighted combination of token embeddings, and the LSTM pooling outputs the last hidden
state obtained by passing the sequence of embeddings through the LSTM network. Both the embedding
sizes and the type of pooling are treated as tunable hyperparameters. The coefficients of the weighted
combination are learned by projecting the sequence embeddings into a sequence of independent di-
mension values, which are normalized with the softmax. This compresses the embedding sequence,
establishes its fixed length, and allows for different morphological properties to have a different impact
on the sequence representation. This approach tests the contextual encoding of morphological prop-
erties. For example, adjectives might be assigned a higher weight than other POS tags due to more
emotional content that often indicates insults.
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fastText(wi) UPOS(wi)

Pooler
(UPOS)

feats(wi)

Pooler
(Number)

Pooler
(Aspect)...

...

wi UPOS(wi)

Pooler
(UPOS)

feats(wi)

Pooler
(Number)

Pooler
(Aspect)...

...

[CLS]

BERT

Figure 3: The baseline LSTM (top) and BERT (bottom) models for the NER task along with our modifications with
morphological information. The dotted border of UPOS vectors and morphological features (feats) marks
that their use is optional and varies across experiments. The � symbol between layers represents the
concatenation operation. The wi symbol stands for token i ; in case of LSTM, tokens enter the model
sequentially and we show the unrolled network, while BERT processes all token simultaneously.

2.3 Experimental settings

This section presents the evaluation scenario for the three evaluation tasks, presented separately for
each of the tasks. We start with the NER task, followed by the DP and NER tasks. The results are
presented in Section 2.4.

2.3.1 Experimental settings for NER

For NER, we train each BERT model for 10 epochs and each LSTM model for 50 epochs. These
parameters were determined during preliminary testing on the Slovene dataset. The selected numbers
of epochs are chosen to balance the performance and training times of the models. All NER models are
evaluated using 10-fold cross-validation.

We evaluate the models with the F1 score, a harmonic mean of precision and recall measures. This
measure is typically used in NER in a way that precision and recall are calculated separately for each
of the three entity classes (location, organization, and person, but not ”no entity”). For each metric,
we compute the weighted average over the class scores using the frequencies of class values in the
datasets as the weights. Ignoring the ”no entity” (OTHR) label is a standard approach in the NER
evaluation and disregards words that are not annotated with any of the named entity tags, i.e. the
evaluation focuses on the named entities.
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2.3.2 Experimental settings for dependency parsing

We train each DP model for a maximum of 10 epochs, using an early stopping tolerance of 5 epochs in
the process. All models are evaluated using predefined splits into training, validation, and testing set,
determined by the respective treebank authors and maintainers. The final models, evaluated on the
test set, are selected based on the maximum mean of unlabelled (UAS) and labelled (LAS) attachment
scores on the validation set. The UAS and LAS are standard accuracy metrics in DP. The UAS score is
defined as the proportion of tokens that are assigned the correct syntactic head. In contrast, the LAS
score is the proportion of tokens that are assigned the correct syntactic head as well as the dependency
label [Jurafsky and Martin, 2009].

2.3.3 Experimental settings for comment filtering

In our NER experiments, we train BERT models for a maximum of 10 epochs and LSTM models for a
maximum of 50 epochs, using early stopping with the tolerance of 5 epochs.

We evaluate the models using the classification accuracy metric. The choice reflects the fact that the
distributions of class labels are approximately balanced in our datasets. We use fixed training, validation,
and test sets, obtained by randomly dividing the datasets in the ratio 60%:20%:20%. The initial results in
the Croatian hate speech experiments showed a large variance; therefore, we repeated each experiment
five times. For this task and Croatian language, we report the obtained mean classification accuracy
and its standard deviation.

2.4 Experimental results

In this section, we compare the results of baseline models with their enhancements using additional
morphological information. According to the evaluation task, we split the presentation into three parts:
NER, DP, and CF. To further analyse different aspects of the proposed morphological enhancements,
we conducted two ablation studies on the DP task where the datasets and evaluation settings allow
many experiments. We test the impact of morphological information quality and different variants of
BERT models.

2.4.1 Results for the NER task

For the NER evaluation task, we present results of the baseline NER models and models enhanced
with the POS tags and morphological features, as introduced in Section 2.2.1. Table 1 shows the results
for LSTM and BERT models. We compute the statistical significance of the differences between the
baseline LSTM models and their best-performing counterparts with morphological additions. We use
Wilcoxon signed-rank test [Wilcoxon et al., 1970] and underline the statistically significant differences at
p = 0.01 level. We do not perform the significance of differences tests for BERT as the differences for
those models are marginal.

As expected, the baseline models involving BERT outperform their LSTM counterparts across all lan-
guages by a large margin. When adding POS tags or universal features to LSTM-based models, we
observe a noticeable increase in performance over seven languages’ baselines. For three of them
(Croatian, Russian, and Swedish), the increase in F1 score is under one percent. For three of them
(Estonian, Finnish, and Slovene), the differences in performance are statistically significant, and the
increase ranges from 1.4% (Finnish) to 4.6% (Slovene). The only language for which there is no improve-
ment with the LSTM-based models is English.

In BERT-based models, the additional morphological features do not seem to make a practical differ-
ence. For all languages except Slovene, the increase in F1 values over the baseline is under 0.5%.
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However, since preliminary tests in this task were performed on Slovene, the larger observed increase
might be due to manual overfitting.

Table 1: F1 scores for different models on the NER task in different languages. The upper part of the table shows
LSTM models and the lower part shows BERT models. The best scores for each language are marked
with the bold typeface separately for LSTM and BERT models. Best scores for which the difference to the
baseline is statistically significant are underlined.

Model CRO ENG EST FIN LAT RUS SLO SWE
fT + LSTM 0.700 0.890 0.769 0.814 0.573 0.752 0.651 0.785
fT + LSTM + UPOS 0.708 0.889 0.792 0.824 0.590 0.754 0.692 0.787
fT + LSTM + UPOS + feats 0.706 0.883 0.781 0.828 0.588 0.759 0.697 0.785
fT + LSTM + feats 0.697 0.885 0.777 0.826 0.581 0.760 0.669 0.793
BERT 0.874 0.948 0.875 0.926 0.766 0.868 0.848 0.885
BERT + UPOS 0.875 0.948 0.874 0.927 0.773 0.870 0.857 0.886
BERT + UPOS + feats 0.875 0.949 0.879 0.927 0.763 0.869 0.853 0.883
BERT + feats 0.874 0.947 0.874 0.928 0.769 0.869 0.851 0.878

2.4.2 Results for the dependency parsing task

For the DP evaluation task on different languages (described in Section 2.2.2), we present UAS and LAS
accuracy in Tables 2 and 3, denoting maximum mean of unlabelled (UAS) and labelled (LAS) attachment
scores on the validation set, respectively. We first show the scores of the baseline models (multi-layer
bidirectional LSTM network with biaffine attention), followed by these models enhanced with additional
inputs: LSTM or BERT contextual embeddings, POS tags, and morphological features, introduced in
Section 2.2.2. The results in the upper part of Section 2.2.2 represent enhancements incorporating
LSTM embeddings, and in the lower part, we show the enhancements including BERT embeddings.
We also statistically test the differences in UAS and LAS scores between the best performing enhanced
variants and their baselines without morphological additions. As the splits are fixed in the DP tasks, we
use Z-test for the equality of two proportions [Kanji, 2006] at p = 0.01 level. The null hypothesis is that
the scores of compared models are equal. For languages where the null hypothesis can be rejected,
we underline the respective best result.

Like the other two evaluation tasks, the models involving BERT embeddings outperform the baselines
involving LSTM embeddings on all languages by a large margin. Enhancements with LSTM embeddings
improve over parsers without contextual embeddings. Models with added POS tags or universal features
noticeably improve over baselines with only LSTM embeddings in both UAS and LAS scores for all
languages. The increase ranges between 1.2% (Russian) and 6.8% (Lithuanian) for UAS and between
2.4% (Russian) and 10.42% (Lithuanian) for LAS. All compared differences between the LSTM baselines
and the best enhanced variants are statistically significant at p = 0.01.

Contrary to the results observed on the other two tasks, the addition of morphological features to the
baseline models with BERT embeddings improves the performance scores for all languages. For some
languages, the increase seems to be practically insignificant (under one percent). However, for six
languages out of nine, the increase in UAS is over one percent and statistically significant; the same is
true for eight languages out of nine for the LAS score. For these languages, the improvement ranges
from 1.1% (Finnish) to 1.8% (Lithuanian) for UAS, and from 1.1% (Croatian) to 4.4% (Lithuanian) for LAS.
The only language for which both UAS and LAS scores are practically equal to BERT embeddings’
baselines is Russian.

2.4.3 Results for the comment filtering task

Table 4 shows the NER results for LSTM and BERT baselines and their enhancements, described in
Section 2.2.3. All BERT-based models outperform the LSTM-based models by a large margin for both
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Table 2: UAS scores for different models on the DP task in different languages. The upper part of the table shows
baseline parser with enhancements using LSTM-based contextual embeddings; the lower part shows
baseline parser enhanced with variants of BERT embeddings. The best scores for each language are
marked with the bold typeface separately for LSTM and BERT embeddings extensions. Statistically signif-
icant differences in best scores at p = 0.01 level are underlined.

Model CRO ENG EST FIN LAT LIT RUS SLO SWE
baseline 84.83 83.54 79.35 82.45 81.51 70.51 83.04 86.66 80.68
+LSTM 86.48 84.87 81.92 84.13 83.63 71.82 85.02 86.92 84.03
+LSTM+UPOS 87.81 87.26 85.30 86.82 86.73 75.83 85.75 91.99 86.78
+LSTM+UPOS+f. 87.82 87.21 86.12 87.64 87.97 78.62 86.19 92.42 87.19
+LSTM+feats 87.52 85.97 84.31 85.23 86.09 78.10 86.26 90.67 84.90
+mBERT 91.72 91.43 88.02 89.99 87.87 79.79 90.32 93.66 90.16
+mBERT+UPOS 92.17 91.64 89.26 90.53 89.11 80.48 90.53 94.70 91.21
+mBERT+UPOS+f. 91.97 91.56 89.51 91.09 89.63 81.64 90.65 94.95 91.46
+mBERT+feats 91.72 91.35 88.32 90.33 88.92 81.61 90.64 94.42 90.64

Table 3: LAS scores for different models on the DP task in different languages. The upper part of the table shows
baseline parser with enhancements using LSTM-based contextual embeddings; the lower part shows
baseline parser with enhancements using BERT embeddings. The best scores for each language are
marked with the bold typeface separately for LSTM and BERT embedding extensions. Statistically signifi-
cant differences in best scores at p = 0.01 level are underlined.

Model CRO ENG EST FIN LAT LIT RUS SLO SWE
baseline 77.55 79.28 73.17 77.09 75.77 62.23 77.22 82.12 75.06
+LSTM 79.59 80.69 76.24 78.60 78.08 63.65 79.24 83.03 78.97
+LSTM+UPOS 81.95 84.68 81.36 83.06 82.75 70.45 80.88 88.75 82.65
+LSTM+UPOS+f. 82.84 84.48 83.46 83.97 84.27 74.07 81.68 90.32 83.17
+LSTM+feats 82.00 82.96 81.00 81.16 81.81 72.40 81.64 88.38 80.31
+mBERT 86.37 88.09 84.30 86.07 83.02 72.62 85.99 91.67 86.67
+mBERT+UPOS 87.63 89.35 86.72 87.32 85.43 74.99 86.24 92.90 87.80
+mBERT+UPOS+f. 87.44 89.13 87.19 87.99 86.16 77.04 86.56 93.40 88.38
+mBERT+feats 86.81 88.81 85.72 87.07 85.19 76.33 86.37 92.74 87.25

languages, Croatian and English.

Adding POS tags and universal features to neural architectures of either type only marginally increases
the classification accuracy but may even decrease it in some cases. As the accuracy does not increase
enough with the best set of hyperparameters, we do not further discuss the effect of different pooling
types on the performance; however, we can report that none of the pooling approaches consistently
performed best.

2.4.4 Quality of morphological information

In the first ablation study, we evaluate the impact of the quality of morphological information. We re-
place the high quality (human-annotated) POS tags and morphological features used in Section 2.2.2
with those predicted by machine learning models. In this way, we test a realistic setting where the
morphological information is at least to a certain degree noisy. We obtain POS tags and morphological
features from Stanza models prepared for the involved languages [Qi et al., 2020]. To avoid overly op-
timistic results, we make sure to use models that are not trained on the same datasets used in our DP
experiments. This is possible for a subset of five languages. Table 5 shows the results of DP models,
trained with predicted morphological features. The first two lines of the table show the quality of used
features, expressed as the proportion of tokens, for which POS tags and all morphological features are
correctly predicted, i.e. we report their accuracy.
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Table 4: Classification accuracies for baseline and enhanced models on the NER task in different languages. The
upper part of the table shows LSTM models, and the lower part shows BERT models. The best scores for
each language are marked with the bold typeface separately for LSTM and BERT models. We report the
mean and standard deviation over five random splits of the data. The differences between the models of
the same type and language are marginal.

CRO ENG
Model Hate speech Toxic comments
fastText + LSTM 77.69± 0.47% 88.14± 0.12%
fastText + LSTM + uPOS 76.63± 0.77% 88.16± 0.15%
fastText + LSTM + uPOS + feats 75.64± 1.21% 86.90± 1.20%
fastText + LSTM + feats 76.52± 0.99% 88.25± 0.27%
mBERT 86.20± 0.20% 92.23± 0.12%
mBERT + uPOS 85.05± 0.49% 92.33± 0.11%
mBERT + uPOS + feats 86.34± 0.28% 92.29± 0.20%
mBERT + feats 86.22± 0.35% 92.20± 0.13%

The general trend is that using predicted features results in much smaller (best case) performance
increases, though some languages still see significant increases. For LSTM models, the increases
range from 0.42% (English) to 1.60% (Slovene) for UAS, and from 0.67% (English) to 2.41% (Finnish) for
LAS. For BERT models, the increases are marginal and range from 0.00% (English) to 0.49% (Finnish) for
UAS, and from −0.10% (i.e. decrease, Slovene) to 0.66% (Finnish) for LAS. These results are consistent
with the results of our NER experiments in section 2.4.1, where we have no access to human-annotated
features and find that noisy features only help LSTM-based models.

As noisy features might require different training, we also tried to increase the maximal number of
training steps to 15 epochs and repeated the tuning of hyperparameters for one language (Estonian).
None of these changes improved the scores by a practically relevant margin.

These results indicate that adding predicted morphological features to models with BERT embeddings
might not be practically useful since their quality needs to be very high. However, since human an-
notated morphological features improve the performance on the DP task, this suggests that there is a
room for improvement in BERT pre-training. It seems that pre-training tasks of BERT (masked language
modelling and next sentence prediction) do not fully capture the morphological information present in
the language.

Table 5: UAS/LAS scores achieved by models that are trained with predicted (noisy) instead of human-annotated
morphological features. In the first two lines, we report the proportion of tokens for which UPOS tags and
UPOS features are correctly predicted.

ENG EST FIN SLO RUS
UPOS accuracy (%): 92.45 91.15 87.59 80.45 89.32
feats accuracy (%): 93.92 88.86 86.20 78.74 85.22
baseline+LSTM 84.87/80.69 81.92/76.24 84.13/78.60 86.92/83.03 85.02/79.24
baseline+LSTM+UPOS 85.18/81.36 82.44/77.15 85.33/80.61 88.14/84.06 84.90/79.53
baseline+LSTM+UPOS+f. 85.04/81.02 82.24/77.39 85.56/81.01 88.52/85.00 85.82/80.89
baseline+LSTM+feats 85.29/81.22 81.42/76.19 84.89/80.43 88.12/84.12 84.74/79.56
baseline+mBERT 91.43/88.09 88.02/84.30 89.99/86.07 93.66/91.67 90.32/85.99
baseline+mBERT+UPOS 91.43/88.33 88.20/84.69 90.05/86.33 93.38/91.42 90.59/86.17
baseline+mBERT+UPOS+f. 91.08/88.05 88.06/84.39 90.48/86.73 93.73/91.57 90.34/85.74
baseline+mBERT+feats 90.90/87.74 87.88/84.42 89.77/85.91 93.37/91.23 89.65/85.27
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2.4.5 Specific BERT models

In the second ablation study, we replace the embeddings obtained from the multilingual uncased BERT
model with those obtained from more specific multilingual BERT models and monolingual BERT models.
In experiments involving multilingual BERT models, we use Croatian/Slovene/English CroSloEngual
BERT and Finnish/Estonian/English FinEst BERT [Ulčar and Robnik-Šikonja, 2020]. In experiments with
monolingual BERT models, we use English bert-base-uncased [Devlin et al., 2019], Finnish bert-base-
finnish-cased-v1 [Virtanen et al., 2019], and Russian RuBert [Kuratov and Arkhipov, 2019]. We only
perform the experiments for a subset of studied languages for which we were able to find more specific
BERT models. The aim is to check if the additional morphological features improve the performance of
more language-specific BERT models. These are trained on a lower number of languages and larger
amounts of texts in the involved languages compared to the original multilingual BERT model Devlin
et al. [2019]. Due to this language-specific training, we expect these BERT models to better capture the
languages’ nuances, thus benefiting less from additional morphological features. The results are shown
in Table 6 for trilingual BERT models and in Table 7 for monolingual BERT models.

Table 6: UAS/LAS scores achieved by trilingual BERT models, each trained on a smaller set of languages (3) than
the original multilingual BERT model (104).

BERT variant gual BERT FinEst BERT
Model/Language CRO ENG SLO FIN EST
baseline+BERT 92.63/87.84 91.69/88.37 95.48/93.98 92.61/89.35 89.84/86.51
baseline+BERT+UPOS 93.29/89.01 92.05/89.69 95.72/94.27 93.39/90.66 91.06/88.67
baseline+BERT+UPOS+f. 92.95/88.33 91.99/89.65 95.82/94.52 93.23/90.61 91.01/88.74
baseline+BERT+feats 92.87/87.98 91.27/88.58 95.33/94.05 93.12/90.54 89.94/87.44

Table 7: UAS/LAS achieved by monolingual BERT models.

BERT variant bert-base-uncased bert-base-finnish-cased-v1 RuBert
Model ENG FIN RUS
baseline + BERT 91.82/88.74 94.20/91.51 90.83/86.39
baseline + BERT + UPOS 91.92/89.60 94.53/92.19 91.24/87.31
baseline + BERT + UPOS + f. 91.81/89.62 94.08/91.73 91.04/87.04
baseline + BERT + feats 91.23/88.76 94.09/91.80 90.88/86.61

In most cases, the specific multilingual BERT models without additional features do as well as or better
than the best performing original multilingual BERT model with additional features. The only worse LAS
scores are achieved in English and Estonian, indicating that trilingual BERT models are better adapted
to the task than the original multilingual models. The addition of morphological features increases the
UAS and LAS even further. For UAS, the improvements are generally smaller than before (see Figure 2),
with the only improvement larger than 1% being on Estonian. For LAS, the improvements are larger than
UAS and range from 0.54% (Slovene) to 2.23% (Estonian); only one language sees an improvement of
less than 1%. These results indicate that the additional morphological features still contain valuable
information for the DP task, which the BERT models do not capture. We hypothesise that the slightly
lower performance of FinEst BERT (without additions) on Estonian and the slightly larger increase when
adding morphological features might be due to variability in the training process.

For monolingual models (the most language-specific), the results are mixed. Still, the general trend is
that the additional features help little or not at all. The English monolingual model without and with mor-
phological additions performs comparably to its multilingual (CroSloEngual) counterpart, and we do not
see any additional increase in the performance. The Russian monolingual model achieves comparable
UAS and LAS to the best performing original multilingual BERT model with additional features. With the
addition of morphological features, the scores increase, but only marginally (under 0.5%). The Finnish
monolingual model outperforms the best performing multilingual (FinEst) counterpart. The addition of
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morphological features to the monolingual Finnish model increases the scores further: UAS by 0.33%

and LAS by 0.68%, but these increases are not statistically significant.

2.5 Discussion of explicit morphological features

The results indicate that adding morphological information to CF prediction models is only marginally
beneficial, but it can improve the performance in the NER and DP tasks. For the DP task, the improve-
ment depends on the quality of the morphological features and the choice of the architecture. The
additional morphological features consistently benefited LSTM-based models for NER and DP, both
manually assigned (high quality) and predicted (noisy). We attribute the marginal improvements in the
classification performance of the CF task to the nature of this task. In CF, semantics and word choice
play a much more important role than exact word forms expressed with morphology. Therefore, the ex-
plicit morphological information is less important and might be of lower quality in the informal language,
often appearing in this task.

For BERT-based models, the predicted features do not make any practical difference for the NER and
DP tasks but manually assigned high-quality features improve the performance in the DP task. Testing
different variants of BERT shows that language specialised variants, i.e. CroSloEngual BERT and FinEst
BERT [Ulčar and Robnik-Šikonja, 2020], improve the performance on the DP task. The additional
morphological information becomes less beneficial with a shift from multilingual towards monolingual
models.

The comparison of different BERT variants indicates that BERT models do not completely capture the
language morphology. Since BERT’s release, several new pre-training objectives have been proposed,
such as syntactic and semantic phrase masking [Zhou et al., 2020] and span masking [Joshi et al.,
2020]. In further work, it makes sense to apply these models to the DP task to test how well they capture
the morphology. Further, the effect of morphological features could be analysed on additional tasks and
languages since the explicit morphological information does not seem to benefit them equally.

The work presented in Section 2 is described in full in [Klemen et al., 2020], attached as Appendix A.

3 Prediction Uncertainty Estimation
The information on the reliability of predictions is crucial in tasks that affect humans users, such as
the ones appearing in WP3 (e.g., comment filtering, hate speech prediction, and other user generated
contents), WP4 (e.g., text annotation related to news analysis), and T1.4 (explanation and visualisation
of predictions). To address these needs, in this section, we describe a Bayesian method to obtain
well-calibrated reliability estimates from transformer networks and test it on the hate speech detection
problem in several languages. In Section 4, we show that a Bayesian ensemble of reliability estimates
can also improve text annotation.

With the rise of social network popularity, hate speech phenomena have significantly increased [David-
son et al., 2017]. Hate speech not only harms both minority groups and the whole society, but it can
lead to actual crimes [Bleich, 2011]. Thus, (automated) hate speech detection mechanisms are urgently
needed. However, falsely accusing people of hate speech is also a problem. Many content providers
rely on human moderators to reliably decide if a given text is offensive or not, but this is a mundane and
stressful job that can even cause post-traumatic stress disorders3. There have been many attempts to
automate the detection of hate speech in social media using machine learning. Still, existing models
lack the quantification of reliability for their decisions.

In the last few years, recurrent neural networks (RNNs) were the most popular text classification choice.
Long Short Term Memory (LSTM) networks, the most successful RNN architecture, were already suc-
cessfully adapted to assess predictive reliability in hate speech classification [Miok et al., 2019a]. Re-

3https://www.bbc.com/news/technology-51245616
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cently, neural network architecture with attention layers, called ‘transformer architecture’ [Vaswani et al.,
2017], showed even better performance on almost all language processing tasks. Using transformer
networks for masked language modelling produced breakthrough pretrained models, such as BERT
[Devlin et al., 2019]. The attention mechanism, which is a crucial part of transformer networks, became
an essential part of natural language understanding with a significant impact on language applications.
We aim to investigate the behaviour of the attention mechanism concerning the reliability of predictions.
We focus on the hate speech recognition task.

In hate speech detection, reliable predictions are needed to remove harmful content and possibly ban
malicious users without harming the freedom of speech [Miok et al., 2019a]. Standard neural networks
are inadequate for assessing predictive uncertainty, and the best solution is to use the Bayesian infer-
ence framework. However, classical Bayesian inference techniques do not scale well in neural networks
with a high dimensional parameter space [Izmailov et al., 2020]. Various methods were proposed to
overcome this problem [Myshkov and Julier, 2016]. One of the most efficient methods is Monte Carlo
Dropout (MCD) [Gal and Ghahramani, 2016]. Its idea is to use dropout in neural networks as a regu-
larisation technique [Srivastava et al., 2014] and interpret it as a Bayesian optimisation approach that
takes samples from the approximate posterior distribution.

Our main contributions are:

1. We present a novel methodology for assessing prediction uncertainty in attention networks and
BERT models.

2. Empirical analysis of the proposed Bayesian Attention Networks and MCD enhanced BERT mod-
els show improved calibration and prediction performance on hate speech detection tasks in sev-
eral languages.

In the subsections, we describe the methodology for uncertainty assessment in transformer networks
using attention layers and MCD. We shortly present the datasets, evaluation scenario, and the obtained
results.

3.1 Bayesian Attention Networks

The BERT model [Devlin et al., 2019] is the transformer network that has achieved state-of-the-art re-
sults in many NLP tasks, including text classification [Xu et al., 2020, Gururangan et al., 2019, Chang
et al., 2019]. We introduce Monte Carlo Dropout to transformer networks and BERT to construct their
Bayesian variants. Analysis of different amounts of dropout, different variants of BERT modifications,
and their hyper-parameters would require pretraining several different BERT models, which would re-
quire substantial computational resources. For example, pretraining a single BERT model on four TPUs
requires more than a month of computational time [Ulčar and Robnik-Šikonja, 2020]. Thus, in this
work, we explore two reliability extensions, i) the reliability on the encoder part of the BERT architecture
trained from scratch (without pretraining) on the task of interest (in this work, referred to as the attention
networks), and ii) reliability of pre-trained BERT models, using only fine-tuning. We believe this is a
reasonable setting that sheds light on an important reliability aspect of transformer networks.

In Section 3.1.1, we first formally define the attention network architecture, and in Section 3.1.2, we
make it Bayesian by introducing MCD. Finally, in Section 3.1.3, we describe how the MCD principle can
be employed in already pre-trained BERT models.

3.1.1 Attention Networks

The basic architecture of the attention network follows the architecture of transformer networks [Vaswani
et al., 2017] and is shown in Figure 4. The proposed architecture is similar to the encoder part of the
transformer architecture. The difference is in the output part. A single output head was added to
perform binary classification using the sigmoid activation function. The main difference to BERT, which
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Figure 4: A scheme of Attention Networks. The dropout is introduced in the blue colored layers.

also uses just the encoder part of the transformer network, is that we do not use any pretraining. The
second difference is that the attention network uses the classification head, and BERT has the language
model head. In both cases, the output is composed of feed-forward layers followed by the non-linearity
but with different dimensions in each case. By not relying on the pretraining, we are much more flexible
concerning the number of layers and the number of neurons in each layer. For our tasks, we use orders
of magnitude fewer parameters, e.g., we used a maximum of 3 million parameters (at the expense of
losing information from pretraining).The architecture can contain many attention heads, where a single
attention head is computed as:

oh = softmax(
Q ·KT

√
dk

) · V, (1)

The attention matrices are commonly known as the query Q, the key K, and the value matrix V. The
normalizing factor, dk , denotes the dimensionality of keys. The attention function can be described as
mapping the query and the set of key-value pairs to the output. The query, keys, values, and output
are all vectors. The output is computed as a weighted sum of the values. The weight assigned to each
value is computed by a compatibility function of the query with the corresponding key. Intuitively, the
multiplication of query and key vectors with subsequent values can be understood as the extraction of
relations. The softmax activation enables each pair of considered input tokens to be represented with
a single real value. It effectively introduces sparseness into the weight space – only certain token pairs
emerge with high weights and are relevant for the remaining part of the considered neural network
architecture. In practice, multiple such heads can be concatenated and fed into the succeeding feed-
forward layer. The application of softmax has been shown to emphasize only particular parts of the
parameter space, thereby making the neural network more focused.

The positional encoding, as discussed by Vaswani et al. [2017], represents a matrix that encodes indi-
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vidual positions in a matrix of the same dimensionality as the one holding the information on sequences
(input embedding). The positional encoding was introduced to account for word order. Here, relative
distances between different tokens are taken into account by incorporating the position-related signal
into a given token representation.

While there are, in principle, many different ways of how attention networks can be extended with the
Bayesian approach, we propose to use the well-established Monte Carlo Dropout.

3.1.2 Monte Carlo Dropout for Attention Networks

In our proposal, called ‘Bayesian Attention Networks’ (BAN), we use MCD within attention networks.
Contrary to the original dropout setting, the dropout layers are also active during the prediction phase.
In this way, the predictions are not deterministic. Instead, they are sampled from the learned distribution,
thereby forming an ensemble of predictions. The obtained distribution can be, for example, inspected for
higher moment properties and can offer additional information on the uncertainty of a given prediction.
During the prediction phase, the dropout layers are activated again, and the output of a proportion of
randomly selected neurons in those layers is set to zero. A forward pass on such partially activated
architecture is repeated for a fixed number of samples, every time dropping different randomly selected
neurons. The results of different passes can be combined to obtain the final prediction or further in-
spected as a probability distribution.

3.1.3 Monte Carlo Dropout for BERT

Monte Carlo dropout was used in the BERT model in the same way as in BAN. MCD can provide multiple
predictions of a neural network during the test time, as long as the dropout was used during the training
phase [Gal, 2016]. Training of neural networks with the dropout distributes the captured information
across the network. During the prediction, such a trained neural network is robust. Using the dropout
principle, a new prediction is possible in each forward pass. A sufficiently large set of such predictions
can be used to estimate the prediction reliability. The BERT model is trained with 10% of dropout in
all of the layers by default, thus allowing for multiple predictions using the described principle. We call
this model ‘MCD BERT’. A limitation of this approach is that a single dropout rate of 10% is used during
training, while other dropout probabilities might be more suitable for reliability estimation. We leave this
analysis for further work.

3.2 Datasets and implementation

To test the proposed methodology in the multilingual context, we used hate speech datasets in three
languages, English, Croatian, and Slovene.

1. The English dataset4 is extracted from hate speech and offensive language detection study of
Davidson et al. [2017]. The subset of data we used consists of 5,000 tweets. We took 1,430
tweets labeled as hate speech and randomly sampled 3,670 tweets from the remaining 23,353
tweets.

2. The Croatian dataset was provided by the Styria media company within the EU project EMBED-
DIA5. The texts consists of user comments on the news portal Večernji list6. The original dataset
consists of 9,646,634 comments from which we selected 8,422 comments. 50% of instances
were labeled as hate speech by human moderators. The other half was chosen randomly from
non-problematic comments.

4https://github.com/t-davidson/hate-speech-and-offensive-language
5http://embeddia.eu
6https://www.vecernji.hr
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3. The Slovene dataset was produced in the Slovenian national project FRENK7. The text dataset
used in the experiment is a combination of two different studies of Facebook comments [Ljubešić
et al., 2019]. The first group of comments was collected on LGBT homophobia topics, while
the second on anti-migrants posts. In our final dataset, we used all of the 2,182 hate speech
comments, and the same number of non-hate speech comments were randomly sampled.

We used three types of neural network architectures. As a baseline, we used MCD LSTM networks
[Miok et al., 2019a], which include reliability information obtained with MCD. We compared that model
with the newly proposed BAN and MCD BERT.

MCD LSTM networks consist of an embedding layer, an LSTM layer, and a fully connected layer within
the word2Vec and ELMo embeddings. To obtain the best architectures for the LSTM and MCD LSTM
models, we tested different numbers of units, batch sizes, dropout rates, etc.

For BERT, we used the BERT base model in English and the multilingual BERT variant for Croatian and
Slovene. We used the HuggingFace implementation8.

3.3 Results

We compare the predictive performance of four neural network architectures in Table 8. MCD LSTM and
BERT serve as the baselines for comparison with the proposed BAN and MCD BERT. The MCD BERT
model provides the best results for all three languages. BERT models are pre-trained on large amounts
of text, which makes a significant difference compared to LSTM and BAN. MCD BERT is slightly better
than BERT due to its better performance for the instances where BERT is uncertain. Here, multiple
predictions reduce the prediction variance. MCD LSTM is more stable than BAN (see the standard
deviation of F1 scores in Table 8). We attribute this to the larger number of parameters in BAN and an
insufficient number of training instances. BERT and MCD BERT models compensate for this problem
with large scale pretraining.

Table 8: Predictive performance of compared models. We present the average classification accuracy and F1 score
with their standard deviations (in brackets), computed using 5-fold cross-validation. The best accuracy for
each language is typeset in bold.

English Tweets Croatian Comments Slovene Comments
Model Accuracy F1 Accuracy F1 Accuracy F1
MCD LSTM 81.0 [1.2] 81.9 [1.3] 63.7 [1.0] 51.0 [3.3] 55.3 [0.69] 43.13 [0.8]
BAN 83.3 [1.7] 81.6 [3.4] 61.4 [2.0] 38.1 [8.6] 57.4 [1.7] 35.1 [6.3]
BERT 90.9 [0.7] 90.0 [0.7] 70.8 [1.0] 61.2 [1.5] 66.4 [5.0] 67.8 [2.5]
MCD BERT 91.4 [0.7] 90.4 [0.8] 71.5 [1.2] 62.9 [1.7] 68.4 [1.9] 68.6 [1.6]

The work presented in Section 3 is described in full in the journal paper of Miok et al. [2021], attached here
as Appendix B. The initial version was presented in the workshop [Miok et al., 2020b] and is attached as
Appendix C.

4 Bayesian Methods for Semi-supervised Text An-
notation

Recent successful artificial intelligence applications in various fields, including natural language pro-
cessing, are often due to long hours of human annotation when preparing datasets for machine learn-
ing. The annotation process transfers human knowledge to machine learning models. It is often done

7http://nl.ijs.si/frenk/ (Research on Inappropriate Electronic Communication)
8https://huggingface.co/transformers/model_doc/bert.html
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under time pressure and with inadequate instructions or with insufficiently trained annotators. Aiming to
make the annotation process easier, we study the possibility of designing a data labelling process that
requires less human supervision. Our work is based on the reliability scores provided by the MCD BERT
approach, described in Section 3. The work is relevant for text annotation and reannotation campaigns
conducted in WP3 and WP4.

A fairly standard procedure in annotation quality control is to recheck the wrongly classified labels by
using several prediction models. As an alternative, Bayesian inference, presented in Section 3, produces
a distribution of possible decisions and can improve the selection of instances requiring reannotation
[Miok et al., 2021]. Ensemble methods produce robust models that frequently provide significantly better
predictions than individual models. The key strength of ensembles is that they can overcome the errors
and shortcomings of individual ensemble members. A recently published ensemble method Multivariate
Normal Mixture Conditional Likelihood Model (MM) [Pirš and Štrumbelj, 2019] tries to understand the
predictors on the distributional level and use Bayesian inference to combine them. We evaluate MM’s
performance when combining multiple MCD BERT predictions on the hate speech detection task. We
show that our methodology can serve as a helpful tool in the data annotation process.

This section proposes methods that can save time and resources during the text annotation process
and improve prediction performance. As a test domain, we use hate speech detection in tweets, news
comments, and Facebook comments. We investigate two performance-improving techniques, which
can be summarized as our main contributions as follows.

1. We remove instances with uncertain classifications from the training set and show that fine-tuning
on the cleaned dataset improves the performance of the BERT model. Less certain classifications
can be selected for reannotation.

2. We combine predictions of machine learning models using the MM probabilistic ensemble method.
The approach is beneficial for predictive performance.

In Section 4.1, we present a Bayesian probabilistic ensemble as a tool to combine multiple MCD BERT
outputs. In Section 4.2, we present our experiments and their results that are promising for further text
annotations conducted in WP3 and WP4.

4.1 Bayesian Probabilistic Ensemble

To alleviate the drawbacks of individual classification models, we propose the use of MM [Pirš and
Štrumbelj, 2019], a Bayesian ensemble method suitable for combining correlated probabilistic predic-
tions. MM is an extension of IBCC [Kim and Ghahramani, 2012], which combines non-probabilistic
predictions. The method is based on finding the latent structure of combined predictions and provides
new probabilities based on its distribution. Let m be the number of classes and r the number of individual
models we are combining. The main idea is similar to Supra-Bayesian ensembles [Lindley, 1985], as
we first transform individual probabilistic predictions with the inverse logistic transformation (log-odds)
to move from [0,1] space to the R space. We merge the transformed predictions of individual models
and get a (m − 1)r-variate distribution. We model this latent distribution with multivariate normal mix-
tures, conditional on the true label in a similar fashion, as in linear discriminant analysis. Let θ represent
estimated parameters and θt the subset of parameters estimated for observations with true label t. Let
T ∗ ∈ {1, 2, ...,m} be the response random variable for a new observation and u∗ ∈ R(m−1)r the transformed
and merged predictions for this new observation. Probabilistic predictions for unseen data can then be
generated by calculating the densities of merged predictions for new data:

p(T ∗ = t|u∗, θ) =
p(u∗|θt)(γtnt)∑r
i=1 p(u

∗|θi )(γini )
,

where p is the multivariate normal mixture probability density, γt is the frequency prior for class t, and
nt is the number of true labels in class t in the training dataset. The method uses a regularization term,
which increases the variance in any dimension that is difficult to model or has a detrimental effect on the
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results, effectively decreasing its effect. For a complete Bayesian specification and the derivation of the
Gibbs sampler, we refer the reader to [Pirš and Štrumbelj, 2019]. We used the same priors as proposed
in this paper.

MM is well-suited for combining biased classifiers or classifiers with systematic errors. It can serve as
a calibration tool for an individual classifier by learning its latent distribution. Since BERT is usually
accurate but less well calibrated, the MM method can alleviate its miscalibration while improving or
preserving its classification performance.

4.2 Evaluation and results

We first introduce the phases of our experiments, followed by the results. We use the same datasets as
in Section 3.

We categorise classifications to trusted and untrusted based on the uncertainty measure from MCD
BERT. In this way, we can detect borderline classifications that make a false impression of certainty. We
remove the instances with uncertain classifications from the training set to improve the dataset on which
the BERT model is fine-tuned. This provides better quality data for training and shall improve the quality
of the resulting prediction model.

Using MCD BERT, we first obtain multiple predictions for each test set instance and compute their
mean and variance. Using the mean, we determine the classification (hate speech or not). At the
same time, the variance reports on the certainty of the BERT for this specific instance. Based on the
variance, we group classifications into certain and uncertain. Unsurprisingly, removing the uncertain
test set instances improves the prediction performance as shown in Table 9, but also leaves a portion of
borderline instances unclassified.

Table 9: Performance of multilingual BERT model, after removing uncertain instances from the test set of 1000
comments.

Language Metric Full dataset 200 removed 500 removed 700 removed
Accuracy 0.91 0.96 0.996 0.997

EN Precision 0.90 0.95 0.992 0.994
Recall 0.89 0.95 1 1
F1 0.88 0.95 0.995 0.997
Accuracy 0.72 0.76 0.84 0.87

CRO Precision 0.68 0.71 0.80 0.85
Recall 0.54 0.69 0.78 0.75
F1 0.61 0.70 0.79 0.83
Accuracy 0.71 0.76 0.83 0.87

SLO Precision 0.60 0.65 0.70 0.65
Recall 0.56 0.64 0.66 0.54
F1 0.58 0.65 0.68 0.59

From Table 9, we can conclude that the variance of MCD BERT predictions is correlated with the per-
formance of models: the more variance there is in the predictions, the less accurate the model. Thus,
removing the uncertain classifications can seemingly improve the performance of the test set. A practical
benefit of this is that uncertain classification could be passed back to annotators to recheck them.

While removing uncertain instances from the test set might sweep the problematic instances under the
carpet, a more practical benefit is to use the uncertainty information to create a better training set. The
test tweets/comments were removed based on how variate their predictions are. Thus, we repeatedly
train the MCD BERT model on the part of the dataset and use it to obtain multiple predictions on the
other part of the training dataset. In such a way, we collect multiple predictions for all original training
tweets or comments and remove observations with the highest prediction variance. As a result of this
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procedure, 15 and 18 percent of the most uncertain predictions were removed for the English and
Slovene dataset, respectively. Croatian dataset contains many comments with high variability in their
predictions; therefore, we removed around 35% of the most uncertain comments for this dataset.

Using prediction certainty to remove the uncertain instances from the training can improve the fine-
tuning of BERT. The prediction results for Croatian and Slovenian datasets are improved while for the
English dataset, this is not the case. We explain this by the fact that the English dataset is well-annotated
with high-quality predictions. On the other hand, we believe that the Croatian and Slovenian datasets are
less clean and contain several questionable annotations. This can be confirmed for the Croatian dataset
created within the EMBEDDIA project, so we are well-informed about the annotation process.

We propose a Bayesian ensemble as a support method for the annotation process. As annotators
can be distracted, biased, or influenced, we propose to use the MM method to provide them a hint of
how shall they annotate the instances. From Table 10, we can observe that by combining probabilistic
predictions of BERT, random forest, and support vector machines, we can further improve the predictive
performance. The MM ensemble not only improves BERT’s results but also provides better-calibrated
predictions, as discussed in [Miok et al., 2021,0].

A common problem of text annotation campaigns is that annotators are not always sure about correct
labels due to uncertainty in the text [Vincze, 2015, Szarvas et al., 2008]. On difficult texts, annotators
frequently give ambiguous labels, and their annotations can be biased. Instead of asking annotators
to label the raw text, it would be easier for them if they were warned ahead of difficult cases and given
more time for them based on the probabilistic scores from an ensemble of predictive models. In future
work, continuing in the context of WP3 and WP4, we will apply the suggested approach to assess the
reliability of the annotation process in an actual interactive setting. We also plan to use the proposed
uncertainty estimates in an active learning setting as a sampling method.

Table 10: The F1 score of the hate speech classifiers and their ensemble.

Method English Croatian Slovene
BERT 0.91 0.72 0.71

RF 0.83 0.67 0.65
SVM 0.86 0.71 0.69
MM 0.92 0.74 0.72

The work presented in Section 4 is described in full in [Miok et al., 2020a], attached here as Appendix
D.

5 Unified Approach to Propositionalization and Em-
beddings

Text processing with embeddings results in a dense vector representation of texts. In case of documents,
this data transformation results in the condensed tabular representation of documents, which is then
used as an input to a learning algorithm of choice. A broader data transformation task of interest is when
texts are mixed with other data modalities, which is referred to as heterogeneous data. Heterogeneous
data may involve texts, relational databases as well as images, where the challenge is to transform all
this data variety into a joint representation format.

Data preprocessing for machine learning is still a great challenge for a data scientist faced with large
quantities of data in different forms and sizes. Most modern data processing techniques enable data
fusion from different data types and formats into a single table data representation, which is expected
by standard machine learning techniques including rule learning, decision tree learning, support vector
machines (SVMs), and deep neural networks (DNNs), etc. The key element of modern data transfor-
mation methods’ success is that similarities of original instances and their relations are encoded as

24 of 147



ICT-29-2018 D1.8: Final deep networks

distances in the target vector space.

Two of the most prominent data transformation approaches are propositionalization and embeddings.
While propositionalization [Kramer et al., 2001, Železný and Lavrač, 2006] is a well-known data trans-
formation technique used in relational learning (RL) and inductive logic programming (ILP) [Muggleton,
1992, Lavrač and Džeroski, 1994, De Raedt, 2008], embeddings [Mikolov et al., 2013, Wu et al., 2018]
have only recently been recognised by RL and ILP researchers as a powerful technique for preprocess-
ing relational and complex structured data. In the relational learning context, both approaches take as
input a relational data set (e.g., a given relational database) and transform it into a single data table
format, which is then used as an input to a propositional learning algorithm of choice.

The main objective of task T1.3 of the EMBEDDIA project is to advance deep learning technology for
texts in morphologically rich, less-resourced languages. However, future works will need to address
heterogeneous data types even in text processing. A step in the direction of heterogeneous data trans-
formations is to unify text embeddings with propositionalization and/or embeddings of relational data,
allowing for generating unified outputs from the data of both modalities.

The main novelty of this section is a unifying methodology that combines propositionalization and em-
beddings, which benefits from the advantages of both in solving complex data transformation and learn-
ing tasks. The unifying methodology resulted in two new pipelines, PropDRM and PropStar, which
implement an instance-based and a feature-based approach to data transformation and learning, re-
spectively. Both approaches are computationally efficient and can successfully solve much larger tasks
than the existing relational learning approaches. The work is relevant for further representation learn-
ing conducted within the project, e.g., in WP4, the modelling of relations between different topics and
emotions could play an important role in the sentiment prediction.

The work outlined in Section 5 is described in full in [Lavrač et al., 2020], attached here as Appendix
E.

6 Conclusions and further work
We presented several improvements to DNN technologies, developed in T1.3. The main results include
adding explicit morphological information to LSTM and BERT neural network architectures, obtaining
reliability estimates from DNNs, and unified representation learning for propositionalisation and embed-
dings.

The comparison of different BERT variants indicates that BERT models do not completely capture the
language morphology. Since BERT’s release, several new pre-training objectives have been proposed,
such as syntactic and semantic phrase masking [Zhou et al., 2020] and span masking [Joshi et al.,
2020]. In further work, it makes sense to apply these models to the DP task to test how well they capture
the morphology. Further, the effect of morphological features could be analysed on additional tasks and
languages since the explicit morphological information does not seem to benefit them equally.

The proposed reliability enhanced classifications could be used in many other domains, such as ma-
chine translation. Further, we aim to adapt other Bayesian approaches, such as SWAG, to transformer
networks. We will further investigate how to apply MCD BERT to the annotation problem and how
to remove uncertain instances from the training set. We will construct and test a workflow for semi-
supervised text annotation in a real-world setting. Testing different dropout levels in the BERT model
may provide a better understanding of its uncertainty and calibration.

It is worth investigating the integration of symbolic and deep learning, considering them as multitask
learning approaches that try to integrate many different learning tasks and use embeddings as input
representations.
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7 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
Morphological NER (fastText + LSTM) github.com/EMBEDDIA/morphological-fasttext Public (MIT)

Morphological NER (BERT) github.com/EMBEDDIA/morphological-BERT Public (Apache)
Morphological dependency parsing github.com/EMBEDDIA/morphological-dependency-parsing Public (MIT)

Morphological comment filtering github.com/EMBEDDIA/morphological-comment-filtering Public (MIT)
BAN code github.com/EMBEDDIA/BAN Public (MIT)

MCD BERT code github.com/EMBEDDIA/Bayesian-BERT Public (MIT)
Bayesian ensemble MM github.com/EMBEDDIA/MM Public (MIT)

PropStar and PropDRM code github.com/EMBEDDIA/PropStar Public (BSD 3)

Parts of this work are also described in detail in the following publications.

Citation Status Appendix
Matej Klemen, Luka Krsnik, and Marko Robnik-Šikonja. Enhancing
deep neural networks with morphological information, 2020. ArXiv
preprint http://arxiv.org/abs/2011.1243

Submitted Appendix A

Kristian Miok, Blaž Škrlj, Daniela Zaharie, and Marko Robnik-Šikonja.
To BAN or not to BAN: Bayesian attention networks for reliable hate
speech detection. Cognitive Computation, 2021.

Accepted Appendix B

Kristian Miok, Blaž Škrlj, Daniela Zaharie, and Marko Robnik-Šikonja.
Bayesian BERT for Trustful Hate Speech Detection.Proceedings of the
ICML 2020 Workshop on Uncertainty & Robustness in Deep Learning,
2020.

Published Appendix C

Kristian Miok, Gregor Pirš, and Marko Robnik-Šikonja. Bayesian meth-
ods for semi-supervised text annotation. In Proceedings of the 14th
Linguistic Annotation Workshop, COLING LAW 2020, 2020

Published Appendix D

Nada Lavrač, Blaž Škrlj, and Marko Robnik-Šikonja. Propositionaliza-
tion and embeddings: Two sides of the same coin. Machine Learning,
109:1465–1507, 2020.

Published Appendix E

26 of 147

https://github.com/EMBEDDIA/morphological-fasttext
https://github.com/EMBEDDIA/morphological-BERT
https://github.com/EMBEDDIA/morphological-dependency-parsing
https://github.com/EMBEDDIA/morphological-comment-filtering
https://github.com/EMBEDDIA/BAN
https://github.com/EMBEDDIA/Bayesian-BERT
https://github.com/EMBEDDIA/MM
https://github.com/EMBEDDIA/PropStar


ICT-29-2018 D1.8: Final deep networks

References

Erik Bleich. The rise of hate speech and hate crime laws in liberal democracies. Journal of Ethnic and
Migration Studies, 37(6):917–934, 2011.

Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word vectors with
subword information. Transactions of the Association for Computational Linguistics, 5:135–146, 2017.

Wei-Cheng Chang, Hsiang-Fu Yu, Kai Zhong, Yiming Yang, and Inderjit Dhillon. X-BERT: eXtreme
multi-label text classification with BERT. arXiv preprint arXiv:1905.02331, 2019.

Thomas Davidson, Dana Warmsley, Michael Macy, and Ingmar Weber. Automated hate speech detec-
tion and the problem of offensive language. In Proceedings of the 11th International AAAI Conference
on Web and Social Media, ICWSM ’17, pages 512–515, 2017.

Luc De Raedt. Logical and Relational Learning. Springer, 2008.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers), pages 4171–4186, 2019.

Timothy Dozat and Christopher D. Manning. Deep biaffine attention for neural dependency parsing,
2016.

Daniel Edmiston. A systematic analysis of morphological content in BERT models for multiple lan-
guages. arXiv:2004.03032, 2020.

Yarin Gal. Uncertainty in deep learning. PhD thesis, University of Cambridge, 2016.

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian approximation: Representing model uncer-
tainty in deep learning. In International Conference on Machine Learning, pages 1050–1059, 2016.

Suchin Gururangan, Tam Dang, Dallas Card, and Noah A. Smith. Variational pretraining for semi-
supervised text classification. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 5880–5894, July 2019.

Sepp Hochreiter and Jürgen Schmidhuber. Long Short-Term Memory. Neural Computation, 9(8):
1735–1780, November 1997.

Pavel Izmailov, Wesley J Maddox, Polina Kirichenko, Timur Garipov, Dmitry Vetrov, and Andrew Gordon
Wilson. Subspace inference for bayesian deep learning. In Uncertainty in Artificial Intelligence, pages
1169–1179, 2020.

Mandar Joshi, Danqi Chen, Yinhan Liu, Daniel S. Weld, Luke Zettlemoyer, and Omer Levy. Span-
BERT: Improving pre-training by representing and predicting spans. Transactions of the Association
for Computational Linguistics, 8:64–77, 2020.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition). Prentice-Hall,
Inc., 2009.

Gopal K Kanji. 100 statistical tests. Sage, 2006.

27 of 147



ICT-29-2018 D1.8: Final deep networks

Hyun-Chul Kim and Zoubin Ghahramani. Bayesian Classifier Combination. In International Conference
on Artificial Intelligence and Statistics, pages 619–627, 2012.

Yoon Kim, Yacine Jernite, David Sontag, and Alexander M Rush. Character-aware neural language
models. In AAAI, pages 2741–2749, 2016.

Matej Klemen, Luka Krsnik, and Marko Robnik-Šikonja. Enhancing deep neural networks with morpho-
logical information, 2020. URL http://arxiv.org/abs/2011.12432. Submitted.
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Nada Lavrač and Sašo Džeroski. Inductive Logic Programming: Techniques and Applications. Ellis
Horwood, 1994.
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Nikola Ljubešić, Darja Fišer, and Tomaž Erjavec. The FRENK datasets of socially unacceptable dis-
course in Slovene and English. In International Conference on Text, Speech, and Dialogue, pages
103–114, 2019.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed representations of
words and phrases and their compositionality. In Advances in neural information processing systems,
pages 3111–3119, 2013.

Kristian Miok, Dong Nguyen-Doan, Blaž Škrlj, Daniela Zaharie, and Marko Robnik-Šikonja. Predic-
tion uncertainty estimation for hate speech classification. In International Conference on Statistical
Language and Speech Processing, pages 286–298, 2019a.

Kristian Miok, Gregor Pirš, and Marko Robnik-Šikonja. Bayesian methods for semi-supervised text
annotation. In Proceedings of the 14th Linguistic Annotation Workshop, COLING LAW 2020, 2020a.

Kristian Miok, Blaž Škrlj, Daniela Zaharie, and Marko Robnik-Šikonja. Bayesian BERT for trustful hate
speech detection. In Proceedings of the ICML 2020 Workshop on Uncertainty & Robustness in Deep
Learning, 2020b.

Kristian Miok, Blaž Škrlj, Daniela Zaharie, and Marko Robnik-Šikonja. To BAN or not to BAN: Bayesian
attention networks for reliable hate speech detection. Cognitive Computation, 2021. (accepted).

Stephen Muggleton, editor. Inductive Logic Programming. Academic Press Ltd., London, 1992.

Pavel Myshkov and Simon Julier. Posterior distribution analysis for Bayesian inference in neural net-
works. In Workshop on Bayesian Deep Learning, NIPS, 2016.
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ABSTRACT

Currently, deep learning approaches are superior in natural language processing due to their ability to
extract informative features and patterns from languages. Two most successful neural architectures
are LSTM and transformers, the latter mostly used in the form of large pretrained language models
such as BERT. While cross-lingual approaches are on the rise, a vast majority of current natural
language processing techniques is designed and applied to English, and less-resourced languages
are lagging behind. In morphologically rich languages, plenty of information is conveyed through
changes in morphology, e.g., through different prefixes and suffixes modifying stems of words. The
existing neural approaches do not explicitly use the information on word morphology. We analyze
the effect of adding morphological features to LSTM and BERT models. As a testbed, we use three
tasks available in many less-resourced languages: named entity recognition (NER), dependency
parsing (DP), and comment filtering (CF). We construct sensible baselines involving LSTM and
BERT models, which we adjust by adding additional input in the form of part of speech (POS) tags
and universal features. We compare the obtained models across subsets of eight languages. Our
results suggest that adding morphological features has mixed effects depending on the quality of
features and the task. The features improve the performance of LSTM-based models on the NER and
DP tasks, while they do not benefit the performance on the CF task. For BERT-based models, the
added morphological features only improve the performance on DP when they are of high quality
(i.e. manually checked), while they do not show any practical improvement when they are predicted.
As in NER and CF datasets manually checked features are not available, we only experiment with
the predicted morphological features and find that they do not cause any practical improvement in
performance.

Keywords Deep learning · Natural language processing · Morphologically rich languages

1 Introduction

The use of deep learning for processing natural language is becoming a standard, with excellent results in a diverse
range of tasks. Two state-of-the-art architectures for text-related modeling are long short-term memory (LSTM)
networks [Hochreiter and Schmidhuber, 1997] and transformers [Vaswani et al., 2017]. LSTMs are recurrent neural
networks that process the text sequentially, meaning that they process text one token at a time, building up its internal
representation in hidden states of the network. Due to the recurrent nature of LSTM, which degrades the efficiency of
parallel processing, as well as demonstrated improvements in performance, models based on the transformer architecture
are gradually replacing LSTMs across many tasks. Transformers can process the text in parallel, using self-attention
and positional embeddings to model the sequential nature of the text.

A common trend in using transformers is to first pre-train them on large monolingual corpora with abstract, general-
purpose objective, and then fine-tune them for a specific task, such as text classification. For example, the BERT
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(Bidirectional Encoder Representations from Transformers) architecture Devlin et al. [2019] uses transformers and
is pretrained with masked language modelling and order of sentences prediction tasks to build a general language
understanding model. During the fine-tuning for a specific downstream task, additional layers are added to the BERT
model, and the model is trained on specific data to capture the specific knowledge required to perform the task.

Most of the research in the natural language processing (NLP) area focuses on English, ignoring the fact that English
is specific in terms of the low amount of information expressed through morphology (English is so-called analytical
language). In our work, we focus on adapting modern deep neural networks, namely LSTMs and BERT, for several
morphologically rich languages, by explicitly including the morphological information. The languages we analyze
contain rich information about grammatical relations in the morphology of words instead of in particles or relative
positions of words (as is the case in English). For comparison, we also evaluate our models on English. Although
previous research has shown that the state of the art methods such as BERT already captures some information contained
in the morphology [Pires et al., 2019, Edmiston, 2020], our experiments involve several languages with rich morphology
where neural networks could benefit from explicit morphological features.

Specifically, we present methods which combine BERT with separately encoded morphological properties: universal
part of speech tags (uPOS tags) and universal features (grammatical gender, tense, conjugation, declination, etc). We
evaluate them on three downstream tasks: named-entity recognition (NER), dependency parsing (DP), and comment
filtering (CF). We perform similar experiments on LSTM networks and compare the results for both architectures.
Besides English, we analyze eight more languages: Croatian, Estonian, Finnish, Latvian, Lithuanian, Russian, Slovene
and Swedish. The choice of these languages reflects a mix of different language groups (Balto-Slavic, Germanic, and
Uralic), for which we were able to obtain sufficient resources (datasets, embeddings, and corpora), due to their coverage
in the EU EMBEDDIA project1.

Our experiments show that the addition of morphological features has mixed effects depending on the task. Across the
tasks where the added morphological features improve the performance, we show that (1.) they benefit the LSTM-based
models even if the features are noisy and (2.) they benefit the BERT-based models only when the features are of high
quality (i.e. human checked), suggesting that BERT models already capture the morphology of the language; however,
there is a room for improvement either in designing pre-training objectives that can capture these properties or when
high-quality features are available.

The remainder of this paper is structured as follows. In Section 2, we present different attempts to use morphological
information in machine learning, in particular neural networks, as well as an overview of recent work in the three
evaluation tasks. In Section 3, we describe the used datasets and their properties. In Section 4, we present the baseline
models and models with additional morphological information, whose performance we discuss in Section 5. Finally, we
summarize our work and present directions for further research in Section 6.

2 Related work

We shortly review the related work on the use of morphological information within neural networks. We split the works
based on three evaluation tasks: NER, DP, and CF.

2.1 Morphological features in NER

Recent advances in NER are mostly based on deep neural networks. One of the first usages of deep neural networks
in NER is the work by Collobert and Weston [2008], who propose an architecture that is jointly trained on six
different tasks, including NER, and show that this transfer learning approach generalizes better due to learning a joint
representation for different tasks. A standard approach to NER is to use word [Huang et al., 2015] or character [Kuru
et al., 2016] embeddings of the input, followed by one or more neural layers, mostly recurrent ones, such as LSTMs.

While sequence modelling on the character-level already has a potential to encode morphological information, several
authors show that the performance of neural networks on the NER task can be improved by adding explicit information
about morphological properties of the text. Güngör et al. [2017] show that embedding morphosyntactic properties
improves NER performance on the Turkish language, while Simeonova et al. [2019] use part of speech embeddings to
achieve improved performance on the NER task in the Bulgarian language. Our work is similar to these approaches in
the sense that we add different morphological features to the neural networks. However, we experiment on a larger scale,
using more languages from different language groups, different evaluation tasks, and with modern neural architectures
(BERT), taking the LSTM networks as the baseline.

1http://embeddia.eu
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2.2 Morphological features in dependency parsing

Similarly to NER, recent progress in DP is dominated by neural approaches, which can be roughly divided into two
categories, transition-based [Yamada and Matsumoto, 2003, Nivre, 2003] and graph-based approaches [McDonald
et al., 2005]. Some works do not fall into either category, e.g., DP is treated as a sequence-to-sequence task by Li et al.
[2018]. The two categories differ in how dependency trees are produced from the output of prediction models. In the
transition-based approach, a model is trained to predict a sequence of parsing actions which produce a valid dependency
tree, while in the graph-based approach, a model is used to score candidate dependency trees via the sum of scores
of their substructures (e.g., arcs). One of the earlier successful approaches to neural DP was presented by Chen and
Manning [2014], who replaced the commonly used sparse features with dense embeddings of words, part of speech
tags and arc labels, in combination with the transition-based parser. This approach improved both the accuracy and
parse speed. Pei et al. [2015] introduced a similar approach to graph-based parsers. Later approaches improve upon
the earlier methods by automatically extracting more information that guides the parsing. E.g., researchers use LSTM
networks to inject context into local embeddings [Kiperwasser and Goldberg, 2016], apply contextual word embeddings
[Kulmizev et al., 2019], or train graph neural networks [Ji et al., 2019].

The use of morphological features in DP is quite common. For example, Chen and Manning [2014] note that POS tag
embeddings strongly contribute to the performance of their system in English and Chinese. Morphological features are
commonly used with morphologically rich languages, e.g., Arabic [Marton et al., 2010], German [Seeker and Kuhn,
2011], Lithuanian [Kapočiūtė-Dzikienė et al., 2013], or Persian language [Khallash et al., 2013], with the consensus that
they improve the accuracy of parsing. Concerning adding morphological properties to BERT, Kondratyuk and Straka
[2019] train the multilingual BERT model for multiple tasks, including POS and morphological tagging, and achieve
improved results across multiple languages. This approach uses transfer learning to implicitly injects the morphological
information into BERT models, while our approach does that explicitly, through morphological features on the input.

2.3 Morphological features in comment filtering

The literature for the task of NER covers multiple related tasks, such as hate speech, offensive speech, political trolling,
detecting commercialism, etc. Recent approaches involve variants of deep neural networks, though standard machine
learning approaches are still popular as shown in the survey of Fortuna and Nunes [2018]. These approaches typically
use features such as character n-grams, word n-grams, and sentiment of the sequence. Two examples are the works of
Malmasi and Zampieri [2017], who classify hate speech in English tweets, and Van Hee et al. [2015], who classify
different levels of cyberbullying in Dutch posts on ask.fm. Scheffler et al. [2018] combine word embeddings with the
above-mentioned features to classify German tweets. They observe that combining both n-gram features and word
embeddings brings only a small improvement over only using only one of them. The effectiveness of using features
describing syntactic dependencies for toxic comments classification on English Wikipedia comments is shown by
Shtovba et al. [2019].

Neural architectures used include convolutional neural networks [Georgakopoulos et al., 2018] and LSTM networks
[Gao and Huang, 2017, Miok et al., 2019], typically improving the performance over standard machine learning
approaches. The NER topic has also been the focus of shared tasks on identification and categorization of offensive
language [Zampieri et al., 2019] and multilingual offensive language identification [Zampieri et al., 2020]. The reports
of these tasks show the prevalence and general success of large pretrained contextual models such as BERT, though,
surprisingly, the best performing model for the subtask B of SemEval-2019 Task 6 was rule-based [Han et al., 2019].

2.4 Linguistic knowledge combined with neural networks

Large pretrained models such as BERT show superior performance across many tasks. Due to a lack of theoretical
understanding of this success, many authors study how and to what extent BERT models can capture various information,
including different linguistic properties. An overview of recent studies in this area sometimes referred to as BERTology,
is compiled by Rogers et al. [2020]. Two common approaches to study BERT are i) add additional properties to BERT
models and observe the difference in performance on downstream tasks, ii) a technique called probing [Conneau
et al., 2018], where the BERT model is trained (fine-tuned) to predict a studied property. For example, Jawahar et al.
[2019] investigate what type of information is learned in different layers of the BERT English model and find that it
captures surface features in lower layers, syntactic features in middle layers, and semantic features in higher layers.
Similarly, Lin et al. [2019] find that BERT encodes positional information about tokens in lower layers and then builds
increasingly abstract hierarchical features in higher layers. Tenney et al. [2019] use probing to quantify where different
types of linguistic properties are stored inside BERT’s architecture and suggest that BERT implicitly learns the steps
performed in classical (non-end-to-end) natural language processing pipeline. However, Elazar et al. [2020] point
out possible flaws in the probing technique, suggesting amnesic probing as an alternative. They arrive at slightly
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different conclusions about BERT layer importance; for example, they show that POS information affects the predictive
performance much more in upper layers.

Specifically for morphological properties, Zhou et al. [2020a] study whether the inclusion of POS information is still
necessary for a neural dependency parser. Somewhat similarly to the previously mentioned transfer learning approach
of Kondratyuk and Straka [2019], they add POS information to the DP task in English and Chinese by training a
model with multi-task learning objective; they conclude that POS tags are still beneficial in a neural dependency parser,
which our experiments on a larger set of languages confirm. In contrast to our work, which studies the impact of
morphological features in BERT on the performance in downstream tasks, Edmiston [2020] studies the morphological
content present in BERT. The author uses probing, i.e. he trains a linear classifier to predict morphological features
based on features of a certain hidden layer. Based on the achieved high performance, he argues that BERT models
capture much morphological information and partition their embedding space into linearly-separable regions, correlated
with morphological properties.

3 Data

In this section, we describe the datasets used in our experiments, separately for each of the three tasks: NER, DP, and
NER.

3.1 Named entity recognition

In the NER experiments, we use datasets in eight languages: Croatian, English, Estonian, Finnish, Latvian, Russian,
Slovene and Swedish. We omit the Lithuanian language from this experiment, as models for obtaining POS tags and
universal features were not available in the used tools at the time of performing the experiments. The number of
sentences and tags present in the datasets is shown in Table 1. The label sets used in datasets for different languages
vary, meaning that some contain more fine-grained labels than others. To make results across different languages
consistent, we trim labels in all datasets to the four common ones: location (LOC), organization (ORG), person (PER),
and “no entity” (OTHR).

Table 1: The collected datasets for NER task and their properties: the number of sentences and tagged words.

Language Dataset Sentences Tags

Croatian hr500k 24794 28902
English CoNLL-2003 NER 20744 43979
Estonian Estonian NER corpus 14287 20965
Finnish FiNER data 14484 16833
Latvian LV Tagger train data 9903 11599
Russian factRuEval-2016 4907 9666
Slovene2 ssj500k 9489 9440
Swedish Swedish NER 9369 7292

3.2 Dependency parsing

To test morphological neural networks on the DP task, we used datasets in nine languages (Croatian, English, Es-
tonian, Finnish, Latvian, Lithuanian, Russian, Slovene and Swedish). The datasets are obtained from the Universal
Dependencies [Nivre et al., 2020]. The number of sentences and tokens is shown in Table 2.

3.3 Comment filtering

While there exist comparable datasets across different languages for the NER and DP task, for the CF task, no such
standard datasets exist. For that reason, in our experiments on CF, we used two languages with adequate datasets:
English and Croatian.

For English experiments, we use a subset of toxic comments from Wikipedia’s talk page edits3. The comments are
annotated with six possible labels: toxic, severe toxic, obscene language, threats, insults, and identity hate (making

2The Slovene ssj500k originally contains more sentences, but only 9489 are annotated with named entities.
3https://www.kaggle.com/c/jigsaw-toxic-comment-classification-challenge/data
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Table 2: Dependency parsing datasets and their properties: the treebank, number of sentences, number of tokens, and
information about the size of the split.

Language Treebank Tokens Sentences Train Validation Test

Croatian SET 199409 9010 6914 960 1136
English EWT 254855 16622 12543 2002 2077
Estonian EDT 438171 30972 24633 3125 3214
Finnish TDT 202697 15135 12216 1364 1555
Latvian LVTB 220536 13643 10156 1664 1823
Lithuanian ALKSNIS 70051 3642 2341 617 684
Russian GSD 98000 5030 3850 579 601
Slovene SSJ 140670 8000 6478 734 788
Swedish Talbanken 96858 6026 4303 504 1219

a total of six binary target variables). We extracted comments from three categories: toxic, severe toxic, threats, and
identity hate; a total of 21, 541 instances. We randomly chose the same amount of comments that do not fall in any of
the mentioned categories, obtaining the final dataset of 43, 082 instances.

For Croatian language experiments, we form a dataset from user comments published in the Croatian news site 24sata.
The comments used are either unproblematic or labelled with one of the eight rules they break. Below we briefly
describe the types of problematic content present in the database.

1. Advertising, content unrelated to the topic, spam, copyright infringement, citation of abusive comments or any
other comments that are not allowed on the portal.

2. Direct threats to other users, journalists, admins or subjects of articles, which may also result in criminal
prosecution.

3. Verbal abuse, derogation and verbal attack based on national, racial, sexual or religious affiliation, hate speech
and incitement.

4. Collecting and publishing personal information, uploading, distributing or publishing pornographic, obscene,
immoral or illegal content and using a vulgar or offensive nickname that contains the name and surname of
others.

5. Publishing false information for deception or slander, and “trolling” - deliberately provoking other commenta-
tors.

6. Use of bad language, unless they are used as a stylistic expression, or are not addressed directly to someone.

7. Writing in other languages besides the Croatian, in other scripts besides Latin or writing with all caps.

8. Verbally abusing other users and their comments, article authors, and direct or indirect article subjects, calling
the admins out or arguing with them in any way.

Unfortunately, this data is proprietary and is not publicly available. We extracted all the 17, 868 comments from the
third category (the hate speech label) and approximately the same number of comments that do not break any rules. Our
final dataset contains 35, 635 instances.

4 Neural networks with morphological features

In this section, we describe the architectures of neural networks used in our experiments. Their common property is
that we enhance standard word embeddings based inputs with embeddings of morphological features. We work with
recent successful neural network architectures, LSTMs and transformers, i.e. BERT models. A detailed description of
architectures is available in the following subsections, separately for each of the three evaluation tasks. For each task
and architecture, we describe the baseline architecture and the enhanced one.

4.1 Named entity recognition models

In the NER task, we use two baseline neural networks (LSTM and BERT), and the same two models with additional
morphological information: POS tag embeddings and universal feature embeddings. The baseline models and their
enhancements are displayed in Figure 1.
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The first baseline model (left-hand side of Figure 1) is a unidirectional (left-to-right) LSTM model, which takes as an
input a sequence of tokens, embedded using 300-dimensional fastText embeddings [Bojanowski et al., 2017] which are
particularly suitable for morphologically rich languages as they work with subword inputs4. For each input token, its
LSTM hidden state is extracted and passed through the linear layer to compute its NER score (probability for each of
the four NER labels).

The second baseline model (right-hand side of Figure 1) is the multilingual BERT model (the base cased variant). In
our experiments, we follow the sequence tagging approach suggested by the authors of BERT [Devlin et al., 2019].
Here, the input sequence is prepended with a special token [CLS] and passed through the BERT model. The output of
the last BERT hidden layer is passed through the linear layer to obtain the predictions for NER labels.

Both baseline models (LSTM and BERT) are enhanced with the same morphological information: POS tag embeddings
and universal feature embeddings for each of the input tokens. We embed the POS tags using 15-dimensional
embeddings. For each of the 23 universal features used (we omitted the Typo feature, as the version of the POS tagger
we used did not annotate this feature), we constructed 15-dimensional embeddings. We computed the POS tags and
morphological features using the Stanza [Qi et al., 2020] system in the universal dependencies mode. In the enhanced
architectures, we included another linear layer before the final linear classification layer to model possible interactions.

fastText(wi)

...

UPOS(wi)

feats(wi) ... ... ...

wi

...

UPOS(wi)

feats(wi) ... ... ...

BERT

Figure 1: The baseline LSTM-based (left) and BERT-based (right) models for the NER task along with our modifications
with morphological information. The dotted border of POS vectors, morphological features (feats), and the linear
layer marks that their use is optional and varies across experiments. The � symbol between layers represents the
concatenation operation. The wi symbol stands for token i; in case of LSTM, tokens enter the model sequentially and
we show the unrolled network, while BERT processes all token simultaneously.

4.2 Dependency parsing models

As the baseline model in the DP task, we use the deep biaffine graph-based dependency parser [Dozat and Manning,
2016]. The enhancements with the morphological information are at the input level. The baseline model and its
enhancements are shown in Figure 2.

The baseline parser combines a multi-layer bidirectional LSTM network with a biaffine attention mechanism to jointly
optimize prediction of arcs and arc labels. We leave the majority of baseline architectural hyperparameters at values

4The precomputed embeddings are available at https://fasttext.cc/docs/en/crawl-vectors.html.
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described in the original paper (3-layer bidirectional LSTM with 100-dimensional input word embeddings, and the
hidden state size of 400).

In our experiments, we concatenate the non-contextual word embeddings with various types of additional information.
The first additional input is contextual word embeddings, which we obtain either by using the hidden states of an
additional single-layer unidirectional LSTM or by using a learned linear combination of all hidden states of BERT.
Although the LSTM layers are already present in the baseline parser, we include an additional layer at the input
level to keep the experimental settings similar across our three evaluation tasks. The second additional input is
universal POS embeddings (UPOS), and the third one are universal feature embeddings (feats). These embeddings are
concatenated separately for each token of the sentences. The size of the additional LSTM layer, POS tag embeddings
and universal feature embedding are treated as tunable hyperparameters. As the baseline input embeddings, we use
pre-trained 100-dimensional fastText embeddings, which we obtain by reducing the dimensionality of publicly available
300-dimensional vectors with fastText’s built-in dimensionality reduction tool.

In DP experiments, we use POS tags and morphological features of two origins. The first source is human annotations
provided in the used datasets. The second source of morphological information is predictions of Stanza models [Qi
et al., 2020]. These two origins are used in the assessment of the quality of morphological information; namely, we
check if manual human annotations provide any benefit compared to automatically determined POS tags and features.

4.3 Comment filtering models

In the NER evaluation task, we add additional morphological information to standard LSTM and BERT models. The
baseline models and enhanced models for this task are similar to those in the NER evaluation, though we operate at the
sequence level here as opposed to the token level in the NER task. The architecture of models is shown in Figure 3. As
baselines, we take a single layer unidirectional LSTM network (the top part of Figure 3), and the multilingual base
uncased BERT model (the bottom part of Figure 3). The difference in the used BERT dialect (uncased as opposed to
the cased in the NER task) is due to better performance detected in preliminary experiments on a separate Croatian
validation set.

In the LSTM baseline model, the words of the input sequence are embedded using pre-trained 300-dimensional fastText
embeddings. As the representation of the whole sequence, we take the output of the last hidden state, which then passes
through the linear layer to obtain the prediction scores. In the BERT baseline model, we take the sequence classification
approach suggested by the authors of BERT. The input sequence is prepended with the special [CLS] token and passed
through BERT. The sequence representation corresponds to the output of the last BERT hidden layer for the [CLS]
token, which is passed through a linear layer to obtain the prediction scores.

As in other tasks, we augment the baseline models with POS tag and universal feature embeddings. We obtain the
embeddings for each token separately from UDPipe models [Straka and Straková, 2017]. The reason for not using
Stanza in this set of experiments is that we started experimenting before its release. Additional testing with Stanza did
not show a difference in performance, so we stayed with the UDPipe models for this set of experiments. We combine
the obtained embeddings using three different pooling mechanisms: mean, weighted combination, or LSTM pooling.
Given the POS tag or universal feature embeddings, the mean pooling outputs the mean of all token embeddings; the
weighted pooling outputs the weighted combination of token embeddings, and the LSTM pooling outputs the last
hidden state obtained by passing the sequence of embeddings through the LSTM network. Both the embedding sizes
and the type of pooling are treated as tunable hyperparameters. The coefficients of the weighted combination are learned
by projecting the sequence embeddings into a sequence of independent dimension values which are normalized with the
softmax. This compresses the embedding sequence, establishes its fixed length, and allows for different morphological
properties to have a different impact in the sequence representation. This approach tests the contextual encoding of
morphological properties. For example, adjectives might be assigned a higher weight than other POS tags due to their
higher emotional contents that often indicates insults.

5 Evaluation

In this section, we first present the evaluation scenario for the three evaluation tasks, followed by results, presented
separately for each of the tasks. We end the section with the ablation study, performed on the DP task. In the ablation
study, we investigate the effect of additional morphological features in three situations where we tweak one aspect of
training procedure at a time: (1) we increase the maximum training time of our models by additional 5 epochs, (2) we
replace the human-annotated features with the ones automatically predicted by machine learning models, and (3) we
replace the embeddings from general multilingual BERT with those from more specific multilingual and monolingual
BERT models.
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Biaffine layer
(arcs)

HEADDEP.

......

Biaffine layer
(arc labels)

HEADDEP.

...

fastText(wi)

BERT(wi)

LSTM(wi)

UPOS(wi)

feats(wi) ... ... ... ... ...

...

Figure 2: The deep biaffine graph-based dependency parser along with our enhancements at the input level. The dotted
border of input embedding vectors, POS vectors, and morphological features (feats) is optional and varies across
experiments. The � symbol between layers represents the concatenation operation. The wi symbol stands for token i;
tokens enter the LSTM model sequentially, and we show the unrolled network.

5.1 Experimental settings

The experimental settings differ between the three evaluation tasks, so we describe them separately for each task,
starting with the NER task, and followed by the DP and NER tasks.

5.1.1 Experimental settings for NER

For NER, we train each BERT model for 10 epochs and each LSTM model for 50 epochs. These parameters were
determined during preliminary testing on the Slovene dataset. The selected numbers of epochs are chosen to balance
the performance and training times of the models. All NER models are evaluated using 10-fold cross-validation.

We evaluate the models with the F1 score, which is a harmonic mean of precision and recall measures. This measure is
typically used in NER in a way that precision and recall are calculated separately for each of the three entity classes
(location, organization, and person, but not ”no entity”). For each metric, we compute the weighted average over the
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fastText(wi) UPOS(wi)

Pooler
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Pooler
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...
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Pooler
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feats(wi)

Pooler
(Number)

Pooler
(Aspect)...

...

[CLS]

BERT

Figure 3: The baseline LSTM (top) and BERT (bottom) models for the NER task along with our modifications with
morphological information. The dotted border of UPOS vectors and morphological features (feats) marks that their use
is optional and varies across experiments. The � symbol between layers represents the concatenation operation. The wi

symbol stands for token i; in case of LSTM, tokens enter the model sequentially and we show the unrolled network,
while BERT processes all token simultaneously.

class scores using the frequencies of class values in the datasets as the weights. Ignoring the ”no entity” (OTHR) label
is a standard approach in the NER evaluation and disregards words that are not annotated with any of the named entity
tags, i.e. the evaluation focuses on the named entities.

5.1.2 Experimental settings for dependency parsing

We train each DP model for a maximum of 10 epochs, using an early stopping tolerance of 5 epochs in the process.
All models are evaluated using predefined splits into training, validation and testing set, determined by the respective
treebank authors and maintainers (see Table 2). The final models, evaluated on the test set, are selected based on the
maximum mean of unlabeled and labelled attachment scores (UAS and LAS) on the validation set. The UAS and LAS
are standard accuracy metrics in DP. The UAS score is defined as the proportion of tokens that are assigned the correct
syntactic head, while the LAS score is the proportion of tokens that are assigned the correct syntactic head as well as
the dependency label [Jurafsky and Martin, 2009].

5.1.3 Experimental settings for comment filtering

In our NER experiments, we train BERT models for a maximum of 10 epochs and LSTM models for a maximum of 50
epochs, using early stopping with the tolerance of 5 epochs.

We evaluate the models using the classification accuracy metric. The choice reflects the fact that the distributions of
class labels are approximately balanced in our datasets. We use fixed training, validation and test sets, obtained by
randomly dividing the datasets in the ratio 60%:20%:20%. The initial results in the Croatian hate speech experiments
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showed large variance; therefore, we repeated each experiment five times. For this task and Croatian language, we
report the obtained mean classification accuracy and its standard deviation.

5.2 Experimental results

In this section, we compare the results of baseline models with their enhancements using additional morphological
information. We split the presentation into three parts, according to the evaluation task: NER, DP, and CF.

5.2.1 Results for the NER task

For the NER evaluation task, we present results of the baseline NER models and models enhanced with the POS tags
and morphological features, as introduced in Section 4.1. Table 3 shows the results for LSTM and BERT models. We
compute the statistical significance of the differences between the baseline LSTM models and their best-performing
counterpart with morphological additions. We use Wilcoxon signed-rank test [Wilcoxon et al., 1970] and underline the
statistically significant differences at p = 0.01 level. We do not perform the significance of differences tests for BERT
as the differences for those models are marginal.

As expected, the baseline models involving BERT outperform their LSTM counterparts across all languages by a large
margin. When adding POS tags or universal features to LSTM-based models, we observe a noticeable increase in
performance over the baselines for seven languages. For three of them (Croatian, Russian, and Swedish), the increase in
F1 score is under one per cent. For three of them (Estonian, Finnish, and Slovene), the differences in performance are
statistically significant, and increases range from 1.4% (Finnish) to 4.6% (Slovene). The only language for which there
is no improvement with the LSTM-based models is English.

In BERT-based models, the additional morphological features do not seem to make a practical difference. For all
languages except Slovene, the increase in F1 values over the baseline is under 0.5%. However, since preliminary tests
in this task were performed on Slovene, the larger observed increase might be due to manual overfitting.

Table 3: F1 scores for different models on the NER task in different languages. The upper part of the table shows
LSTM models and the lower part shows BERT models. The best scores for each language are marked with the bold
typeface separately for LSTM and BERT models. Best scores for which the difference to the baseline is statistically
significant are underlined.

Model CRO ENG EST FIN LAT RUS SLO SWE

fT + LSTM 0.700 0.890 0.769 0.814 0.573 0.752 0.651 0.785
fT + LSTM + UPOS 0.708 0.889 0.792 0.824 0.590 0.754 0.692 0.787
fT + LSTM + UPOS + feats 0.706 0.883 0.781 0.828 0.588 0.759 0.697 0.785
fT + LSTM + feats 0.697 0.885 0.777 0.826 0.581 0.760 0.669 0.793
BERT 0.874 0.948 0.875 0.926 0.766 0.868 0.848 0.885
BERT + UPOS 0.875 0.948 0.874 0.927 0.773 0.870 0.857 0.886
BERT + UPOS + feats 0.875 0.949 0.879 0.927 0.763 0.869 0.853 0.883
BERT + feats 0.874 0.947 0.874 0.928 0.769 0.869 0.851 0.878

5.2.2 Results for the dependency parsing task

For the DP evaluation task on different languages (described in Section 4.2), we present UAS and LAS accuracies
in Tables 4 and 5, respectively. We first show the scores of the baseline models (multi-layer bidirectional LSTM
network with biaffine attention) followed by these models enhanced with additional inputs: LSTM or BERT contextual
embeddings, POS tags and morphological features, introduced in Section 4.2. The results in the upper part of Section 4.2
represent enhancements incorporating LSTM embeddings, and in the lower part, we show the enhancements including
BERT embeddings. We also statistically test the differences in UAS and LAS scores between the best performing
enhanced variants and their baselines without morphological additions. As the splits are fixed in the DP tasks, we use
Z-test for the equality of two proportions [Kanji, 2006] at p = 0.01 level. The null hypothesis is that the scores of
compared models are equal. For languages where the null hypothesis can be rejected, we underline the respective best
result.

Similarly to the other two evaluation tasks, the models involving BERT embeddings outperform the baselines involving
LSTM embeddings on all languages by a large margin. Enhancements with LSTM embeddings improve over parsers
without contextual embeddings. Models with added POS tags or universal features noticeably improve over baselines

10

ICT-29-2018 D1.8: Final deep networks

39 of 147



A PREPRINT - NOVEMBER 26, 2020

with only LSTM embeddings in both UAS and LAS score for all languages. The increase ranges between 1.2%
(Russian) and 6.8% (Lithuanian) for UAS and between 2.4% (Russian) and 10.42% (Lithuanian) for LAS. All compared
differences between the LSTM baselines and the best enhanced variants are statistically significant at p = 0.01.

Contrary to the results observed on the other two tasks, the addition of morphological features to the baseline models
with BERT embeddings improves the performance scores for all languages. For some languages, the increase seems to
be practically insignificant (under one per cent). However, for six languages out of nine, the increase in UAS is over
one per cent and statistically significant; the same is true for eight languages out of nine for the LAS score. For these
languages, the improvement ranges from 1.1% (Finnish) to 1.8% (Lithuanian) for UAS, and from 1.1% (Croatian)
to 4.4% (Lithuanian) for LAS. The only language for which both UAS and LAS scores are practically equal to the
baselines with BERT embeddings is Russian.

Table 4: UAS scores for different models on the DP task in different languages. The upper part of the table shows
baseline parser with enhancements using LSTM-based contextual embeddings; the lower part shows baseline parser
enhanced with variants of BERT embeddings. The best scores for each language are marked with the bold typeface
separately for LSTM and BERT embeddings extensions. Statistically significant differences in best scores at p = 0.01
level are underlined.

Model CRO ENG EST FIN LAT LIT RUS SLO SWE

baseline 84.83 83.54 79.35 82.45 81.51 70.51 83.04 86.66 80.68

+LSTM 86.48 84.87 81.92 84.13 83.63 71.82 85.02 86.92 84.03
+LSTM+UPOS 87.81 87.26 85.30 86.82 86.73 75.83 85.75 91.99 86.78
+LSTM+UPOS+f. 87.82 87.21 86.12 87.64 87.97 78.62 86.19 92.42 87.19
+LSTM+feats 87.52 85.97 84.31 85.23 86.09 78.10 86.26 90.67 84.90

+mBERT 91.72 91.43 88.02 89.99 87.87 79.79 90.32 93.66 90.16
+mBERT+UPOS 92.17 91.64 89.26 90.53 89.11 80.48 90.53 94.70 91.21
+mBERT+UPOS+f. 91.97 91.56 89.51 91.09 89.63 81.64 90.65 94.95 91.46
+mBERT+feats 91.72 91.35 88.32 90.33 88.92 81.61 90.64 94.42 90.64

Table 5: LAS scores for different models on the DP task in different languages. The upper part of the table shows
baseline parser with enhancements using LSTM-based contextual embeddings; the lower part shows baseline parser
with enhancements using BERT embeddings. The best scores for each language are marked with the bold typeface
separately for LSTM and BERT embedding extensions. Statistically significant differences in best scores at p = 0.01
level are underlined.

Model CRO ENG EST FIN LAT LIT RUS SLO SWE

baseline 77.55 79.28 73.17 77.09 75.77 62.23 77.22 82.12 75.06

+LSTM 79.59 80.69 76.24 78.60 78.08 63.65 79.24 83.03 78.97
+LSTM+UPOS 81.95 84.68 81.36 83.06 82.75 70.45 80.88 88.75 82.65
+LSTM+UPOS+f. 82.84 84.48 83.46 83.97 84.27 74.07 81.68 90.32 83.17
+LSTM+feats 82.00 82.96 81.00 81.16 81.81 72.40 81.64 88.38 80.31

+mBERT 86.37 88.09 84.30 86.07 83.02 72.62 85.99 91.67 86.67
+mBERT+UPOS 87.63 89.35 86.72 87.32 85.43 74.99 86.24 92.90 87.80
+mBERT+UPOS+f. 87.44 89.13 87.19 87.99 86.16 77.04 86.56 93.40 88.38
+mBERT+feats 86.81 88.81 85.72 87.07 85.19 76.33 86.37 92.74 87.25

5.2.3 Results for the comment filtering task

Table 6 shows the NER results for LSTM and BERT baselines and their enhancements, described in Section 4.3. All
BERT-based models outperform the LSTM-based models by a large margin for both languages, Croatian and English.

Adding POS tags and universal features to neural architectures of either type does not increase the classification accuracy
and may even decrease it in some cases. As the accuracy does not increase with the best set of hyperparameters, we do
not further discuss the effect of different pooling types on the performance, though we note that none of the pooling
approaches consistently performed best.
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Table 6: Classification accuracies for baseline and enhanced models on the NER task in different languages. The upper
part of the table shows LSTM models, and the lower part shows BERT models. The best scores for each language are
marked with the bold typeface separately for LSTM and BERT models. We report the mean and standard deviation over
five random splits of the data. The differences between the models of the same type and language are marginal.

CRO ENG
Model Hate speech Toxic comments

fastText + LSTM 77.69± 0.47% 88.14 ± 0.12%
fastText + LSTM + uPOS 76.63 ± 0.77% 88.16 ± 0.15%
fastText + LSTM + uPOS + feats 75.64 ± 1.21% 86.90 ± 1.20%
fastText + LSTM + feats 76.52 ± 0.99% 88.25± 0.27%

mBERT 86.20 ± 0.20% 92.23 ± 0.12%
mBERT + uPOS 85.05 ± 0.49% 92.33± 0.11%
mBERT + uPOS + feats 86.34± 0.28% 92.29 ± 0.20%
mBERT + feats 86.22 ± 0.35% 92.20 ± 0.13%

5.3 Ablation study

To further analyze different aspects of the proposed morphological enhancements, we conducted several ablation studies
on the DP task where the datasets and evaluation settings allow many experiments. Similarly as in section 5.2.2, we
statistically evaluate differences in performance between the baseline model and the best enhancement using the Z-test
for the equality of two proportions. In cases where the null hypothesis can be rejected at p = 0.01 level, we underline
the respective compared score. We test the impact of additional training time, quality of morphological information,
and different variants of BERT models.

5.3.1 Additional training time

To test if the observed differences in performance are due to random variation in the training of models which could be
reduced with longer training time, we increase the maximum training time from 10 to 15 epochs. From the studied
languages, we arbitrarily choose a subset of 6 languages on which we experiment. The results are shown in Table 7.

Table 7: UAS/LAS scores achieved by models that are trained for up to 5 additional epochs (a maximum training time
of 15 epochs instead of 10). The results for 10 epochs are presented in Tables 4 and 5.

Model CRO ENG EST FIN SLO RUS

baseline+LSTM 86.22/79.49 85.40/81.47 82.28/76.72 85.30/80.28 88.31/84.72 85.38/79.79
baseline+LSTM+UPOS 88.43/82.72 87.30/84.74 85.35/81.52 87.27/83.77 92.11/89.19 86.46/81.35
baseline+LSTM+UPOS+f. 88.26/83.26 87.92/85.26 86.40/83.65 87.83/84.22 92.64/90.64 86.68/82.18
baseline+LSTM+feats 88.08/82.74 86.61/83.58 84.50/81.24 85.71/81.95 90.73/88.60 86.75/82.21
baseline+mBERT 92.06/87.03 91.10/87.77 88.06/84.60 90.58/87.06 93.97/92.11 90.26/86.15
baseline+mBERT+UPOS 92.03/87.55 91.77/89.56 89.35/86.60 91.16/87.98 94.54/92.80 91.05/87.04
baseline+mBERT+UPOS+f. 92.09/87.71 91.74/89.49 89.49/87.26 91.32/88.42 95.16/93.78 91.11/87.23
baseline+mBERT+feats 91.93/86.97 91.33/88.89 88.37/85.78 90.85/87.85 94.49/93.08 90.79/86.64

We can observe that longer training times slightly increases the scores for all model variants, though their relative order
stays the same. The models with added morphological features still achieve better results, so the performance increases
do not seem to be the effect of random fluctuations in training due to the different amount of training steps.

5.3.2 Quality of morphological information

In the second ablation study, we evaluate the impact of the quality of morphological information. We replace the high
quality (human-annotated) POS tags and morphological features used in Section 4.2 with those predicted by machine
learning models. In this way, we test a realistic setting where the morphological information is at least to a certain
degree noisy. We obtain POS tags and morphological features from Stanza models prepared for the involved languages
[Qi et al., 2020]. To avoid overly optimistic results, we make sure to use models that are not trained on the same
datasets used in our DP experiments. This is possible for a subset of five languages. Table 8 shows the results of DP
models, trained with predicted morphological features. The first two lines of the table show the quality of used features,
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expressed as the proportion of tokens, for which POS tags and all morphological features are correctly predicted, i.e.
we report their accuracy.

The general trend is that using predicted features results in much smaller (best case) performance increases, though
some languages still see significant increases. For LSTM models, the increases range from 0.42% (English) to 1.60%
(Slovene) for UAS, and from 0.67% (English) to 2.41% (Finnish) for LAS. For BERT models, the increases are
marginal and range from 0.00% (English) to 0.49% (Finnish) for UAS, and from −0.10% (i.e. decrease, Slovene) to
0.66% (Finnish) for LAS. These results are consistent with the results of our NER experiments in section 5.2.1, where
we have no access to human-annotated features and find that noisy features only help LSTM-based models.

As noisy features might require different training, we also tried to increase the maximal number of training steps to 15
epochs and repeated the tuning of hyperparameters for one language (Estonian). None of these changes improved the
scores by a practically relevant margin.

These results indicate that adding predicted morphological features to models with BERT embeddings might not be
practically useful since their quality needs to be very high. However, since human annotated morphological features
improve the performance on the DP task, this suggests that there is a room for improvement in BERT pre-training. It
seems that pre-training tasks of BERT (masked language modelling and next sentence prediction) do not fully capture
the morphological information present in the language.

Table 8: UAS/LAS scores achieved by models that are trained with predicted (noisy) instead of human-annotated
morphological features. In the first two lines, we report the proportion of tokens for which UPOS tags and UPOS
features are correctly predicted.

ENG EST FIN SLO RUS
UPOS accuracy (%): 92.45 91.15 87.59 80.45 89.32
feats accuracy (%): 93.92 88.86 86.20 78.74 85.22

baseline+LSTM 84.87/80.69 81.92/76.24 84.13/78.60 86.92/83.03 85.02/79.24
baseline+LSTM+UPOS 85.18/81.36 82.44/77.15 85.33/80.61 88.14/84.06 84.90/79.53
baseline+LSTM+UPOS+f. 85.04/81.02 82.24/77.39 85.56/81.01 88.52/85.00 85.82/80.89
baseline+LSTM+feats 85.29/81.22 81.42/76.19 84.89/80.43 88.12/84.12 84.74/79.56

baseline+mBERT 91.43/88.09 88.02/84.30 89.99/86.07 93.66/91.67 90.32/85.99
baseline+mBERT+UPOS 91.43/88.33 88.20/84.69 90.05/86.33 93.38/91.42 90.59/86.17
baseline+mBERT+UPOS+f. 91.08/88.05 88.06/84.39 90.48/86.73 93.73/91.57 90.34/85.74
baseline+mBERT+feats 90.90/87.74 87.88/84.42 89.77/85.91 93.37/91.23 89.65/85.27

5.3.3 Specific BERT models

In the third ablation study, we replace the embeddings obtained from the multilingual uncased BERT model with those
obtained from more specific multilingual BERT models and monolingual BERT models. In experiments involving
multilingual BERT models, we use Croatian/Slovene/English CroSloEngual BERT and Finnish/Estonian/English
FinEst BERT [Ulčar and Šikonja, 2020]. In experiments with monolingual BERT models, we use English bert-base-
uncased [Devlin et al., 2019], Finnish bert-base-finnish-cased-v1 [Virtanen et al., 2019], and Russian RuBert [Kuratov
and Arkhipov, 2019]. We only perform the experiments for a subset of studied languages for which we were able to
find more specific BERT models. The aim is to check if the additional morphological features improve the performance
of more language-specific BERT models. These are trained on a lower number of languages, and larger amounts of
texts in the involved languages compared to the original multilingual BERT model Devlin et al. [2019]. Due to this
language-specific training, we expect these BERT models to capture the nuances of the languages better, thus possibly
benefiting less from the additional morphological features. The results are shown in Table 9 for trilingual BERT models
and in Table 10 for monolingual BERT models.

In most cases, the specific multilingual BERT models without additional features do as well as or better than the best
performing original multilingual BERT model with additional features. The only worse LAS scores are achieved on
English and Estonian, indicating that trilingual BERT models are better adapted to the task than the original multilingual
models. The addition of morphological features increases the UAS and LAS even further. For UAS, the improvements
are generally smaller than before (see Figure 2), with the only improvement larger than 1% being on Estonian. For
LAS, the improvements are larger compared to UAS and range from 0.54% (Slovene) to 2.23% (Estonian); only one
language sees an improvement of less than 1%. These results indicate that the additional morphological features still
contain valuable information for the DP task, which the BERT models do not capture. We hypothesise that slightly
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lower performance of FinEst BERT (without additions) on Estonian as well as slightly larger increase when adding
morphological features might be due to variability in the training process.

For monolingual models (the most language-specific), the results are mixed, but the general trend is that the additional
features help little or not at all. The English monolingual model without and with morphological additions performs
comparably to its multilingual (CroSloEngual) counterpart, and we do not see any additional increase in the performance.
The Russian monolingual model achieves comparable UAS and LAS to the best performing original multilingual BERT
model with additional features. With the addition of morphological features, the scores increase, but only marginally
(under 0.5%). The Finnish monolingual model outperforms the best performing multilingual (FinEst) counterpart. The
addition of morphological features to the monolingual Finnish model increases the scores further: UAS by 0.33% and
LAS by 0.68%, but these increases are not statistically significant.

Table 9: UAS/LAS scores achieved by trilingual BERT models, each trained on a smaller set of languages (3) than the
original multilingual BERT model (104).

BERT variant CroSloEngual BERT FinEst BERT
Model/Language CRO ENG SLO FIN EST

baseline+BERT 92.63/87.84 91.69/88.37 95.48/93.98 92.61/89.35 89.84/86.51
baseline+BERT+UPOS 93.29/89.01 92.05/89.69 95.72/94.27 93.39/90.66 91.06/88.67
baseline+BERT+UPOS+f. 92.95/88.33 91.99/89.65 95.82/94.52 93.23/90.61 91.01/88.74
baseline+BERT+feats 92.87/87.98 91.27/88.58 95.33/94.05 93.12/90.54 89.94/87.44

Table 10: UAS/LAS achieved by monolingual BERT models.

BERT variant bert-base-uncased bert-base-finnish-cased-v1 RuBert
Model ENG FIN RUS

baseline + BERT 91.82/88.74 94.20/91.51 90.83/86.39
baseline + BERT + UPOS 91.92/89.60 94.53/92.19 91.24/87.31
baseline + BERT + UPOS + f. 91.81/89.62 94.08/91.73 91.04/87.04
baseline + BERT + feats 91.23/88.76 94.09/91.80 90.88/86.61

6 Conclusion

We analysed adding explicit morphological information in the form of embeddings for POS tags and morphological
features to two currently dominant neural network architectures used in NLP: LSTM networks and transformer-based
BERT models. We compared models enhanced with morphological information with baselines on three tasks (NER,
DP, and NER). To obtain general conclusions, we used subsets of eight morphologically-rich languages from different
language families.

The results indicate that adding morphological information to NER prediction models is not beneficial, but it improves
the performance in the NER and DP tasks. For the DP task, the improvement depends on the quality of the morphological
features. The additional morphological features consistently benefited LSTM-based models for NER and DP, both
when they were of high quality and predicted (noisy). For BERT-based models, the predicted features do not make any
practical difference for the NER and DP task but improve the performance in the DP task when they are of high quality.
Testing different variants of BERT shows that language specialised variants improve the performance on the DP task
and the additional morphological information is beneficial, though less and less as we shift from multilingual towards
monolingual models.

The comparison of different BERT variants indicates that BERT models do not completely capture the language
morphology. Since the release of BERT, several new pre-training objectives have been proposed, such as syntactic
and semantic phrase masking [Zhou et al., 2020b] and span masking [Joshi et al., 2020]. In further work, it makes
sense to apply these models to the DP task in order to test how well they capture the morphology. Further, the effect
of morphological features could be analysed on additional tasks and languages, since the explicit morphological
information does not seem to benefit them equally.
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Kristian Miok · Blaž Škrlj · Daniela Zaharie ·
Marko Robnik-Šikonja
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Abstract Background Hate speech is an important problem in the manage-
ment of user-generated content. To remove offensive content or ban misbehaving
users, content moderators need reliable hate speech detectors. Recently, deep
neural networks based on the transformer architecture, such as the (multilin-
gual) BERT model, achieve superior performance in many natural language
classification tasks, including hate speech detection. So far, these methods have
not been able to quantify their output in terms of reliability.

Methods We propose a Bayesian method using Monte Carlo dropout within
the attention layers of the transformer models to provide well-calibrated relia-
bility estimates. We evaluate and visualize the results of the proposed approach
on hate speech detection problems in several languages. Additionally, we test
if affective dimensions can enhance the information extracted by the BERT
model in hate speech classification.
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Blaž Škrlj
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Večna pot 113, 1000 Ljubljana, Slovenia
E-mail: marko.robnik@fri.uni-lj.si

ar
X

iv
:2

00
7.

05
30

4v
6 

 [
st

at
.A

P]
  7

 D
ec

 2
02

0

ICT-29-2018 D1.8: Final deep networks

Appendix B: To BAN or Not to BAN: Bayesian Atten-
tion Networks for Reliable Hate Speech Detection

47 of 147
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Results Our experiments show that Monte Carlo dropout provides a viable
mechanism for reliability estimation in transformer networks. Used within
the BERT model, it offers state-of-the-art classification performance and can
detect less trusted predictions. Also, it was observed that affective dimensions
extracted using sentic computing methods can provide insights toward inter-
pretation of emotions involved in hate speech.

Conclusions Our approach not only improves the classification performance
of the state-of-the-art multilingual BERT model but the computed reliability
scores also significantly reduce the workload in an inspection of offending cases
and reannotation campaigns. The provided visualization helps to understand
the borderline outcomes.

Keywords prediction uncertainty · reliability estimation · Monte Carlo
dropout · transformer neural networks · Bayesian BERT · Sentic Computing ·
model calibration

1 Introduction

With the rise of social network popularity, hate speech phenomena have sig-
nificantly increased [14]. Hate speech not only harms both minority groups
and the whole society, but it can lead to actual crimes [3]. Thus, (automated)
hate speech detection mechanisms are urgently needed. However, falsely ac-
cusing people of hate speech is also a problem. Many content providers rely
on human moderators to reliably decide if a given text is offensive or not, but
this is a mundane and stressful job which can even cause post-traumatic stress
disorders1. There have been many attempts to automate the detection of hate
speech in social media using machine learning, but existing models lack the
quantification of reliability for their decisions.

In the last few years, recurrent neural networks (RNNs) were the most
popular text classification choice. Long Short Term Memory (LSTM) networks,
the most successful RNN architecture, were already successfully adapted for the
assessment of predictive reliability in hate speech classification [42]. Recently,
neural network architecture with attention layers, called ‘transformer architec-
ture’ [59], showed even better performance on almost all language processing
tasks. Using transformer networks for masked language modeling produced
breakthrough pretrained models, such as BERT (Bidirectional Encoder Repre-
sentations from Transformers) [15]. The attention mechanism, which is a crucial
part of transformer networks, became an essential part of natural language
understanding with a significant impact on language applications. We aim to
investigate the behavior of the attention mechanism concerning the reliability
of predictions. We focus on the hate speech recognition task.

1 https://www.bbc.com/news/technology-51245616
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In hate speech detection, reliable predictions are needed to remove harmful
content and possibly ban malicious users without harming the freedom of
speech [42]. Standard neural networks are inadequate for the assessment of
predictive uncertainty, and the best solution is to use the Bayesian inference
framework. However, classical Bayesian inference techniques do not scale well in
neural networks with high dimensional parameter space [24]. Various methods
were proposed in order to overcome this problem [45]. One of the most efficient
methods is called Monte Carlo Dropout (MCD) [20]. Its idea is to use dropout
in neural networks as a regularization technique [55] and interpret it as a
Bayesian optimization approach that takes samples from the approximate
posterior distribution.

Several authors have shown that emotional information [6] extracted from a
text can improve the performance of lexical approaches and standard machine
learning algorithms [35, 1, 52, 2]. The role and utility of emotional information
in deep learning have not yet been established; besides, we still have only limited
understanding of the emotions in the text. A series of computational models
that bridge the gap between the human emotional perspective evolved in a
domain known as ’Sentic Computing’ [7]. The computational initiative, named
’SenticNet’, combines knowledge from psycholinguists, neuroscientists, and
computer scientists to better understand emotions in text. We used information
on affective dimensions provided by SenticNet, together with the outputs of
the state-of-the-art contextual language model BERT [15]. This was enhanced
with a reliability estimation mechanism based on MCD as input for a hate
speech classifier. Concerning emotions, we follow two goals in this work: i) to
test the predictive performance of emotion-enhanced BERT models in hate
speech detection, and ii) to better understand the role of emotions in hate
speech.

Our main contributions are:

1. We present a novel methodology for the assessment of prediction uncertainty
in attention networks and in BERT models.

2. Empirical analysis of the proposed Bayesian Attention Networks (BANs)
and MCD enhanced BERT models show an improved calibration and
prediction performance on hate speech detection tasks in several languages.

3. We combine contextual and reliability information obtained from MCD
BERT with sentiment-related knowledge provided by SenticNet.

4. We demonstrate novel visualization of prediction uncertainty for individual
instances, as well as for groups of instances.

The paper consists of six more sections. In Section 2, we present related
works on prediction uncertainty, hate speech detection and its relationship with
sentiment analysis. In Section 3, we propose the methodology for uncertainty
assessment in transformer networks using attention layers and MCD, while
in Section 4, we analyze the calibration of predictions. Section 5 presents the
datasets and the evaluation scenario. The obtained results are presented in
Section 6, followed by conclusions and ideas for further work in Section 7.
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4 Kristian Miok, Blaž Škrlj, Daniela Zaharie, Marko Robnik-Šikonja

2 Related Work

We present the related work categorized into four areas. In Section 2.1, we
introduce work done on hate speech detection, followed by the related research
on transformer architecture for text classification in Section 2.2. In Section
2.3, we describe existing approaches for the assessment of uncertainty in text
classification. Finally, in Section 2.4, we relate hate speech detection with the
particularities of sentic computing.

2.1 Hate Speech Detection

Analyzing sentiments and extracting emotions from texts are very useful
natural language processing (NLP) applications. With the rise of social media
popularity, the hate speech detection became highly needed. Hate speech is
defined as written or oral communication that abuses or threatens a specific
group or target [62].

Detecting abusive language for less-resourced languages is complex, and
has inspired research in multilingual and cross-lingual methods [56]. These
methods are especially useful when the involved languages are morphologically
or geographically close [47]. In our work, we investigate hate speech detection
methods for English, Croatian, and Slovene languages. The English language
is well-resourced and researched [33, 14, 63]. Recently, hate speech detection
studies appeared for Croatian [27, 34, 29] and Slovene [17, 30, 60].

The hate speech detection is mostly treated as a binary text classification
problem. In the past, the most frequently used classifier was the Support
Vector Machines (SVM) method [54]. However, deep neural networks are now a
dominant technique, first through RNNs [38], and recently using the pre-trained
transformer networks [44, 64]. In this work, we analyzed the state-of-the-art
pre-trained transformer networks, called (multilingual) BERT model.

2.2 Attention Networks for Text Classification

Attention mechanism is a key component of transformer architecture, proposed
by Vaswani et al. [59]. Due to its power and suitability for parallelization, this
architecture soon replaced LSTM networks for many NLP tasks. Recently, large
pre-trained transformer models have been investigated in the context of text
classification tasks. For example, Kant et al. [25] trained both multiplicative
LSTM (mLSTM) and transformer language models on a large 40GB text dataset
[36] and transferred those models to binary and multi-class text classification
problems. They concluded that the transformer model outperforms the mLSTM
model, especially when fine-tuned for multidimensional emotions classification.

The BERT model [15] uses the transformer architecture and large text
corpora to learn masked language model and sequence of sentences tasks. BERT
and its follow-ups are able learn and extract many language characteristics (both
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syntactic and semantic) and excel for many text classification tasks. Despite
the short time since its conception, BERT has already attracted enormous
attention from the NLP community. Hundreds of research groups extensively
research it; see a recent overview by Rogers et al. [53]. Practical guidelines on
how to fine-tune the BERT model for text classification were compiled by Sun
et al. [57].

A multilingual hierarchical attention mechanism for document classification
was investigated by several authors [48, 16, 66]. However, different attention
layers of large pre-trained models were not tested separately or in the context
of prediction reliability. Also, to the best of our knowledge, the predictive
reliability of BERT outputs has not been investigated, yet.

2.3 Prediction Uncertainty for Text Classification

While recent works on classification reliability mostly investigate deep neural
networks, many other probabilistic classifiers were analyzed in the past [46]. For
example, Platt [50] explores the probabilistic properties of SVM predictions.

Prediction uncertainty is an important issue for black-box models like neural
networks, as they do not provide interpretability or reliability information
about their predictions. Most reliability scores for deep neural networks are
based on a Bayesian framework. The most popular exception is the work of
Lakshminarayanan et al. [28], who proposed using deep ensembles to estimate
the prediction uncertainty.

An efficient approach to reliability assessment in neural networks is to
mimic the Bayesian inference using MCD [20]. The dropout technique was
first introduced to RNNs in 2013 [61], but further research revealed a negative
impact of dropout in RNNs [4]. Later, dropout was successfully applied to
language modeling by Zaremba et al. [68], who applied it only to fully con-
nected layers. Gal and Ghahramani [21] implemented the variational inference
based dropout, which can regularize also recurrent layers. Additionally, they
provide a solution for dropout within word embeddings. The method mimics
Bayesian inference by combining probabilistic parameter interpretation and
deep RNNs. The authors introduce the idea of augmenting probabilistic RNN
models with the prediction uncertainty estimation. Several other works investi-
gate how to estimate prediction uncertainty using RNNs [69], e.g., Bayes by
Backpropagation (BBB) [18].

Recently, a fast and scalable method called ‘SWAG’ was proposed by
Maddox et al. [32]. The main idea of this method is to randomize the learning
rate and interpret it as a sampling from the Gaussian distribution. SWAG
fits the Gaussian distribution by capturing the Stochastic Weight Averaging
(SWA) mean and co-variance matrix, representing the first two moments of
stochastic gradient descent iterations. Different to SWAG, we use the Gaussian
distribution as a posterior over neural network weights, and then perform a
Bayesian model averaging for uncertainty estimation and calibration.
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MCD was recently used within several models and different architectures
to obtain the prediction uncertainty and improve the classification results
[40, 43, 41]. Transformer networks were not yet analyzed.

2.4 Sentic Computing

Sentiments and emotions play an essential role in hate and offensive speech,
and have been used successfully in their automatic detection. Martins et al.
[35] have used eight basic emotions from Plutchik’s model [51], the positive
and negative sentiment polarities, indicator of a presence of a word in the
Hatebase lexicon2, and the intensity of anger emotion. Their combination of
the lexicon-based and machine learning approach successfully predicted hate
speech and showed a high utility of emotional features. Alorainy et al., 2018
[1] used the emotional analysis on Twitter suspended accounts and discovered
that they contain more disgust, negative sentiment, fear, and sadness than
active accounts. Using this information for hate speech detection, their machine
learning models showed improved performance. Rodŕıguez et al. [52] also used
the eight basic emotions in their emotional analysis and showed that emotions
could improve Facebook posts’ clustering. Finally, Bauwelinck and Lefever [2]
used several different groups of features (linguistic, sentiment, and Twitter-
specific features such as hashtags and profanity lexicon) to predict hate speech.
Interestingly, their results show that Twitter-specific features are the most
successful, and the additional sentiment features do not improve predictive
performance. All the methods mentioned above use either classical machine
learning approaches such as SVM, Naive Bayes, logistic regression, and random
forest, or RNNs, such as LSTMs.

To advance approaches based on lexical keywords and frequency statistics,
Cambria and Hussain [7] proposed a framework for emotional computing
called ‘SenticNet’ that captures semantics and latent emotional information by
relying on the implicit meaning associated with commonsense concepts. The
original emotion categorization model called Hourglass of Emotions [9] was
supported by the SenticNet 4 framework [7], while its newer revised version
[58] is used in SenticNet 6 framework [11]. These models are biologically-
inspired and psychologically-motivated. Each of the two models is based on
four independent but concomitant affective dimensions, which can be combined
to build more complex emotions. Based on this, SenticNet framework can
describe and explain emotional experiences by disassembling text to the ground
sentiments.

The SenticNet framework has been successfully used in sentiment classifica-
tion problems. Sentic LSTM [31] integrates the explicit emotional information
with the LSTM networks by adding a recurrent additive network that simulates
sentic patterns. A recent SenticNet 6 framework [11] combines top-down and
bottom-up knowledge representation. From top-up direction it encodes meaning

2 http://www.hatebase.org
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using symbolic models (logic and semantic networks); in bottom-up direction
it learn syntactic patterns from data, using subsymbolic methods (biLSTM
and BERT). Authors report state-of-the-art results for sentiment analyses.

In our work, we use the transformer architecture that can extract highly rel-
evant information from texts. Concerning emotions, the question we investigate
is whether adding emotional information to the distribution of predictions can
improve the performance of hate speech detection. This question is particularly
relevant for the current state-of the-art BERT model [15], which is known
to capture a plethora of language information, such as part-of-speech tags,
dependency structure, and sentiment.

3 Bayesian Attention Networks

The BERT model [15] is the transformer network that has achieved state-of-
the-art results in many NLP tasks, including text classification [65, 23, 13]. In
this work, we introduce Monte Carlo Dropout to transformer networks and
BERT to construct their Bayesian variants. Analysis of different amounts of
dropout, different variants of BERT modifications, and their hyper-parameters
would require pretraining and fine-tuning several different BERT models, which
would require substantial computational resources. For example, pretraining a
single BERT model on four TPUs requires more than a month of computational
time. Thus, in this work, we explore two reliability extensions, i) the reliability
on the encoder part of the BERT architecture trained from scratch (without
pretraining) on the task of interest (in this work, we refer to these models as
the attention networks), and ii) reliability of pre-trained BERT models, using
only fine-tuning. We believe this is a reasonable setting which sheds light on
an important reliability aspect of transformer networks.

The BERT model [15] is the transformer network that has achieved state-
of-the-art results in many NLP tasks, including text classification [65, 23,
13]. In this work, we introduce MCD to transformer networks and BERT to
construct their Bayesian variants. Analysis of different amounts of dropout,
different variants of BERT modifications, and their hyper-parameters would
require training several different BERT models, which would require substantial
computational resources. For example, training a single BERT model on four
TPUs requires more than a month of computational time. Thus, in this work,
we explore the reliability on only the encoder part of the BERT architecture,
called attention network, and entire pre-trained BERT models. We believe this
is a reasonable setting which sheds light on an important reliability aspect of
transformer networks.

In Section 3.1, we first formally define the attention network architecture,
and in Section 3.2, we make it Bayesian by introducing MCD. Finally, in
Section 3.3, we describe how the MCD principle can be employed in already
pre-trained BERT models.
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3.1 Attention Networks

The basic architecture of the attention network follows the architecture of
transformer networks [59] and is shown in Figure 1. The proposed architecture

Fig. 1: A scheme of Attention Networks. The dropout is introduced in the blue
colored layers.

is similar to the encoder part of the transformer architecture. The difference is
in the output part, where a single output head was added to perform binary
classification using the sigmoid activation function. The main difference to
BERT, which also uses just the encoder part of transformer network, is that we
do not use any pretraining. The second difference is that attention network uses
the classification head and BERT has the language model head. In both cases
the output is composed of feed-forward layers followed by the non-linearity but
with different dimensions in each case. By not relying on the pretraining, we
are much more flexible concerning the number of layers and number of neurons
in each layer. For our tasks, we use orders of magnitude fewer parameters,
e.g., we used a maximum of 3 million parameters (at the expense of loosing
information from pretraining). The architecture can contain many attention
heads, where a single attention head is computed as:

oh = softmax(
Q ·KT

√
dk

) · V ,
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The attention matrices are commonly known as the query Q, the key K, and
the value matrix V . The normalizing factor, dk, denotes the dimensionality of
keys. The attention function can be described as mapping the query and the
set of key-value pairs to the output, where the query, keys, values, and output
are all vectors. The output is computed as a weighted sum of the values. The
weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

Intuitively, the multiplication of query and key vectors with subsequent
values can be understood as the extraction of relations. The softmax activation
enables each pair of considered input tokens to be represented with a single
real value. It effectively introduces sparseness into the weight space – only
certain token pairs emerge with high weights and are relevant for the remaining
part of the considered neural network architecture. In practice, multiple such
heads can be concatenated and fed into the succeeding feed-forward layer. The
application of softmax has been shown to emphasize only particular parts of
the parameter space, thereby making the neural network more focused.

The positional encoding, as discussed in Vaswani et al. [59], represents a
matrix that encodes individual positions in a matrix of the same dimensionality
as the one holding the information on sequences (input embedding). The
positional encoding was introduced to account for word order. Here, relative
distances between different tokens are taken into account by incorporating the
position-related signal into a given token representation.

While there are, in principle, many different ways of how attention networks
can be extended with the Bayesian approach, we propose to use the well-
established MCD.

3.2 Monte Carlo Dropout for Attention Networks

In our proposal, called Bayesian Attention Networks (BAN), we use MCD
within attention networks but contrary to the original dropout setting, the
dropout layers are active also during the prediction phase. In this way, the
predictions are not deterministic but are sampled from the learned distribution,
thereby forming an ensemble of predictions. The obtained distribution can be,
for example, inspected for higher moment properties and can offer additional
information on the uncertainty of a given prediction. During the prediction
phase, the dropout layers are activated again and the output of a proportion of
randomly selected neurons in those layers is set to zero. A forward pass on such
partially activated architecture is repeated for a fixed number of samples, every
time dropping different randomly selected neurons. The results of different
passes can be combined to obtain the final prediction, or further inspected as
a probability distribution.
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3.3 Monte Carlo Dropout for BERT

MCD was used in the BERT model in the same way as in BAN. MCD can
provide multiple predictions of a neural network during the test time, as long
as the dropout was used during the training phase [19]. Training of neural
networks with the dropout distributes the captured information across the
network. During the prediction, such a trained neural network is robust. Using
the dropout principle, a new prediction is possible in each forward pass. A
sufficiently large set of such predictions can be used to estimate the prediction
reliability. The BERT model is trained with 10% of dropout in all of the
layers by default, and thus allows for multiple predictions using the described
principle. We call this model ‘MCD BERT’. A limitation of this approach is
that a single dropout rate of 10% is used during training, while other dropout
probabilities might be more suitable for reliability estimation. We leave this
analysis for further work.

4 Calibration of Probabilistic Classifiers

The quality of reliability scores returned by probabilistic classifiers (such as
BAN and MCD BERT) is assessed with calibration measures. A classifier is
calibrated if its output scores are close to actual probabilities in a sense that
a class predicted with the score p is correct with the actual probability p,
i.e. in p · 100 percent of cases. Without special calibration approaches, most
neural networks are overconfident and overestimate their probabilities. The
calibration of a model can be visualized using a calibration plot where the
model’s prediction accuracy (true probabilities) is plotted against the predicted
probabilities (i.e. outputs scores). The perfect calibration manifests itself as a
diagonal in the calibration plot (see an example of a calibration plot in Fig. 6).

Since classifiers are typically not perfectly calibrated, we investigated differ-
ent methods to improve the calibration of used neural networks. We compared
several existing calibration methods with a novel approach that combines
existing techniques with a method for threshold adaptation. In Section 4.1, we
describe the existing calibration methods, followed by the proposed threshold
adaptation in Section 4.2.

4.1 Existing Calibration Methods

We first formally describe how to obtain calibrated predictions from the reli-
ability scores. Let (X,Y ) be the input space, where X represents the set of
predictive variables, and Y is the binary class variable (either 0 or 1). Let f be
the predictor (e.g., neural network) with f(X) = (Ŷ , P̂ ), where Ŷ is the binary
class prediction, and P̂ is its associated confidence score or probability score of
correct prediction. The calibration of the model f is expressed as:

P (Ŷ = Y |P̂ = p̂) = p, (1)
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where p̂ is the prediction score from [0, 1] interval, obtained from the predictor
f . We interpret this score as the probability of a specific outcome, assigned by
the model f . Probability p is the model’s confidence or true probability that
model f predicts correctly. If a model predicts a certain outcome with a high
probability, it is desirable that the confidence of this prediction being correct
is also high. In the ideal case of perfect calibration p̂ = p.

Based on Equation (1), there are two ways to reduce the calibration error:
either to obtain calibrated predictions p̂ or to manipulate the prediction
threshold in such a way that the predicted outcome Ŷ is better calibrated.
To assess the quality of the produced reliability scores, we compare them to
results of two calibration methods, Platt’s method and Isotonic regression.

Platt’s method [50] learns two scalar parameters a, b ∈ R in such way that
the prediction q̂ = σ(ap̂+ b) presents a calibrated probability of predicted score
p̂, and σ is the sigmoid function. To find good values of a and b, typically a
separate calibration dataset is used. The isotonic regression is a non-parametric
form of regression in which we assume that the function is chosen from the
class of all isotonic (i.e., non-decreasing) functions [67]. Given the predictions
from our classifier p̂, and the true target y, the calibrated prediction returned
by the isotonic regression is:

q̂ = m(p̂) + ε

where m is a non-decreasing function.

4.2 Adaptive Threshold

We explored the adaptive threshold (AT), which we apply to classification
with BANs. During learning, after each weight update phase, we assess the
performance of BAN. For each instance in the validation set, we do multiple
forward passes with unfrozen dropout layers and store the average of the
returned scores as the probability estimate. Once the probability estimates
for the validation set are collected, we test several decision thresholds and
determine the predictions of each instances. The best-performing threshold
w.r.t. a given performance metric (in our case the classification accuracy),
is stored together with its performance and weights of the neural network.
The obtained performance estimate can also be used for early stopping in the
learning phase. When we apply the model to new instances, we use the best
threshold from the training phase (instead of the default value of 0.5). The
purpose of AT is to automatically find the threshold with the best performance.
To summarize, we employ the following procedure:

1. During the training and after each weight update, we generate the probabil-
ity distribution with MCD. The mean of the distribution is considered the
probability score of a given instance being assigned to the positive class.

2. Using the validation set, we test a range of possible thresholds that determine
the instances’ labels. We tested the threshold range between 0.1 and 0.9 in
increments of 0.001.
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3. If the accuracy obtained by the default threshold (0.5) was improved by any
other threshold, we stored both the current parameter set and the threshold
value used to obtain the improved performance on the validation set.

4. The weights of the best performing model and the matching threshold are
returned as the final prediction model.

5 Evaluation Settings

In this section, we present the evaluation settings, and in Section 6, we report
the results. Starting with Section 5.1, we describe the used hate speech datasets,
followed by he affective dimensions of the Hourglass of Emotions method in
Section 5.2. The implementation details of the used prediction models are
presented in Section 5.3. In Section 5.4, we present the evaluation measures
for the predictive performance, and in Section 5.5, the measures used in the
evaluation of calibration.

5.1 Hate Speech Datasets

To test the proposed methodology in the multilingual context, we used hate
speech datasets in three languages, English, Croatian, and Slovene. The sum-
mary of datasets is available in Table 1.

1. The English dataset3 is extracted from hate speech and offensive language
detection study of Davidson et al. [14]. The subset of data we used consists of
5,000 tweets. We took 1,430 tweets labeled as the hate speech and randomly
sampled 3,670 tweets from the remaining 23,353 tweets.

2. The Croatian dataset was provided by the Styria media company within
the EMBEDDIA project4. The texts consists of user comments on the news
portal Večernji list5. The original dataset consists of 9,646,634 comments
from which we selected 8,422 comments. 50% of instances were labeled
as the hate speech by human moderators, and the other half was chosen
randomly from non-problematic comments.

3. The Slovene dataset was produced in the Slovenian national project
FRENK6. The text dataset used in the experiment is a combination of
two different studies of Facebook comments [30]. The first group of com-
ments was collected on LGBT homophobia topics, while the second on
anti-migrants posts. In our final dataset, we used all of the 2,182 hate
speech comments, and the same number of non-hate speech comments were
randomly sampled.

3 https://github.com/t-davidson/hate-speech-and-offensive-language
4 http://embeddia.eu
5 https://www.vecernji.hr
6 http://nl.ijs.si/frenk/ (Research on Inappropriate Electronic Communication)
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Table 1: Characteristics of the datasets used in the experiments.

Dataset type Size Hate Non-hate LSTM embeddings
English tweets 5000 1430 3670 sentence
Croatian news comments 8422 4211 4211 fastText
Slovene Facebook comments 4364 2182 2182 fastText

5.2 The Hourglass of Emotions Affective Dimensions

To test if emotional information extracted from text can complement the
information extracted by BERT models, we used the English tweets dataset and
affective dimensions obtained with two versions of the Hourglass of Emotions
model; the affective dimensions of the original model can be extracted using
the SenticNet 4 framework [9], and the affective dimensions of its revision [58]
are available in the SenticNet 6 framework.

5.2.1 SenticNet 4

We used the SenticPhrase interface to obtain the original Hourglass of Emotions
affective dimensions from the SenticNet 4 framework [10]. For each sentence,
we extracted four affective dimensions (pleasantness, attention, sensitivity, and
aptitude). Within SenticNet 4, verb and noun concepts are linked to primitives,
and in this way, most concept inflections can be captured by the knowledge
base verb concepts. The implementation is freely accessible via Python API
(Application Programming Interface) in the Python sentic package7.

To gain a better understanding of the four affective dimensions, Cambria
et al. [8] presented the following example:

1. The user is happy with the service provided (pleasantness).
2. The user is interested in the information supplied (attention).
3. The user is comfortable with the interface (sensitivity).
4. The user is disposed to use the application (aptitude).

The hate speech texts usually express unhappiness with the current situation
and unwillingness to hear or consider different opinions. Hence, the nature of
the hate speech is opposite to the nature of pleasantness and aptitude, while it
can be correlated with the attention.

The distributions of the affective dimensions for English tweets, separately
for non-hate speech and hate speech instances, are shown in Fig. 2. While
the distributions are different among the variables, the differences between
the hate speech and non-hate speech distributions are not pronounced. This
indicates that these variable are not strong indicators of hate speech if used
independently, but might still be useful in combination with textual features
extracted by neural networks.

7 https://pypi.org/project/sentic/
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Fig. 2: Distributions of the four affective dimensions from the original Hourglass
of Emotions model, obtained from the SenticNet 4 framework for the dataset
of English tweets. Left-hand side shows non-hate speech tweets and right-hand
side shows hate speech tweets.

5.2.2 SenticNet 6

The revisited Hourglass of Emotions model [58] is based on empirical evidence
obtained in the context of sentiment analysis. Each of the four proposed baseline
affective dimensions gives positive and negative perspective of one emotion:

1. Introspection - the joy versus sadness;
2. Temper - the calmness versus anger;
3. Attitude - the pleasantness versus disgust, and
4. Sensitivity - the eagerness versus fear.

The dataset of affective dimensions was obtained using the senticnet Python
library 8. We used the publicly available word level API to obtain the affective
dimension values for each token separately. We averaged the affective dimension
and polarity values on the level of each tweet/comment.

We show the distributions of these new dimensions for English tweets in
Fig. 3. Similarly to SenticNet 4 framework, the distributions between the hate
speech and non-hate speech tweets are similar.

5.3 Implementation of Prediction Models

We used three types of neural network architectures. As a baseline, we used
MCD LSTM networks [42], which include reliability information obtained with
MCD. We compared that model with newly proposed BAN and MCD BERT.
As shown in the right-most column of Table 1, the input to MCD LSTM are
pre-trained word embeddings: sentence encoder for English [12], and fastText

8 https://pypi.org/project/senticnet/
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Fig. 3: Distributions of the four affective dimensions from the revisited Hourglass
of Emotions model, obtained from the SenticNet 6 framework for the dataset
of English tweets. Left-hand side shows non-hate speech tweets and right-hand
side shows hate speech tweets.

embeddings9 for Slovene and Croatian. For the implementation of BAN, we
used the Keras tokenizer10, and for MCD BERT, we used the BERT’s tokenizer.

We implemented the proposed BANs11 and MCD BERT12 with the PyTorch
library. The main hyper-parameters of the BAN architecture are the number of
attention heads and the number of attention layers. The adaptive classification
threshold (described in Section 4.2) is computed every time we evaluate the
performance on the validation set. When a network makes a prediction, we
deactivate all layers except the dropout layers. In this way, we maintain the
variance of predictions. Each final prediction consists of a set of results obtained
by several forward passes.

Other parameters are set as follows. We use the Adamax optimizer [26], a
variant of Adam based on infinity norm, and binary cross-entropy loss function.
To automatically stop training, we use the stopping step of 10 – if after 10
optimization steps the performance on the validation set is not improved, the
training stops.

We explored the following hyperparameter tuning space: the validation
percentage (size of the validation set) was varied between 5% and 10%. The
rationale for testing different validation set sizes are relatively small datasets,
therefore it is difficult to strike a good balance between the training and
validation set. Given enough data, the validation set shall be on the upper
margin. The number of epochs was either 30 or 100, the number of hidden
layers and attention heads was 1 or 2. The maximum padding of the input

9 https://fasttext.cc
10 https://keras.io/preprocessing/text/
11 https://github.com/KristianMiok/BAN
12 https://github.com/KristianMiok/Bayesian-BERT
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sequences was either 48, 32, or 64. The learning rate was either 0.001 or 0.0005,
and AT was either enabled or disabled.

MCD LSTM networks consist of an embedding layer, LSTM layer, and a
fully connected layer within the word2vec [39] and ELMo [49] embeddings. To
obtain the best architectures for the LSTM and MCD LSTM models, we tested
different number of units, batch sizes, dropout rates, etc.

For BERT, we used the BERT base model in English and the multilingual
BERT variant for Croatian and Slovene. We used the HuggingFace implemen-
tation13. To combine the information from the MCD BERT and SenticNet, we
generated 1000 MCD BERT predictions for each instance. We merged them
with the four Sentic variables, described in Section 5.2, thus obtaining 1004
variables. This data was passed as an input to the SVM model. The process
used 5-fold cross-validation.

5.4 Prediction Performance Evaluation Measures

Depending on the purpose of the prediction model, we might optimize different
evaluation measures, such as classification accuracy, precision, recall, or F1

score. In the hate speech detection, we want to avoid false accusations of
hate speech. For that aim, we maximize precision on the validation set during
training. As this could negatively affect other measure, we alter the decision
threshold to achieve good precision vs. accuracy balance. In Figure 4, we present
the accuracy-precision trade-off.

5.5 Calibration Quality Measures

To measure the quality of computed calibration scores, we use the expected
calibration error (ECE) [22]. To compute ECE, we split all n predictions into
M equally spaced bins B1, B2, . . . , BM , that contain instances with prediction
scores in the given bin. We sum the weighted differences between actual
prediction accuracies and predicted scores over all the bins and normalizes the
result with the number of instances n.

ECE =

M∑

m=1

|Bm|
n
|accuracy(Bm)− score(Bm)| (2)

This measure produces lower scores for better calibrated models (lower calibra-
tion error).

6 Results

In this section, we present results of five sets of experiments. In Section 6.1,
we report calibration of different prediction models, and in Section 6.2, their

13 https://huggingface.co/transformers/model_doc/bert.html
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Fig. 4: Trade-off between precision and accuracy across various hyper-
parameters settings of BAN model. Each curve shows one set of hyper-
parameters, each color depicts one decision threshold (0, 0.25, 0.5, 0.75, or 1.0).
The hyper-parameters contain the number of heads, max padding, number of
layers, number of epochs, and validation set ratio.

prediction performance. The comparison between the reliability of BERT and
MCD BERT is presented in Section 6.3, while the impact of sentic features is
discussed in Section 6.4. Finally, we present different visualizations of models’
uncertainty in Section 6.5.

6.1 Calibration of BAN and BERT

Figure 5 shows how calibration of prediction scores changes during the training
of BAN. The red line represents the performance of the fully trained network.
It is apparent that an additional calibration is necessary – as the perfect
calibration corresponds to the dotted line. Surprisingly, some of the training
iterations show better calibrated scores. This is the motivation for AT, presented
in Section 4.2.
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Fig. 5: Calibration plot for the BAN English model after each epoch (green)
based on the validation set and the best performing architecture. The trans-
parency of the green calibrations lines decreases with the number of epochs
(i.e. initial stages are the most transparent). The final calibration is in red and
the dotted line shows the perfect calibration.

In Tables 2, 3, and 4, the calibration results for different calibration settings
on the BAN are presented: no calibration, isotonic regression, and Platt’s
method. Each calibration is either combined with AT or not. For all three
languages, both calibration methods improve the ECE score, and Platt’s
method produces the best calibration scores. The AT slightly improves the
ECE score for the uncalibrated (raw) results. This is especially true for the
Slovene comments where the ECE score was reduced from 0.794 to 0.621. We
can conclude that the calibration using AT heuristics might not be beneficial
when used in combination with the established calibration techniques (isotonic
regression and Platt’s method) but used exclusively.

To compare the calibration of MCD BERT with different BAN calibrations,
we plotted their ECE scores in Figure 6. It can be observed that calibration
methods substantially improve the BAN score. However, the MCD BERT
model is better calibrated even without the usage of an explicit calibration
methods.

6.2 Prediction Performance

We compare the predictive performance of four neural network architectures in
Table 5. MCD LSTM and BERT serve as the baselines for comparison with the
proposed BAN and MCD BERT. The MCD BERT model provides the best
results for all three languages. BERT models are pre-trained on large amounts
of text, which makes a significant difference compared to LSTM and BAN.
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Table 2: The calibration scores of BAN with different calibration approaches on
the English tweets dataset. We present average classification accuracy and F1
score with their standard deviations, computed using 5-fold cross-validation.

Calibration AT Accuracy F1 ECE

Raw False 0.83 [0.02] 0.82 [0.03] 0.547
Raw True 0.83 [0.01] 0.83 [0.04] 0.539
Isotonic False 0.84 [0.01] 0.82 [0.01] 0.230
Isotonic True 0.83 [0.01] 0.82 [0.02] 0.234
Platt’s False 0.84 [0.02] 0.82 [0.02] 0.225
Platt’s True 0.83 [0.01] 0.82 [0.01] 0.232

Table 3: The calibration scores of BAN with different calibration approaches
on the Croatian user news comments dataset.

Calibration AT Accuracy F1 ECE

Raw False 0.61 [0.02] 0.47 [0.03] 0.681
Raw True 0.62 [0.02] 0.50 [0.04] 0.663
Isotonic False 0.60 [0.01] 0.49 [0.04] 0.206
Isotonic True 0.61 [0.01] 0.50 [0.03] 0.206
Platt’s False 0.61 [0.02] 0.48 [0.02] 0.198
Platt’s True 0.62 [0.02] 0.49 [0.02] 0.197

Table 4: The calibration scores of BAN with different calibration approaches
on the Slovene Facebook comments dataset.

Calibration AT Accuracy F1 ECE

Raw False 0.59 [0.01] 0.33 [0.05] 0.794
Raw True 0.59 [0.02] 0.48 [0.05] 0.621
Isotonic False 0.58 [0.02] 0.48 [0.03] 0.212
Isotonic True 0.58 [0.02] 0.49 [0.03] 0.213
Platt’s False 0.58 [0.03] 0.475 [0.02] 0.206
Platt’s True 0.59 [0.02] 0.47 [0.04] 0.204
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Fig. 6: Calibration plots based on English test set performance for MCD BERT
and BAN with different calibration algorithms.

MCD BERT is slightly better than BERT due to its better performance for
the instances where BERT is uncertain. Here, multiple predictions reduce the
prediction variance. MCD LSTM is more stable than BAN (see the standard
deviation of F1 score in (see the standard deviation of F1 scores in Table 5).
We attribute this to the larger number of parameters in BAN and insufficient
number of training instances. BERT and MCD BERT models compensate for
this problem with large scale pre-training.

Table 5: Predictive performance of compared models. We present the average
classification accuracy and F1 score with their standard deviations (in brackets),
computed using 5-fold cross-validation. The best accuracy for each language is
typeset in bold.

English Tweets Croatian Comments Slovene Comments

Model Accuracy F1 Accuracy F1 Accuracy F1

MCD LSTM 81.0 [1.2] 81.9 [1.3] 63.7 [1.0] 51.0 [3.3] 55.3 [0.69] 43.13 [0.8]

BAN 83.3 [1.7] 81.6 [3.4] 61.4 [2.0] 38.1 [8.6] 57.4 [1.7] 35.1 [6.3]

BERT 90.9 [0.7] 90.0 [0.7] 70.8 [1.0] 61.2 [1.5] 66.4 [5.0] 67.8 [2.5]

MCD BERT 91.4 [0.7] 90.4 [0.8] 71.5 [1.2] 62.9 [1.7] 68.4 [1.9] 68.6 [1.6]
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6.3 Reliability of BERT and MCD BERT

As established in Section 6.1, BERT models are already well-calibrated. In
this section, we test if the proposed MCD BERT extension is useful beyond
the advantage in predictive performance, and analyze the ability of MCD
BERT to detect problematic predictions. For each classifier (BERT and MCD
BERT), we split the tested instances into two groups, uncertain and certain,
based on the computed prediction scores. As BERT and MCD BERT return
most of the predictions close to 0 or 1, we used the following criteria for the
certainty of prediction scores. For MCD BERT, the tested instance is declared
uncertain if the variance computed on 1000 dropout predictions is greater then
0.1, otherwise it is declared certain. As BERT returns a single prediction score,
we have chosen the same number of uncertain instances as for MCD BERT,
based on the criterion that their prediction scores are farthest away from 0 or
1, i.e. they are least certain to be either hate speech or not.

In Table 6, we show the number of predictions where classifiers are cor-
rect/incorrect separately for instances with certain/uncertain prediction for
each of the three languages. The ratio of incorrectly to correctly classified
instances is significantly different between the certain and uncertain group,
which is a strong indication that both BERT and MCD BERT correctly rec-
ognize uncertain predictions. This ratio is also much larger for MCD BERT
than for BERT for the English and Croatian dataset, which testifies that the
reliability of MCD BERT predictions is better. The ratio is similar for the
Slovene dataset, where BERT also has a good ratio.

Using the Chi-square statistical test, we assessed the difference in cor-
rect/incorrect classifications between the certain and uncertain group. For the
English dataset, this difference is highly significant for both BERT and MCD
BERT (p =1.384e-11 and 2.2e-16, respectively). For the Croatian dataset, the
p-values are 1 and 8.348e-16, meaning that we cannot rely on BERT scores to
detect uncertain classifications, while the distribution returned by the MCD

Table 6: The number and ratio of predictions where classifiers are cor-
rect/incorrect is very different for instances where BERT and MCD BERT are
certain/uncertain. We use three datasets, English (ENG), Croatian (CRO),
and Slovenian (SLO).

BERT MCD BERT
Language Correct Certain Uncertain Certain Uncertain
ENG Yes 880 31 891 24

No 71 18 62 23
N/Y Ratio 0.08 0.58 0.06 0.95

CRO Yes 1176 35 1053 152
No 461 14 336 139

N/Y Ratio 0.39 0.40 0.31 0.91
SLO Yes 576 28 537 55

No 241 27 229 51
N/Y Ratio 0.42 0.96 0.42 0.92
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BERT is very informative. The p-values for the BERT and MCD BERT on
Slovene are 0.0037 and 0.0002, respectively. Again, MCD BERT is much better
in detecting unreliable classifications.

The observed difference in assessment of reliability can have important
practical consequences. For example, if we are faced with the re-annotation
task to improve the quality of predictions, MCD BERT would choose much
better borderline instances compared to BERT.

6.4 Combining Emotional Information with MCD BERT

As the experiments in Section 6.2 show, MCD BERT is superior to other
tested models on the hate speech detection task. In this section, we test if
additional emotional information obtained from the SenticNet framework can
complement the information about the hate speech extracted by the MCD
BERT model and further improve its performance. We merge the affective
dimensions computed based on SenticNet 4 and SenticNet 6 with the output
vector of MCD BERT predictions, described in Section 3.3. Additionally, we
investigate if the emotional information can help in the interpretation of trained
hate speech detectors.

Text

MCD BERT

SenticNet

Multiple 
Predictions 

(1000)

Hourglass of 
Emotions      
Affective 

Dimensions

Hourglass of 
Emotions Revisited           

Affective 
Dimenisons

SVM
Hate Speech           
Classification

Fig. 7: A diagram of merging MCD BERT predictions with the emotional infor-
mation based on SenticNet 4 and SenticNet 6 frameworks. The concatenated
vector is an input to the final SVM classifier that predicts the hate speech.
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For the evaluation, we use 5-fold cross-validation. In each iteration, we
combine the predictions from MCD BERT (1000 of them, sorted in ascending
order) with the affective dimensions from the original and revised variant of
the Hourglass of Emotions models as depicted in Figure 7. We obtain four
affective dimensions from the original Hourglass of Emotions model (pleasant-
ness, aptitude, sensitivity, and attention), and four from the revisited model
(introspection, sensitivity, temper, and attitude). Using the dataset obtained
in this way, we train the SVM model to predict the hate speech. According to
the results in Table 7, the additional information does not improve the hate
speech detection. The same conclusions can be drawn from Figure 8, where we
plot the scores assigned to the used features by the random forest algorithm
[5]. This learning algorithm can detect feature dependencies that affect the
prediction variable. Thus, the results show that SVM and random forest cannot
detect any pronounced interactions between affective dimensions and MCD
BERT predictions that would impact the hate speech classification.

The results show that introducing knowledge regarding emotional content
after the predictions are done can not improve the performance. However,
according to the authors of the Hourglass of Emotions revisited model [58],
the full sentence model introduced in SenticNet 6 [11] can provide superior
text classification results on problems involving emotions. Thus, the layers
that can capture emotional information from the text should be build within
the prediction model architecture. Introducing uncertainty component in such
architecture remains an interesting direction for further research.

Table 7: Predictive performance of the MCD BERT model and the SVM model
trained on the output features of MCD BERT and affective dimensions from
the two Hourglass of Emotions models for the English tweets dataset.

Model Accuracy F1

MCD BERT 91.4 [0.7] 90.4 [0.8]

MCD BERT + SenticNet 4 + SenticNet 6 91.4 [0.5] 90.5 [0.9]

To better understand the emotions involved in hate speech problem, we
further investigated the relation between the affective dimensions of the two
Hourglass of Emotions models (original and revisited) and the hate speech
prediction probabilities of MCD BERT, separately for the non-hate speech and
hate speech English tweets.

The top line of Figure 9 shows results for the affective dimensions of the
original Hourglass of Emotions models (pleasantness, attention, sensitivity,
and aptitude). The top parts of graphs show that linear regression lines (in
orange) for the hate speech are almost horizontal, so there is no significant
correlation between the predicted probability of hate speech obtained with
MCD BERT and affective dimensions. In contrast, the correlation between the
predicted probability and affective dimensions for the non-hate speech tweets
is significant, as the blue regression lines at the bottom parts of the graphs
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Fig. 8: Feature importance scores according to the random forest algorithm.
We show scores of 8 affective dimensions extracted from the SenticNet 4 and
SenticNet 6 frameworks, as well as five most important attributes generated
by the MCD BERT model.

in the top row show. Both attention and sensitivity have positive correlation
with the hate speech prediction probability. This is in accordance with the
conclusions of the original Hourglass of Emotions model that high attention
and sensitivity lead to aggressiveness (Figure 5 in [9]).

Fig. 9: Relationship between prediction probability of MCD BERT and the
Hourglass of Emotions affective dimensions. Original affective dimensions are
shown in the top line, while revisited dimensions are shown in the bottom line
of graphs.
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The bottom line of Figure 9 shows the affective dimensions of the revisited
Hourglass of Emotions model (sensitivity, temper, attitude and introspection).
These affective dimensions are all negatively correlated with the non-hate
speech. It can be observed that there is also a slight negative correlation
between the affective dimensions and hate speech probabilities, especially for
sensitivity and temper. Thus, tweets that contain dominantly positive emotions
have a low probability of being hate speech which is in accordance with the
results presented by Susanto et al. [58].

6.5 Visualization of Uncertainty

Obtaining multiple predictions for a specific instance can improve understanding
of the final prediction. We used the mean of the distribution to estimate
the probability. The variance informs us about the spread and certainty of
predictions. We can inspect the actual distribution of prediction scores with
histogram plots, as illustrated in Figure 10 for a few correctly classified instances
from the English dataset, and on Figure 11 for a few misclassified instances.
We analyze distributions produced by the MCD LSTM baseline, BAN with
10% and 30% dropout, and MCD BERT.

Histograms in Figures 10 and 11 visually display the prediction certainty
for the specific instances. We notice that MCD BERT’s predictions are always
close to 0 or 1, especially when the model seems certain of the prediction. BAN
with 10% dropout provides a similar spread of values as MCD BERT. This is
expected as BERT is also pre-trained with 10% dropout. However, 30 % of
dropout in BAN results in a much larger spread of predictions for instances
where BAN is uncertain. Note that the results of MCD BERT are concentrated
in a much narrower interval compared to MCD LSTM and BAN.

While visualizations of prediction distributions for individual instance (see
Figures 10 and 11) are useful in the assessment of their prediction reliability, we
also aggregate results over multiple instances to understand more general relia-
bility phenomena. Following [42], we visualize the embeddings of the prediction
distributions. The idea of this visualization is to detect and identify clusters of
certain and uncertain classifications. First, we obtain many predictions (1,000
in our experiments) for each instance. The space of prediction distributions
across instances is embedded into two dimensions by the Uniform Manifold
Projections method (UMP) [37]. In this way, we obtain a two-dimensional space
corresponding to the initial 1,000 dimensional space of prediction distributions.
Next, we use the Gaussian kernel estimation to identify equivalent regions and
connect them with closed curves. Finally, the shapes and sizes of individual
predictions are chosen based on their classification error and certainty of pre-
dictions. The goal of this visualization is to discover structures within the space
of probability distributions, possibly offering insights into the drawbacks and
limitations of the analyzed classifier. The resulting visualizations are shown in
Figures 12 and 13. In Figure 12, the plot displays the position of certain and
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tweet1: @user
you might be a lib-
tard if... #libtard
#sjw #liberal
#politics

tweet2: #paid
#kkk to #fabri-
cate #stories to
push the producers
#narrative #cancel

tweet3: carl pal-
adino, trump ally,
wishes obama dead
of mad cow disease

tweet4: thought
factory: left-right po-
larisation! #trump
#uselections2016
#leadership #poli-
tics #brexit #blm

Fig. 10: Distributions of prediction scores for a few correctly classified English
instances. We show histograms for MCD LSTM (first row), BAN with 30%
dropout (second row), BAN with 10% dropout (third row), and MCD BERT
(fourth row). Each tweet is shown in a separate column.

uncertain test set instances in the embedded space of distributions, while in
Figure 13 the differences are based on the mean of predicted probability scores.

In both Figures, 12 and 13, the probability space is distinctly separated
into two components, indicating that there are predictions for which the
neural network is certain (and were correctly classified). However, for some
predictions, especially non hate speech instances, the model is less certain
(albeit still correct). The two visualizations demonstrate how the probability
space is split into distinct components for a trained neural network. The
visualizations also shows problematic predictions, allowing their identification
and potentially facilitating the debugging process for developers (e.g., an
inspection of convergence).
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tweet5: what
over-rode jour-
nalists’ integrity
was greed and
ambition, along
with a total ab-
sence of courage
(true label = hate
speech)

tweet6: there is
a future nina and
right now you
are pretty much
throwing yours
away. (true label =
non-hate speech)

tweet7: @user
@user someone
really respects eu
guidelines!!! (true
label = non-hate
speech)

tweet8: the scars
left by us waime
camps mt @user
(true label = hate
speech)

Fig. 11: Distributions of prediction scores for a few incorrectly classified English
instances. We show histograms for MCD LSTM (first row), BAN with 30%
dropout (second row), BAN with 10% dropout (third row), and MCD BERT
(fourth row). Each tweet is shown in a separate column.

7 Conclusions and Future Work

In real world scenarios, an automatic detection of hate speech requires high
precision and reliable decisions. Wrong classifications can lower the level of
democratic debate and damage freedom of speech. In technological terms, NLP
is witnessing a switch from RNNs with pre-trained word embeddings (such as
LSTM with fastText) to large pre-trained transformer models (such as BERT).

We proposed to use the MCD in the attention layers of transformer neural
networks, and to unfreeze dropout layers also during the prediction phase. This
resulted in two new architectures, BAN and MCD BERT. The BAN models are
transformer networks trained from scratch, using dropout in both training and
prediction phase. MCD BERT uses pretrained BERT model and uses dropout
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Fig. 12: Visualization of 100 test tweets projected into two dimensional space
by the UMP method. Tweets whose classifications seem certain are colored in
blue while tweets with uncertain classification are shown in orange. We can
observe clustering of uncertain tweets.

Fig. 13: Visualization of the probability space for 100 tweets from the test
set. The instances are colored green, yellow, or red, depending on the mean
probability of the 1000 predictions. Predictions with high confidence form an
isolated part in the probability space.

during fine-tuning and prediction phase. We have shown that these approaches
are useful for estimation of prediction uncertainty. MCD BERT significantly
improves the prediction performance in the hate speech detection task. Its
pre-training extracts useful information about the language use that can be
successfully exploited in the fine-tuning to a specific problem. BANs, trained
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from scratch, are not competitive with this. We also empirically investigated
the calibration of BAN and MCD BERT. The results show that MCD BERT
is much better calibrated than BAN.

Multiple predictions obtained from MCD BERT not only produce better
predictive performance compared to BERT, but also provide better reliability
information. The visualizations based on them enable detection of less certain
decisions and can help moderators or annotators to focus on uncertain instances.

In line with the recent research showing that the affective information avail-
able in the SenticNet 6 framework provides favorable results in the sentiment
analysis [58], we tested this information on the hate speech detection task. We
combined affective dimensions from the original and revisited Hourglass of
Emotions models with predictions generated by the MCD BERT model. While
our results do not show any improvement in predictive performance, we believe
inclusion of affective information should be incorporated within the prediction
model together with possibility of obtaining prediction uncertainty. Thus, we
see an opportunity for further work in this area by introducing BERT-based
uncertainty estimated into full sentence models from the SenticNet 6 framework.
Nevertheless, the predictions of the MCD BERT model confirm the findings of
the Hourglass of Emotions model. The affective dimensions of the Hourglass of
Emotions model are correlated with the non-hate speech probabilities returned
by the MCD BERT, and can potentially explain emotions involved in the hate
speech. Breaking down a complex offensive language to fundamental emotions
can bring interesting insights into the hate speech problem.

In future work, we aim to adapt other Bayesian approaches, such as SWAG,
to transformer networks. Reliability enhanced classifications could be used in
many other domains, such as machine translation. One of the tasks where
Bayesian text classification can be particularly useful is semi-supervised learn-
ing, which iteratively expands an initial small set of manually labeled instances
with the most reliably classified instances. Data re-annotation is another exam-
ple where reliability scores can be of great use. An initial pilot study on Croatian
comment filtering showed that human annotators decide mostly based on the
observed keywords and lack the time to detect more subtle expressions of offen-
sive content. These circumstances result in low quality of the resulting datasets
and demand their reannotation. Using the reliability scores of the proposed
MCD BERT, one could significantly reduce the amount of reannotation and fo-
cus on genuinely difficult and borderline cases where prediction models may err.
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Abstract

Human annotations are an important source of information in the development of natural language
understanding approaches. As under the pressure of productivity annotators can assign different
labels to a given text, the quality of produced annotations frequently varies. This is especially the
case if decisions are difficult, with high cognitive load, requires awareness of broader context,
or careful consideration of background knowledge. To alleviate the problem, we propose two
semi-supervised methods to guide the annotation process: a Bayesian deep learning model and a
Bayesian ensemble method. Using a Bayesian deep learning method, we can discover annotations
that cannot be trusted and might require reannotation. A recently proposed Bayesian ensemble
method helps us to combine the annotators’ labels with predictions of trained models. According
to the results obtained from three hate speech detection experiments, the proposed Bayesian
methods can improve the annotations and prediction performance of BERT models.

1 Introduction

Recent successful applications of artificial intelligence in various fields, including natural language
processing, are often due to long hours of human annotation when preparing datasets for machine learning.
The annotation process transfers human knowledge to machine learning models but it is often done under
time pressure and with inadequate instructions or with insufficiently trained annotators.Aiming to make
the annotation process easier, we study the possibility of designing a data labeling process which requires
less human supervision.

In practice, a fairly standard procedure in the annotation quality control is to recheck the labels that are
wrongly classified by using several prediction models. As an alternative, Bayesian inference produces
a distribution of possible decisions and can improve the selection of instances requiring reannotation
(Miok et al., 2020). Most neural networks do not support the assessment of predictive uncertainty. The
Bayesian inference framework can be helpful, however, most techniques do not scale well in neural
networks with high dimensional parameter space (Izmailov et al., 2019). Various methods were proposed
to overcome this problem (Myshkov and Julier, 2016), one of the most efficient being Monte Carlo
Dropout (MCD) (Gal and Ghahramani, 2016a). Its idea is to use the dropout mechanism in neural
networks as a regularization technique (Srivastava et al., 2014) and interpret it as a Bayesian optimization
approach that samples from the approximate posterior distribution.

A common problem in text annotations is that annotators are not always sure about correct labels due
to uncertainty in the text (Vincze, 2015; Szarvas et al., 2008). On difficult texts, annotators frequently
give ambiguous labels and their annotations can be biased. Instead of asking annotators to label the raw
text, it would be easier for them if they were proposed answers accompanied by probabilistic scores
from an ensemble of predictive models. Ensemble methods produce robust models that frequently
provide significantly better predictions than individual models. The key strength of ensembles is that
they can overcome errors and shortcomings of individual ensemble members. However, diversity in
combining different predictions and reliability of individual predictions need to be better understood and

This work is licensed under a Creative Commons Attribution 4.0 International License. Licence details: http://
creativecommons.org/licenses/by/4.0/.
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evaluated (Zhou, 2012). A recently published ensemble method Multivariate Normal Mixture Conditional
Likelihood Model (MM) (Pirš and Štrumbelj, 2019) tries to understand the predictors on the distributional
level and use Bayesian inference to combine them. In this work, we evaluate MM’s performance when
combining predictive models on the hate speech detection task. We show that our methodology can serve
as a helpful tool in the data annotation process.

Recently, the most successful approach in text classification is to use transformer neural networks
(Vaswani et al., 2017), pretrained on large monolingual corpora, and then fine-tune them for a specific task,
such as text classification. For example, BERT (Bidirectional Encoder Representations from Transformers)
(Devlin et al., 2019) uses masked language modeling and order of sentences prediction tasks to build a
general language understanding model. During the fine-tuning for a specific downstream task, additional
layers are added to the BERT model, and the model is trained on the data of interest to capture the specific
knowledge required to perform the task.

The main aims of the paper is to propose methods that can save time and resources during the text
annotation process and improve prediction performance. As a test domain we use hate speech detection in
tweets, news comments and Facebook comments. We investigate two performance improving techniques
which can be summarized as our main contributions as follows.

1. We remove instances with uncertain classifications from the training set and show that fine-tuning on
the cleaned dataset improves the performance of the BERT model. Less certain classifications can be
selected for reannotation.

2. We combine predictions of machine learning models using the MM probabilistic ensemble method.
The approach is beneficial for predictive performance.

The paper consists of five further sections. In Section 2, we present related works on prediction
uncertainty and hate speech detection. In Section 3, we propose the methodology for uncertainty
assessment of deep neural networks using attention layers and MCD. In Section 4, we describe the tested
datasets and evaluation scenarios. The obtained results are presented in Section 5, followed by conclusions
and ideas for further work in Section 6.

2 Related Work

In this section, we introduce related work split into four topics. First, we present the work on semi-
supervised learning that can be used in text annotation, followed by the related research on Bayesian
learning for text classification. In the third subsection, we describe probabilistic ensemble methods and in
the fourth, we outline the related work on hate speech detection.

2.1 Semi-supervised Learning for Text Annotation
The performance of supervised learning depends on the availability of a sufficient amount of labeled data.
However, manual labeling is expensive and difficult to scale up to large amounts of data. Semi-supervised
learning tries to utilize large amounts of unlabeled data available for many problems by combining them
with small amounts of labeled data (Zhu, 2005). The goal of semi-supervised learning is to understand
how combining labeled and unlabeled data can change the learning behavior, and design algorithms that
take advantage of such a combination (Zhu and Goldberg, 2009). Most semi-supervised learning strategies
extend either unsupervised or supervised learning to include additional information typical of the other
learning paradigm. The transductive learning is related to the semi-supervised learning, but assumes that
the test set is known in advance and its goal is to optimize the generalization ability on this (unlabeled)
test set (Zhou and Li, 2010). In the non-transductive setting, Acharya et al. (2013) combine probabilistic
classifiers. They take class labels from existing classifiers and cluster labels from a clustering ensemble.
The consensus labeling is assigned to the target data.

2.2 Bayesian Methods for Text Classification
Although, recent works on prediction uncertainty mostly investigate deep neural networks, many other
probabilistic classifiers were analyzed in the past (Platt, 1999; Niculescu-Mizil and Caruana, 2005; Zhang
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et al., 2013; Cao et al., 2015; He et al., 2018). Prediction reliability is an important issue for black-box
models like neural networks as they do not provide interpretability or reliability information about their
predictions. Most existing reliability scores for deep neural networks are contructed using Bayesian
inference. The most popular exception is the work of Lakshminarayanan et al. (2017), who proposed to
use deep ensembles to estimate the prediction uncertainty.

A computationally efficient simulation of Bayesian inference uses Monte Carlo dropout (Gal and
Ghahramani, 2016a). The first implementation of dropout in recurrent neural networks (RNNs) was in
2013 (Wang and Manning, 2013) but further research revealed a negative impact of dropout in RNNs
(Bluche et al., 2015). Later, the dropout was successfully applied to language modeling by Zaremba et
al. (2014) who used it only in fully connected layers. Gal and Ghahramani (2016b) implemented the
variational inference based dropout which can regularize also recurrent layers. In this way method mimics
Bayesian inference by combining probabilistic parameter interpretation and deep RNNs. Several other
works investigate how to estimate prediction uncertainty within different data frameworks using RNNs
(Zhu and Laptev, 2017; Miok et al., 2019b), e.g., Bayes by Backpropagation (BBB) was applied to RNNs
(Fortunato et al., 2017). Monte Carlo dropout was also introduced into variational autoencoders (Miok et
al., 2019a; Miok et al., 2019c) and for estimating prediction intervals (Miok, 2018).

To our knowledge, Bayesian deep learning models were not yet used to detect less certain text classifi-
cations and remove them from a train dataset to improve the prediction performance.

2.3 Probabilistic Ensembles

Most methods used for text classification can produce probabilistic predictions which are rarely exploited
beyond classification into a discrete class. As probabilistic predictions provide additional information
compared to the discrete outcome, we use ensembles that can model predictive distributions. Ensemble
methods can be divided into two main groups. The first group of methods estimates the performance of
individual classifiers and weights them accordingly. The second group of methods learns the structure of
predictions and bases their forecasts on it.

The first group of methods can be further divided into methods that are able to combine full posterior
distributions and methods that only combine probabilistic point predictions. The advantage of the former
is that they are more expressive, and a disadvantage is that they require inputs in the form of a full
distribution, which is not always available. Bayesian model averaging (Hoeting et al., 1999) combines
models by their marginal posterior probability. This method is suitable if one of the candidate models
is the true data generating process, otherwise its performance decreases (Cerquides and De Mántaras,
2005). Bayesian stacking (Yao et al., 2018) is also useful in these cases. It is based on weighing the
posterior predictive distributions of individual models by estimating their leave-one-out cross-validation
performance. Linear opinion pool (Cooke, 1991) is a classical approach to combine classifiers and
can be included into the second group of methods. It combines predictions as a linear combination of
individual models by maximizing the likelihood. An example of Bayesian approach from the second
group is the agnostic Bayesian learning of ensembles (Lacoste et al., 2014), which weighs the models by
estimated probabilities of them being the best model; the estimates are based on holdout computation of
generalization performance.

Methods that model the structure of predictions are especially useful in case of complex relationships
between individual models’ predictions and the response variable. Independent Bayesian classifier
combination (IBCC) (Kim and Ghahramani, 2012) combines non-probabilistic predictions by estimating
the probability mass of predictions with a categorical distribution, conditional on the true label. It provides
probabilities for a new observation that are proportional to the probability mass of new inputs for each
true label. Nazábal et al. (2016) has extended the IBCC to probabilistic predictions by using the Dirichlet
distribution. Supra-Bayesian methods (Lindley, 1985) combine probabilistic predictions using the log-
odds of probabilities and modeling them with the multivariate normal (MVN) distribution, conditional on
the true label. They use the common covariance matrix over all true labels but vary the means.

Ensemble modeling has recently been studied also within the text classification area (Li et al., 2018;
Silva et al., 2010; Kilimci and Akyokus, 2018), but not within the context of probabilistic ensemble
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models. In our work, we investigate Bayesian ensemble modeling for hate speech detection and how this
can improve individual model predictions.

2.4 Hate Speech Detection

Analyzing sentiments and extracting emotions from the text are useful natural language processing
applications (Sun et al., 2018). Being one of the wide range of applications where machines tend to
understand human sentiments, hate speech detection is gaining importance with the rise of social media.
We regard hate speech as written or oral communication that abuses or threatens a specific group or target
(Warner and Hirschberg, 2012).

Detecting abusive language for less-resourced languages is difficult, hence, multilingual and cross-
lingual methods are employed to improve the results (Stappen et al., 2020). This is especially the case
when the involved languages are morphologically or geographically similar (Pamungkas and Patti, 2019).
In our work, we investigate and compare hate speech detection methods for English, Croatian, and Slovene.
English is by far the most researched language with plenty of resources (Malmasi and Zampieri, 2017;
Davidson et al., 2017; Waseem and Hovy, 2016). Recently, hate speech detection studies were done also
on neighbouring Slavic languages Croatian (Kocijan et al., 2019; Ljubešić et al., 2018) and Slovene (Fišer
et al., 2017; Ljubešić et al., 2019; Vezjak, 2018).

Hate speech detection is usually treated as a binary text classification problem, and is approached with
supervised learning methods. In the past, the most frequently used classifier was the Support Vector
Machine (SVM) method (Schmidt and Wiegand, 2017), but recently deep neural networks showed superior
performance, first through recurrent neural networks (Mehdad and Tetreault, 2016), and recently using
large pretrained transformer networks (Mozafari et al., 2019; Wiedemann et al., 2020). In this work, we
use the recent state-of-the-art pretrained (multilingual) BERT model.

3 Methods

We describe two approaches to the assessment of prediction reliability, Bayesian Attention Networks and
Bayesian Probabilistic Ensembles.

3.1 Bayesian Attention Networks

The work (Miok et al., 2020) that introduce method named ‘Bayesian Attention Networks’ (BAN),
proposes the dropout layers to be active also during the prediction phase. In this way, predictions are
rather random and are sampled from the learned distribution, thereby forming an ensemble of predictions.
The obtained distribution can be, for example, inspected for higher moment properties and it can offer
additional information on the certainty of a given prediction. During the prediction phase, all layers
of the network except the dropout layers are deactivated. The forward pass on such partially activated
architecture is repeated for a fixed number of samples, each time producing a different outcome that can
be combined into the final probability, or inspected as a probability distribution.

Monte Carlo dropout was adapted for the BERT model in the same way as for BANs. MCD can provide
multiple predictions during the test time without any additional training (Gal, 2016). Training a neural
network with dropout spreads the information contained in the neurons across the network. Hence, during
the prediction, such a trained neural network will be robust; using the dropout principle, a new prediction
is created in each forward pass, and a sufficiently large set of such predictions can be used to estimate
prediction reliability. The BERT models are trained with 10% of dropout in all of the layers by default.
Therefore, it allows for multiple predictions with the fine-tuned model. We call this model MCD BERT.
A possible limitation of this approach is that during training a single dropout rate of 10% is used, while
other dropout probabilities might be more suitable for reliability estimation. We leave this question for
further work as it requires long and costly training of several BERT models.

3.2 Bayesian Probabilistic Ensemble

To alleviate the drawbacks of individual classification models, we propose the use of MM (Pirš and
Štrumbelj, 2019), a Bayesian ensemble method suitable for combining correlated probabilistic predictions.
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MM is an extension of IBCC (Kim and Ghahramani, 2012), which combines non-probabilistic predictions.
The method is based on finding the latent structure of combined predictions and provides new probabilities
based on its distribution. Let m be the number of classes and r the number of individual models we
are combining. The main idea is similar to Supra-Bayesian ensembles (Lindley, 1985), as we first
transform individual probabilistic predictions with the inverse logistic transformation (log-odds) to move
from [0,1] space to the R space. We merge the transformed predictions of individual models and get
a (m − 1)r-variate distribution. We model this latent distribution with multivariate normal mixtures,
conditional on the true label in a similar fashion as in the case of linear discriminant analysis. Let θ
represent estimated parameters and θt the subset of parameters estimated for observations with true label
t. Let T ∗ ∈ {1, 2, ...,m} be the response random variable for a new observation and u∗ ∈ R(m−1)r the
transformed and merged predictions for this new observation. Probabilistic predictions for unseen data
can then be generated by calculating the densities of merged predictions for new data:

p(T ∗ = t|u∗, θ) =
p(u∗|θt)(γtnt)∑r
i=1 p(u

∗|θi)(γini)
,

where p is the MVN mixture probability density, γt is the frequency prior for class t, and nt is the number
of true labels in class t in the training dataset. The method uses a regularization term, which increases the
variance in any dimension that is difficult to model or has a detrimental effect on the results, effectively
decreasing its effect. For a complete Bayesian specification and the derivation of the Gibbs sampler, we
refer the reader to (Pirš and Štrumbelj, 2019). We used the same priors as proposed in this paper.

MM is well-suited for combining biased classifiers, or classifiers with systematic errors. It can serve
as a calibration tool for an individual classifier by learning its latent distribution. Since BERT is usually
accurate but less well calibrated, the MM method has the potential to alleviate miscalibration, while
improving or at least preserving the classification performance.

4 Experimental Setting

We first introduce the three phases of our experiments, followed by the used datasets and implementation
details. The experimental setting consists of three phases:

1. We categorize classifications to trusted and untrusted based on the uncertainty measure from MCD
BERT. In this way, we can detect borderline classification that make a false impression of certainty.

2. We remove the instances with uncertain classifications from the training set to improve the dataset on
which the BERT model is fine-tuned. This provides better quality data for training and shall improve
the quality of the resulting prediction model.

3. We use Bayesian ensemble to combine automatic predictions with annotators’ decisions to remove
low-quality training instances.

4.1 Datasets
To test the proposed methodology in the multilingual context, we trained the presented classification
models on three different datasets, summarized in Table 1.

1. The English dataset1 is extracted from the hate speech and offensive language detection study of
Davidson et al. (2017). We used the subset of data consisting of 5,000 tweets. We took 1,430 tweets
labeled as hate speech and randomly sampled 3,670 tweets from the collection of the remaining
23,353 tweets.

2. The Croatian dataset was provided by the Styria media company within the EU Horizon 2020
EMBEDDIA project2. The texts were extracted from user comments in the news portal Večernji list3.

1https://github.com/t-davidson/hate-speech-and-offensive-language
2http://embeddia.eu
3https://www.vecernji.hr
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The original dataset consists of 9,646,634 comments from which we selected 8,422 comments of
which 50% are labeled as hate speech by human moderators and the other half was randomly chosen
from the non-problematic comments.

3. Slovene dataset is a result of the Slovenian national project FRENK4. Our dataset comes from two
studies on Facebook comments (Ljubešić et al., 2019). The first study deals with LGBT homophobia
topics while the second analyzes anti-migrants posts. We used all 2,188 hate speech comments, and
randomly sampled 3,812 non-hate speech comments.

Table 1: Characteristics of the used datasets: type and number of instances, as well as the input embeddings
for each of the datasets.

Dataset type Size Hate Non-hate LSTM embeddings
English tweets 5000 1430 3670 sentence
Croatian news comments 8422 4211 4211 fastText
Slovene Facebook comments 6000 2188 3812 fastText

4.2 Implementation
The two Bayesian methods that were proposed in this paper to improve the annotation process have
full implementation within their original papers. All of the particularities of how MCD BERT was
implemented in PyTorch library5 are presented in (Miok et al., 2020). The implementation details of the
MM method are clearly explained in (Pirš and Štrumbelj, 2019) methods section and in this paper we
provide full R code 6.

5 Results

In this section, we present three groups of results: removing uncertain instances from the training set,
creating a cleaner training set, and improving annotations using he Bayesian ensembles.

5.1 Removing Uncertain Instances
Using MCD BERT, we obtain multiple predictions for each test set instance, and compute their mean and
variance. Using the mean, we determine the classification (hate speech or not), while the variance reports
on the certainty of the BERT for this specific instance. Based on the variance, we group classifications into
certain and uncertain. Unsurprisingly, removing the uncertain test set instances improves the prediction
performance as shown in Table 2, but also leaves a portion of borderline instances unclassified.

From Table 2 we can conclude that the variance of MCD BERT predictions is correlated with the
performance of models: the more variance there is in the predictions the less accurate the model. Thus,
removing the uncertain classifications can seemingly improve the performance of the test set. A practical
benefit of this is that uncertain classification could be passed back to annotators to recheck them.

5.2 Creating Cleaner Training Sets
While the removal of uncertain instances from the test set might just sweep the problematic instances
under the carpet, a more practical benefit is to use the uncertainty information to create a better training set.
The test tweets/comments were removed based on how variate are their predictions. Thus, we repeatedly
train the MCD BERT model on part of the dataset and use this model to obtain multiple predictions on the
other part of the training dataset. In such a way, we collect multiple predictions for all original training
tweets or comments and remove observations with the highest prediction variance. As a result of this
procedure, 15 and 18 percent of the most uncertain predictions were removed for the English and Slovene
dataset respectively. Croatian dataset contains a lot of comments with high variability in their predictions

4http://nl.ijs.si/frenk/ (Research on Electronic Inappropriate Communication)
5https://github.com/KristianMiok/Bayesian-BERT
6https://github.com/gregorp90/MM
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Table 2: Performance of multilingual BERT model, after removing uncertain instances from the test set of
1000 comments.

Language Metric Full dataset 200 removed 500 removed 700 removed
Accuracy 0.91 0.96 0.996 0.997

EN Precision 0.90 0.95 0.992 0.994
Recall 0.89 0.95 1 1
F1 0.88 0.95 0.995 0.997
Accuracy 0.72 0.76 0.84 0.87

CRO Precision 0.68 0.71 0.80 0.85
Recall 0.54 0.69 0.78 0.75
F1 0.61 0.70 0.79 0.83
Accuracy 0.71 0.76 0.83 0.87

SLO Precision 0.60 0.65 0.70 0.65
Recall 0.56 0.64 0.66 0.54
F1 0.58 0.65 0.68 0.59

so for this dataset we removed around 35% of the most uncertain comments. The details of how many
instances were removed for each of the three datasets are presented in Table 3.

Table 3: Sizes of the datasets before and after the removing: original number of instances, number of
instances removed and final training data size.

Dataset Training Size Number of removed Final Size Percent removed
English 4000 719 3281 18 %
Croatian 7422 2615 4807 35%
Slovene 5000 731 4269 15 %

Using prediction certainty to remove the uncertain instances from the training can improve the fine-
tuning of BERT. For neural network models, during training or fine-tuning their performance is evaluated
on a separate validation set. In Table 4, we can observe how the prediction accuracy on the validation set
is improved with number of training epochs. We can see that fine-tuning BERT on the cleaner dataset
improves its performance. We hypothesize that when the uncertainty due to unreliable labels is reduced,
the decision boundary is easier to determine.

Table 4: Performance (measured using F1 score) on the validation sets during training for original and
cleaned datasets.

English Croatian Slovene
Original Cleaned Original Cleaned Original Cleaned

Epoch1 0.92 0.98 0.68 0.77 0.70 0.64
Epoch2 0.92 0.98 0.69 0.77 0.70 0.77
Epoch3 0.92 0.98 0.68 0.78 0.71 0.79
Epoch4 0.92 0.98 0.70 0.79 0.72 0.81

Results for the model fine-tuned on the cleaned dataset are contained in Table 5. Compared to the results
in Table 2 (see the ”Full dataset” column), the prediction results for Croatian and Slovenian datasets are
improved while for the English dataset this is not the case. We explain this by the fact that the English
dataset is well-annotated with high-quality predictions. On the other hand, we believe that the Croatian
and Slovenian datasets are less clean and contain several questionable annotations. This can be confirmed
for the Croatian dataset, which was created within the project we participate in, so we are well-informed
about the annotation process.
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Table 5: Test set performance (F1 score) of the models trained on the cleaned datasets.
Metrics English Croatian Slovene
Accuracy 0.87 0.74 0.72
Precision 0.88 0.73 0.62
Recall 0.81 0.60 0.55
F1 0.85 0.66 0.59

5.3 Improving Annotations using Bayesian Ensembles
We propose a Bayesian ensemble as a support method for the annotation process. As annotators can be
distracted, biased, or influenced, we propose to use the MM method to provide them a hint of how shall
they annotate the instances. From Table 6, we can observe that by combining probabilistic predictions of
BERT, random forest, and support vector machines, we can further improve the predictive performance.
The MM ensemble not only improves BERT’s results but also provides better calibrated predictions as
evidenced from Figure 1.

Table 6: The F1 score of the hate speech classifiers and their ensemble.
Method English Croatian Slovene
BERT 0.91 0.72 0.71

RF 0.83 0.67 0.65
SVM 0.86 0.71 0.69
MM 0.92 0.74 0.72

Figure 1: Calibration for the BERT predictions (left) and MM model predictions (right).
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6 Conclusions and Further Work

A large amount of currently available textual data allows and requires modeling with machine learning
methods. To apply the supervised methods, the text data has to be annotated, and effective learning
requires accurate annotations, which may be expensive for organizers and difficult for human annotators.
For this reason, the annotation process is often coupled with semi-supervised machine learning and
classification reliability estimation.

We presented several machine learning approaches, based on Bayesian inference, that can improve
the data annotation process. First, multiple predictions obtained with MCD BERT can identify instances
with questionable labeling. Second, removing training instances with unreliable labels can improve the
quality of the training set, making it more homogeneous and cleaner, thereby improving the predictive
performance of BERT models. Third, probabilistic ensemble combinations can help annotators to better
label the data by providing more accurate and better calibrated prediction probabilities. In conclusion,
Bayesian methods can improve the annotation process and shall be further investigated and improved for
this task.

In further work, we will focus on improving our method on how to remove uncertain instances. We will
construct and test a workflow for semi-supervised text annotation in a real-world setting. Testing different
dropout levels in the BERT model may provide a better understanding of its uncertainty and calibration.
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Abstract

Hate speech is an important problem in the man-
agement of user-generated content. In order to re-
move offensive content or ban misbehaving users,
content moderators need reliable hate speech de-
tectors. Recently, deep neural networks based on
transformer architecture, such as (multilingual)
BERT model, achieve superior performance in
many natural language classification tasks, includ-
ing hate speech detection. So far, these meth-
ods have not been able to quantify their output
in terms of reliability. We propose a Bayesian
method using Monte Carlo Dropout within the
attention layers of the transformer models to pro-
vide well-calibrated reliability estimates. We eval-
uate the introduced approach on hate speech detec-
tion problems in several languages. Our approach
not only improves the classification performance
of the state-of-the-art multilingual BERT model
but the computed reliability scores also signifi-
cantly reduce the workload in inspection of of-
fending cases and in reannotation campaigns.

1. Introduction
With the rise of the social network popularity, hate speech
phenomena has significantly increased (Davidson et al.,
2017). Hate speech not only harms both minority groups
and the whole society but it can lead to actual crimes (Bleich,
2011). Hence, automated hate speech detection mechanisms
are urgently needed. On the other hand, falsely accusing
people of hate speech is also a problem. Many content
providers rely on human moderators to reliably decide if
a given context is offensive or not but this is a mundane
and stressful job which can even cause post-traumatic stress
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puter and Information Science, University of Ljubljana, Ljubljana,
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disorders1. There are many attempts to automate detection
of hate speech in the social media using machine learning,
but existing models lack quantification of reliability for their
decisions. In the last few years, recurrent neural networks
(RNNs) were the most popular choice in text classification.
The LSTM networks, the most successful RNN architecture,
were already successfully adapted for assessment of pre-
dictive reliability in hate speech classification (Miok et al.,
2019b). Recently, neural network architecture with attention
layers, called transformer architecture (Vaswani et al., 2017),
shows even better performance on almost all language pro-
cessing tasks. Using transformer networks for the task of
masked language modelling produced breakthrough pre-
trained models such as BERT (Devlin et al., 2018). Hence,
the attention mechanism seems to be at the forefront of nat-
ural language understanding with potentially huge impact
on language applications. We aim to investigate the behav-
ior of the attention mechanism concerning the reliability of
predictions. We focus on the hate speech recognition task.

In hate speech detection, reliable predictions are needed to
remove harmful contents and possibly ban malicious users
without harming the freedom of speech (Miok et al., 2019b).
Standard neural networks are inadequate for assessment
of predictive uncertainty, and the Bayesian framework is
the principled approach to doing so. However, classical
Bayesian inference techniques do not scale well in neural
networks with high dimensional parameter space (Izmailov
et al., 2019). Various methods were proposed in order to
overcome this problem (Myshkov & Julier, 2016). One of
the most efficient method is called Monte Carlo Dropout
(MCD) (Gal & Ghahramani, 2016). Its idea is to use dropout
in neural networks as a regularization technique (Srivas-
tava et al., 2014) and interpret it as a method that mimics
Bayesian approach.

We propose a model that combines the attention mechanism
in transformer networks with the MCD based Bayesian
inference in order to estimate reliability of hate speech pre-
dictions. Our main contributions are estimating prediction
uncertainty of the attention network (AN) and BERT model
and testing the proposed reliability methods within the mul-
tilingual hate speech detection tasks.

1https://www.bbc.com/news/
technology-51245616
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The paper consists of four more sections. In Section 2,
we propose the methodology for uncertainty assessment
using attention layers and MCD. Section 3 presents the
data sets and the evaluation scenario. The obtained results
are presented in Section 4, followed by the conclusions in
Section 5.

2. Bayesian Attention Networks
The BERT model (Devlin et al., 2018) is the representative
of transformer networks and has achieved state-of-the art
results in many NLP tasks, including text classification (Xu
et al., 2020; Gururangan et al., 2019; Chang et al., 2019).
In this work, we introduce Monte Carlo Dropout to trans-
former networks and BERT with the intention to construct
their Bayesian variants. Analysis of different amounts of
dropout, different BERT variants modifications, and their hy-
perparameters would require huge computational resources,
e.g., training a single BERT model on four TPUs requires
more than a month time. Due to limited computational re-
sources, we explore these issues in a limited setting, first
on only the encoder part of the BERT architecture, called
Attention Network (AN), and then on the entire pretrained
BERT model.

In the following subsections, we first formally define the
Attention Network architecture, and then make it Bayesian
by introducing MCD. We describe how we can introduce
MCD principle into the already pretrained BERT model.

2.1. Attention Networks

The basic architecture of Attention Network follows the
architecture of transformer networks (Vaswani et al., 2017)
and is shown in Figure 1. The architecture is similar to the

Figure 1. A scheme of Attention Networks. In layers colored blue
we introduce the dropout.

encoder part of the transformer architecture. The difference
is in the output part where a single output head was added
to perform either binary classification, using the sigmoid
activation function. By applying only the encoder part of
transformer architecture, orders of magnitude less parame-

ters are needed to learn a particular classification task, e.g.,
in this work, we used at maximum 3 million parameters.
The architecture can contain many attention heads, where a
single attention heads is computed as:

oh = softmax(
Q ·KT

√
dk

) · V ,

The attention matrices are commonly known as the query Q,
the key K, and the value matrix V . The oh represents the
output. The attention function can be described as mapping
a query and a set of key-value pairs to an output, where the
query, keys, values, and output are all vectors. The output
is computed as a weighted sum of the values, where the
weight assigned to each value is computed by a compatibil-
ity function of the query with the corresponding key. The
dk represents the dimensionality of the keys. The positional
encoding, as discussed in (Vaswani et al., 2017), represents
a matrix that encodes individual positions in a matrix of
same dimensionality as the one holding the information on
sequences (input embedding).

2.2. Monte Carlo Dropout for Attention Networks

MCD was recently used within various models and archi-
tectures in order to obtain the prediction uncertainty and
improve the classification results (Miok, 2018; Miok et al.,
2019c;a). Transformer networks were not analyzed yet. In
our proposal, called Monte Carlo Dropout Bayesian Atten-
tion Networks (BAN or MCD AN) contrary to the original
dropout setting, the dropout layers are active also during
the prediction phase. In this way, predictions are not con-
stant and are sampled from the learned distribution, thereby
forming an ensemble of predictions. The obtained distri-
bution can be, for example, inspected for higher moment
properties and can offer additional information on the cer-
tainty of a given prediction. During the prediction phase, all
layers except the dropout layers are deactivated. Forward
pass on such partially activated architecture is repeated for a
fixed number of samples, which can be combined to obtain
the final probability, or further inspected as a distribution
underlying the probability.

2.3. Monte Carlo Dropout for BERT

Monte Carlo dropout was used for the BERT predictions
in the same way as for BAN. MCD can provide multiple
predictions during the test time completely free, as long as
the dropout was used during the training time (Gal, 2016).
Training neural network with dropout distributes the infor-
mation contained in the neurons throughout the network.
Hence, during the prediction, such trained neural network
will be robust; using the dropout principle a new prediction
is possible in each forward pass, and sufficiently large set
of such predictions can be used to estimate the reliability.
BERT model is trained with 10% of dropout in all of the
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layers and thus allows for multiple predictions using the
described principle. We call this model MCD BERT and it
natuarally provides reliability estimates. A possible limita-
tion of this approach is that during training a single dropout
rate of 10% is used, while other dropout probabilities might
be more suitable for reliability estimation.

3. Evaluation Setting
We evaluate the proposed novelties concerning two main
aspects: the calibration of returned probabilities, prediction
performance and prediction uncertainty estimation. We first
describe the hate speech data sets used, followed by the
implementation details. In the last two subsections, we
present evaluation measures for prediction performance and
calibration.

3.1. Hate Speech Datasets

In order to test the proposed methodology in the multilingual
context, we applied our models to three different data sets.

1. English data set2 originates in a study regarding hate
speech detection and the problem of offensive language
(Davidson et al., 2017). Our data set consists of 5000
tweets. We took 1430 tweets labeled as hate speech
and randomly sampled 3670 tweets from the collection
of remaining 23353 tweets.

2. Croatian data set was collected by the Styria company
within the EU Horizon 2020 project EMBEDDIA3.
The text was extracted from the database of user com-
ments, from the vecernji.hr4 news portal. The original
data set consists 9,646,634 comments described with
11 attributes from which we selected 8422 comments,
one half of which were labelled as hate speech by hu-
man moderators, the other half was randomly chosen
from the non-problematic comments.

3. Slovenian data set is a result of the Slovene national
project FRENK5. The text data set used in the exper-
iment was the combination of two different studies
made on Facebook comments on the LGBT homopho-
bia and anti-migrants published in the (Ljubešić et al.,
2019). For the final data set we select 2182 hate and
2182 non-hate speech comments.

2https://github.com/t-davidson/
hate-speech-and-offensive-language

3http://embeddia.eu
4https://www.vecernji.hr
5“FRENK - Raziskave Elektronske Nespodobne Komunikacije”

(engl. “Research on Electronic Inappropriate Communication”)

3.2. Prediction models

We used three types of prediction models: MCD LSTM
networks (Miok et al., 2019b), MCD Bayesian Attention
Networks (MCD AN) and MCD BERT. As the input to
MCD LSTM we used pretrained word embeddings, sentence
encoder for English (Cer et al., 2018) and fastText6 for
Slovenian and Croatian. For MCD AN we used simple
tokenizer7. For the MCD BERT we used BERT’s tokeizer.
The summary is collected in Table 2.

3.3. Implementation details

We implemented the proposed MCD ANs in PyTorch8. The
main hyperparameters of the architecture are the number
of attention heads and the number of attention layers. The
proposed adaptive classification threshold is computed after
each validation set evaluation, i.e. every time we compute
the performance on the validation set.‘

Other parameters are set as follows. We use the Adamax
optimizer (Kingma & Ba, 2014), a variant of Adam based on
infinity norm. Binary cross-entropy loss guides the training.
In order to automatically stop training, we use the stopping
step of 10 – if after 10 optimization steps the performance
on the validation set is not improved, the training stops.

We explored the following hyperparameter tuning space:
the validation percentage (size of validation set) was varied
between 5% and 10%. The rationale for testing different
percentages of validation set sizes is that the data considered
is small, hence considering too high validation percentages
could omit the classifier from viewing crucial instances and
thus reduce its final performance. Given enough data, how-
ever, the percentage should be as high as possible. Number
of epochs was either 30 or 100, number of hidden layers
and attention heads was 1 or 2. Maximum padding of the
input sequences was either 48, 32 or 64. Learning rate was
either 0.001 or 0.0005 and the adaptive threshold was either
enabled or disabled.

MCD LSTM networks consist of an embedding layer,
LSTM layer, and a fully connected layer within the
Word2Vec and ELMo embeddings. In order to obtain best
architectures for the LSTM and MCD LSTM models, var-
ious number of units, batch size, dropout rates and so on
were fine-tuned. For BERT implementation the BERT base
was implemented for both English and multilingual versions
using Hugging Face code 9.

6https://fasttext.cc
7https://keras.io/preprocessing/text/
8https://gitlab.com/skblaz/

bayesianattention
9https://huggingface.co/transformers/

model_doc/bert.html
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Table 1. Comparison of predictive models using sentence embeddings. We present average classification accuracy, precision, recall and
F1 score (and standard deviations), computed using 5-fold cross-validation. All the results are expressed in percentages and the best
results for each language is typeset in bold.

English Tweets Croatian Comments Slovenian Comments
Model Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1
MCD LSTM 81.0 [1.2] 81.5 [1.8] 82.5 [2.7] 81.9 [1.3] 63.7 [1.0] 68.5 [1.2] 40.8 [4.0] 51.0 [3.3] 55.3 [0.69] 53.5 [4.27] 57.0 [9.55] 43.13 [0.8]
MCD AN 83.3 [1.7] 80.5 [3.47] 82.8 [3.9] 81.6 [3.4] 61.4 [2.0] 58.6 [9.3] 30.2 [11.0] 38.1 [8.6] 57.4 [1.7] 49.3 [3.7] 27.9 [7.8] 35.1 [6.3]
BERT 90.9 [0.7] 89.3 [1.4] 90.8 [1.3] 90.0 [0.7] 70.8 [1.0] 67.1 [1.9] 56.2 [2.0] 61.2 [1.5] 66.4 [5.0] 66.1 [6.8] 70.7 [5.5] 67.8 [2.5]
MCD BERT 91.4 [0.7] 90.4 [1.5] 90.4 [0.6] 90.4 [0.8] 71.5 [1.2] 67.4 [2.3] 59.1 [3.6] 62.9 [1.7] 68.4 [1.9] 68.2 [0.8] 69.2 [2.9] 68.6 [1.6]

Table 2. Characteristics of the used datasets: number of the
tweets/comments and the embedding architecture used for each of
the datasets.

Dataset Size MCD LSTM MCD AN
English 5000 Sentence Tokenizer
Croatian 8422 Fasttext Tokenizer
Slovenian 4364 Fasttext Tokenizer

4. Results
Results consists of three parts: calibration results, prediction
performance, and visualization of uncertainty.

4.1. Prediction Performance

The results that compare 4 different models are presented in
the Table 1. It can be observed that MCD BERT provide the
best results for the all of the 3 data sets. As the MCD BERT
is slightly better that BERT we can conclude for the tweets
for which BERT is on borderline, multiple predictions can
influence decision in the right direction.

With intention to statistically test if MCD BERT could indi-
cate problematic predictions we investigate 1000 test tweets
splitting them on the confused and certain. As the BERT
generally provide very extreme predictions the criteria was:
the test tweet is confusing if the variance computed from
1000 predictions is greater then 0.1 otherwise it was clas-
sified as certain. In the Table 3 two by two contingency
results are presented for each of the three languages data
sets. The Chi-square test for the English MCD BERT results
was found to be very significant with p-value= 2.2e-16. The
Chi-square test for BERT model results was found to be
less significant with p-value = 1.384e-11. For CRO BERT
the Chi-square test was not significant with p-value= 1 so
it is clear that we can not classify tweets based just on the
probability. On the other hand, for the CRO MCD BERT the
criteria based on the variance > 0.1 provide better spit so
the Chi-square test become significant with p-value= 8.348e-
16. The p-values for the SLO BERT and SLO MCD BERT
are 0.0037 and 0.0002 respectively. Also, based on the ra-
tios between mistake and no mistake it can be observed that
number of true mistakes in the confused group is high for
MCD BERT.

Table 3. Two-by-two contingency table for Certain/Confused vs
Mistake yes/no.

Language Mistake BERT MCD BERT
Certain Confused Certain Confused

EN No 880 31 891 24
Yes 71 18 62 23

Ratio 0.08 0.58 0.06 0.95

CRO No 1176 35 1053 152
Yes 461 14 336 139

Ratio 0.39 0.4 0.31 0.91

SLO No 576 28 537 55
Yes 241 27 229 51

Ratio 0.42 0.96 0.42 0.92

From those results it can be concluded that the MCD BERT
provides better understanding of the how much we can trust
our predictions compared to the simple BERT.

5. Conclusions
In practical setting, automatic detection of hate speech not
only requires high precision but also prediction uncertainty
estimates. In times when social networks suffer from high
amount of offensive messages, wrong classifications can
damage the minorities, lower the level of democratic debate
but also damage the freedom of speech. In technological
terms, natural language approaches are witnessing a switch
from recurrent neural networks with pretrained word embed-
dings to large pretrained transformer models, BERT being
the best example of this. We introduce the Monte Carlo
dropout into attention layers of transformer neural networks
as a tool for prediction uncertainty estimation. We demon-
strate the methodology on the hate speech detection task.

The results of our empirical evaluation show that MCD can
improve BERT results regarding both the prediction perfor-
mance and uncertainty estimation. For all three languages
hate speech datasets, the MCD enhanced BERT and mBERT
preformed best. Further, we show that MCD BERT reliabil-
ity scores provide information on the trusted and dubious
predictions. This information can significantly reduce the
amount of work in reannotation of questionable cases.
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A. Calibration of BAN and BERT
Figure 2 shows how calibration of prediction scores change
during training of AN. The red line represents the perfor-
mance of the fully trained network. It is apparent that addi-
tional calibration is necessary – the dotted line represents
perfect calibration. Surprisingly, initial training iterations
show better calibrated scores. This can be due to the def-
inition of ECE measure: in case that both accuracy and
predicted scores are low, this would lead to low ECE value.
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Figure 2. Calibration plot for MCD AN after each epoch (green)
based on the validation set of the best performing architecture.
The more transparent the calibrations the earlier the training stage
(fewer epochs). The final calibration is in red.

In the Tables 4, 5, and 6 calibration results for different
calibration approaches of MCD AN are presented: no cali-
bration, isotonic regression, and Platt’s method, combined
with the adaptive threshold or not. It can be observed that
for all three languages both calibration methods improve the
ECE score, and Platt’s method seems to produce the best
calibration scores. Adaptive threshold slightly improves
the ECE score for the uncalibrated (raw) results. This is
especially true for the Slovenian comments where the ECE
score was reduced from the 0.794 to the 0.621. Nevertheless,
we can conclude that calibration using adaptive threshold
heuristics is beneficial but cannot be compared with the
improvements brought by proper calibration techniques.

In order to compare the calibration results for different BAN
and BERT architectures, we plotted their ECE scores in
Figure 3. It can be observed that calibration methods sub-
stantially improve the MCD AN calibration; however, the
BERT model is even better calibrated.
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Figure 3. Calibration plots based on English test set performance
for BERT and MCD AN architecture using different calibration
algorithms.

Table 4. Calibration scores of MCD AN with different calibration
approaches on English tweets. The results are presented based on
whether they were calibrated and whether the adaptive threshold
(AT) was applied
Calibration AT Accuracy F1 ECE

Raw False 0.83 (0.02) 0.82 (0.03) 0.547
Raw True 0.83 (0.01) 0.83 (0.041) 0.54
Isotonic False 0.84 (0.01) 0.82 (0.01) 0.230
Isotonic True 0.83 (0.01) 0.82 (0.02) 0.234
Platt’s False 0.84 (0.02) 0.82 (0.02) 0.225
Platt’s True 0.83 (0.01) 0.82 (0.01) 0.232

Table 5. Calibration scores of MCD AN with different calibration
approaches on Croatian user news comments. The results are
presented based on whether they were calibrated and whether the
adaptive threshold (AT) was applied
Calibration AT Accuracy F1 ECE

Raw False 0.61 (0.02) 0.47 (0.03) 0.681
Raw True 0.62 (0.02) 0.50 (0.04) 0.663
Isotonic False 0.60 (0.01) 0.49 (0.04) 0.206
Isotonic True 0.61 (0.01) 0.50 (0.03) 0.206
Platt’s False 0.61 (0.02) 0.48 (0.02) 0.198
Platt’s True 0.62 (0.02) 0.49 (0.02) 0.197

Table 6. Calibration scores of MCD AN with different calibration
approaches on Slovenian Facebook comments. The results are
presented based on whether they were calibrated and whether the
adaptive threshold (AT) was applied
Calibration AT Accuracy F1 ECE

Raw False 0.59 (0.01) 0.33 (0.05) 0.794
Raw True 0.59 (0.02) 0.48 (0.05) 0.621
Isotonic False 0.58 (0.02) 0.49 (0.03) 0.212
Isotonic True 0.58 (0.02) 0.49 (0.03) 0.213
Platt’s False 0.58 (0.03) 0.48 (0.02) 0.206
Platt’s True 0.59 (0.02) 0.47 (0.04) 0.204
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B. Additional reliability graphs
B.1. Visualization of Uncertainty

Obtaining multiple predictions for a specific test tweet can
improve understanding of the final prediction. The mean
of the distribution is used to estimate the probability and
the variance informs us about the spread and certainty of
the prediction. We can inspect the actual distribution of
prediction scores with histogram plots as demonstrated on
Figures 4 and 6 for a few correctly classified instances and
on Figures 5 and 7 for a few misclassified instances.

Histograms presented in the Figures 4 and 5 for English
tweets and Figures 6 and 7 for Croatian comments visu-
ally display the prediction certainty of the specific tweet
or comment. It can be observed that results for BERT are
going to the extremes, especially for the predictions when
model seems to be sure. Also, it can be observed that AN
architecture with 10% of dropout provide the similar spread
of values as the BERT. On the other hand, introducting 30
% of dropout in AN for examples where attention network
model is not sure will influence the spread and make the
prediction more uncertain.

Apart from visualization text tweet separately the multiple
prediction provide opportunity for understanding the con-
textual dependencies with the other test tweets. Following
(Miok et al., 2019b) we visualize the embeddings of the
output. The key idea of the visualization can be summarized
as follows. First, 1000 samples are obtained for each pre-
diction. The space of such distributions across individual
test-set texts is next embedded into two dimensions by us-
ing Uniform Manifold Projections method (McInnes et al.,
2018). this way, a two dimensional space corresponding
to the initial 1000 dimensional space of predictions is ob-
tained. Next, Gaussian kernel estimation is used to identify
equivalent regions, which are connected with closed curves.
Finally, the shapes and sizes of individual predictions are
adapted based on the classification error and certainty of
a given prediction. The goal of using such visualization
is to discover potentially larger structures within the space
of emitted probabilities, potentially offering insights into
the given probabilistic neural network’s drawbacks and lim-
itations. The results of such visualization are shown in
Figures 8 and 9. In Figure 8 the plot displays the position
of the certain and uncertain test tweets in the latent space
while in the Figure 9 the differences based on the mean
probability are displayed.

It can be observed that (Figure 8) after only a few epoch of
training, majority of the prediction are in the middle layer
(yellow) that corresponds to the predictions that are uncer-
tain (high spread of the whole predictive distribution). On
the contrary, in Figure 9, where the same learning setting
was considered for 50 epochs, the probability space dis-

tinctly separates into two main components, indicating that
there are predictions for which the neural network is certain
(and were indeed correct), however for some predictions, es-
pecially related to the instances that are not hate speech, the
network is less certain (albeit still correct). The two exam-
ples demonstrate how the space of probabilities separates
into distinct components once the neural network is trained.
The visualizations also indicate that some of the instances
are more problematic than others, potentially facilitating
the debugging process for a developer (and inspection of
convergence).
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tweet1: @user you
might be a libtard if...
#libtard #sjw #liberal
#politics

tweet2: #paid #kkk to
#fabricate #stories to push
the producers #narrative
#cancel

tweet3: carl paladino,
trump ally, wishes obama
dead of mad cow disease

tweet4: thought factory:
left-right polarisation!
#trump #uselections2016
#leadership #politics
#brexit #blm

Figure 4. English data set - Comparing the multiple prediction distributions for MCD LSTM (first row), MCD AN with 30% dropout
(second row), MCD AN with 10% dropout (third row) and MCD BERT (fourth row) for 4 test tweets where hate speech was correctly
predicted. Note that the x axis showing predicted probability distributions are different for each tweet. Results of BERT are concentrated
in much narrower interval compared to MCD LSTM and MCD AN.
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tweet5: what over-rode
journalists’ integrity
was greed and ambition,
along with a total ab-
sence of courage (true
label = hate speech)

tweet6: there is a future
nina and right now you are
pretty much throwing yours
away. (true label = non hate
speech)

tweet7: @user @user
someone really respects eu
guidelines!!! (true label =
non hate speech)

tweet8: the scars left by
us waime camps mt @user
(true label = hate speech)

Figure 5. English data set - Comparing the multiple prediction distributions for MCD LSTM (first row), MCD AN with 30% dropout
(second row), MCD AN with 10% dropout (third row) and MCD BERT (fourth row) for 4 test tweets where hate speech was not clearly
predicted. Note that the x axis showing predicted probability distributions are different for each tweet. Results of BERT are concentrated
in much narrower interval compared to MCD LSTM and MCD AN.
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81 - kamo sreće da
jeste...al mi u HR nismo
imali pojam ”rodjo” dok
se vi niste naselili ovdje

17 - Drazi Mihailovicu
je podignut spomenik i
u Usa.Kada vas Pavelic
dobije spomenik,bilo gde u
svetu,onda se javite.Istina
boli vise od batina,zar ne?

2 - prvo treba najuriti pola
sabora na celu sa cedom
pupijo . poz... od HOSa
ZDS

24 - I mi srbi volimo
hrvatice, jedva cekam
vikend i njihov dolazak u
Bg.

Figure 6. Croatian data set - Comparing the multiple prediction distributions for MCD LSTM (first row), MCD AN with 10% dropout
(second row), MCD AN with 30% dropout (third row) and MCD BERT (fourth row) for 4 test tweets where hate speech was not clearly
predicted. Note that the x axis showing predicted probability distributions are different for each tweet. Results of BERT are concentrated
in much narrower interval compared to MCD LSTM and MCD AN.
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18 - Eh vi Hrvati vas
problem je sto vi sve
nas Srbe smatrate
cetnicima,ima nas i
komunista,a i pacifista,ja
sam pacifisticki nastro-
jen zbog toga kazem
Pruzimo Miru sansu,i
ne dirajmo dvojezicne
table jer su one simbol
jedinstva SrboHrvata!
(true label = non hate
speech)

31 - mali sloba na reveru
nosi zastavu srbije a naš
milanče je bio neodlučan–
(true label = non hate
speech)

56 - Rubinet@ / Pa
bas i da ste slobodni i
niste.Jednog gospodara
Beograd zamenili ste sa
novim Brisel,kao kroz
citavu vasu povijest.Hej
jos se i dice time da imaju
gospodara ! (true label =
hate speech)

19 - Posledica suživota sa
nama?ahhhhahhh ćuti bre
konjušaru (true label = hate
speech)

Figure 7. Croatian data set - Comparing the multiple prediction distributions for MCD LSTM (first row), MCD AN with 30% dropout
(second row), MCD AN with 10% dropout (third row) and MCD BERT (fourth row) for 4 test tweets where hate speech was not clearly
predicted. Note that the x axis showing predicted probability distributions are different for each tweet. Results of BERT are concentrated
in much narrower interval compared to MCD LSTM and MCD AN.
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Figure 8. Visualization of the 100 test tweets in two dimensions. Tweets that are found to be certain are colored in blue (0) while tweets
that are confused in orange (1). It can be observed that uncertain tweets get clustered.

Figure 9. Visualization of the outcome probability space for 100 tweets from the test set. The test tweets are colored in the green, yellow
and red depending to which interval belongs the mean probability of the 1000 predictions. It can be observed that the predictions with
very high confidence form an isolated part of the probability space.
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Abstract
Data preprocessing is an important component of machine learning pipelines, which 
requires ample time and resources. An integral part of preprocessing is data transforma-
tion into the format required by a given learning algorithm. This paper outlines some of 
the modern data processing techniques used in relational learning that enable data fusion 
from different input data types and formats into a single table data representation, focus-
ing on the propositionalization and embedding data transformation approaches. While both 
approaches aim at transforming data into tabular data format, they use different terminol-
ogy and task definitions, are perceived to address different goals, and are used in different 
contexts. This paper contributes a unifying framework that allows for improved understand-
ing of these two data transformation techniques by presenting their unified definitions, and 
by explaining the similarities and differences between the two approaches as variants of a 
unified complex data transformation task. In addition to the unifying framework, the nov-
elty of this paper is a unifying methodology combining propositionalization and embed-
dings, which benefits from the advantages of both in solving complex data transformation 
and learning tasks. We present two efficient implementations of the unifying methodol-
ogy: an instance-based PropDRM approach, and a feature-based PropStar approach to data 
transformation and learning, together with their empirical evaluation on several relational 
problems. The results show that the new algorithms can outperform existing relational 
learners and can solve much larger problems.

Keywords Inductive logic programming · Relational learning · Propositionalization · 
Embeddings · Knowledge graphs
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1 Introduction

Data preprocessing for machine learning is a great challenge for a data scientist faced with 
large quantities of data in different forms and sizes. Most of the modern data processing 
techniques enable data fusion from different data types and formats into a single table data 
representation, which is expected by standard machine learning techniques including rule 
learning, decision tree learning, support vector machines (SVMs), deep neural networks 
(DNNs), etc. The key element of the success of modern data transformation methods is 
that similarities of original instances and their relations are encoded as distances in the 
target vector space.

Two of the most prominent data transformation approaches outlined in this paper are 
propositionalization and embeddings. While propositionalization (Kramer et  al. 2001; 
Železný and Lavrač 2006) is a well known data transformation technique used in rela-
tional learning (RL) and inductive logic programming (ILP) (Muggleton 1992; Lavrač and 
Džeroski 1994; De Raedt 2008), embeddings (Mikolov et al. 2013; Wu et al. 2018) have 
only recently been recognized by RL and ILP researchers as a powerful technique for pre-
processing relational and complex structured data. In the relational learning context of this 
paper, both approaches take as input a relational data set (e.g., a given relational database) 
and transform it into a single data table format, which is then used as an input to a proposi-
tional learning algorithm of choice.

The first aim of this paper is to present a unifying survey of propositionalization and 
embedding data transformation approaches. While both approaches aim at transforming 
data into a tabular data format, the approaches use different terminology and task defini-
tions, claim to have different goals, and are used in very different contexts. This paper con-
tributes an improved understanding of these data transformation techniques by presenting 
a unified terminology and definitions, by explaining the similarities and differences of the 
two definitions as variants of a unified complex data transformation task, by exploring the 
apparent differences between the two approaches, and by outlining some of their advan-
tages and disadvantages.

In addition to the unifying survey, the main novelty of this paper is a unifying methodol-
ogy that combines propositionalization and embeddings, which benefits from the advan-
tages of both in solving complex data transformation and learning tasks. The unifying 
methodology resulted in two new pipelines, PropDRM and PropStar, which implement an 
instance-based and a feature-based approach to data transformation and learning, respec-
tively. Both approaches are computationally efficient and can successfully solve much 
larger tasks than the existing relational learning approaches. We made their code publicly 
available.

The paper starts by motivating the need for transforming heterogeneous relational data 
into a tabular format in Sect. 2. Section 3 introduces the data transformation approaches in 
the context of information representation levels proposed by Gärdenfors (2000). Section 4 
presents the related work, focusing on selected propositionalization and embeddings meth-
ods relevant to the relational learning context of this paper. Section 5 presents a unifying 
framework for propositionalization and embeddings, allowing for the analysis of charac-
teristic properties of these data transformation approaches. Section 6 proposes a unifying 
methodology that combines propositionalization and embeddings, which benefits from the 
advantages of both, and presents two implementations of the proposed unifying framework: 
an instance-based embedding approach PropDRM based on the existing Deep Relational 
Machines (DRM) (Srinivasan et al. 2019; Lodhi 2013), followed by a novel feature-based 
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embedding approach PropStar proposed in this paper, using the StarSpace entity embed-
ding approach (Wu et al. 2018). Experimental evaluation of the proposed implementations 
is presented in Sect. 7. The paper concludes by a summary and some ideas for future work 
in Sect. 8.

2  Motivation

Machine learning is the key enabler for computer systems to progressively improve their 
performance when helping humans to solve difficult problem solving tasks. Nevertheless, 
current machine learning approaches only come half-way in helping humans, as humans 
still have to formulate the problem and prepare the data in the form that is best suited to the 
powerful machine learning algorithms.

Most of the best performing machine learning algorithms, like Support Vector 
Machines (SVMs) or deep neural networks, assume numeric data and outperform sym-
bolic approaches in terms of predictive performance, efficiency, and scalability. The domi-
nance of numeric algorithms started in 1980s with the advent of backpropagation and neu-
ral networks (Rumelhart et al. 1986), continued in late 1990s and early 2000s with SVMs 
(Cortes and Vapnik 1995), and finally reached the current peak with deep neural networks 
(Goodfellow et  al. 2016). Deep neural networks are currently considered the most pow-
erful learners for solving many of previously unsolvable learning problems in computer 
vision (face recognition rivals humans’ performance), game playing (a program has beaten 
a human champion in the game of Go), and natural language processing (successful auto-
matic speech recognition and machine translation).

While the most powerful machine learning approaches are numeric, humans perceive 
and describe real-world problems mostly in symbolic terms, using various data representa-
tion format, such as graphs, relations, texts or electronic health records, all involving dis-
crete representations. However, if we are to harness the power of successful numeric deep 
learning approaches for discrete learning problems, discrete data should be transformed 
into a form suitable for numeric learning algorithms. The viewpoint of addressing real-
world problems as numeric has a rationale even for discrete domains, as many symbolic 
learners perform generalizations based on object similarity. For example, in graphs, nodes 
can represent similar entities or have connections with similar other nodes; in text, words 
can appear with similar contexts or play the same role in sentences; in medicine, patients 
may have similar symptoms or similar disease histories. Such similarities are used by 
numerous machine learning algorithms to generalize and learn, including classical bottom-
up learning approaches such as hierarchical clustering, as well as symbolic learners adapted 
to top-down induction of clustering trees (Blockeel et al. 1998). If we want to exploit the 
power of modern machine learning algorithms, like SVMs and deep neural networks, to 
process the inherently discrete data, one has to transform discrete data into (numeric) vec-
tors in such a way that similarities between objects are preserved and encoded as distances 
in the transformed (numeric) space.

Contemporary preprocessing approaches that prepare numeric vector data for machine 
learning algorithms are called embeddings. Nevertheless, as demonstrated in this paper, 
symbolic data transformations, as ancestors of the contemporary embedding approaches, 
remain relevant: the role of propositionalization, a symbolic approach to relational 
data transformation into feature vectors, is not only to enable contemporary machine 
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learning algorithms to induce better predictive models, but to allow descriptive data min-
ing approaches to discover interesting human-comprehensible patterns in symbolic data.

As this paper demonstrates, albeit propositionalization and embeddings represent dif-
ferent types of data transformations, these approaches actually represent the two sides of 
the same coin. The main unifying element they have in common is that they transform the 
data into a vector format and encode the relations between objects in the original space as 
distances in the new vector space.

3  Data transformations and information representation levels

As this section will show, we consider data transformations as a particular subprocess of 
data preprocessing. Data preprocessing aims to handle missing attribute values, control 
out-of-range values and impossible attribute-value combinations, or handle noisy or unre-
liable data, to name just some of the types of data irregularities addressed in processing 
real-life data. Data preprocessing may include data cleaning, instance selection, normaliza-
tion, feature engineering (feature extraction and/or feature construction), data transforma-
tion, feature selection, etc. The result of data preprocessing is the final training set, which is 
used as input to a machine learning algorithm.

Data preprocessing can be manual, automated, or semi-automated. We focus on auto-
mated transformations of data, present in heterogeneous types and formats, into a uniform 
tabular data representation. We refer to this specific automated data preprocessing task as 
data transformation, and define it as follows.

Definition 1 (Data transformation) Data transformation is a step in the data preprocessing 
task that automatically transforms the input data and the background knowledge into a uni-
form tabular representation, where each row represents a data instance, and each column 
represents one of the dimensions in a multi-dimensional feature space.

In the above definition, we decided to distinguish between data and background knowl-
edge. This is an intentional decision, although it could be argued that in some settings, 
we could refer to both as data. Let us provide an operational distinction between data and 
background knowledge. Data is considered by the learner as the target data from which 
the learner should learn a model (e.g., a classifier in the case of class labeled data) or a 
set of descriptive patterns (e.g., a set of association rules in the case of unlabeled data). 
Background knowledge is any additional knowledge used by the learner in model or pattern 
construction from the target data. Simplest forms of background knowledge define hierar-
chies of features (attribute values), such as color green being more general than light green 
or dark green. More complex background knowledge refers to any other declarative prior 
domain knowledge, such as knowledge encoded in relational databases, knowledge graphs 
or domain specific taxonomies and ontologies, such as the Gene Ontology, in its 2020-05-
02 release including 44,508 GO terms, 7,765,270 annotations, 1,464,358 gene products 
and 4,593 species.

This data transformation setting is applicable in various data science scenarios involv-
ing relational data mining, inductive logic programming, text mining, graph and network 
mining as well as tasks that require fusion of data of a variety of data types and formats 
and their transformation into a joint data representation formalism.
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3.1  Information representation levels

As currently the most powerful machine learning (ML) algorithms take as input numeric 
representations, users of ML algorithms tend to transform other forms of human knowl-
edge into the numeric representation space. Interestingly, even if this is countering a 
standard RL and ILP viewpoint, this is true also for symbolic representations, which are 
currently used to store most of the human knowledge.

The distinction between the symbolic and numeric representation space mentioned 
above can be further clarified in terms of the levels of cognitive representations, intro-
duced by Gärdenfors (2000), i.e. the neural, spatial and symbolic representation levels. 
In his theory, Gärdenfors assumes that when modeling cognitive systems in terms of 
information processing, all three levels are connected: starting from the sensory inputs 
at the lowest neural representation level, resulting in spatial representations at the mid-
dle conceptual spaces level, up to symbolic representations at the level of language. 

Neural  This representation level corresponds to the sub-conceptual connectionist level. 
At this level, information is represented by activation patterns in densely con-
nected networks of primitive units. This enables concepts to be learned from 
the observed data by modifying the connection weights between the units.

Spatial  This representation level is modeled in terms of Gärdenfors’ conceptual spaces. 
At this level, information is represented by points or regions in a conceptual 
space built upon some dimensions that represent geometrical, topological or 
ordinal properties of the observed objects. In spatial representations, the simi-
larity between concepts is represented in terms of the distances between the 
points or regions in a multidimensional space, where concepts are learned by 
modeling the similarity between the observed objects.

Symbolic  At this representation level, information is represented by the language of sym-
bols (words), where the meaning is internal to the representation itself (i.e. 
symbols have meaning only in terms of other symbols, while their semantics is 
grounded in the spatial level), and concepts are learned by symbolic generali-
zation rules.

From the perspective of this paper, the above levels of cognitive representations 
introduced by Gärdenfors (2000) provide a theoretical ground to separate the learning 
approaches as well as the data transformation approaches into three categories based on 
the levels of their output representation space: neural, spacial and symbolic. However, 
given the scope of this paper, we do not consider neural transformations, and focus only 
on two data transformation types:

• symbolic transformations, in this paper referred to as propositionalization, denoting 
data transformations into a symbolic representation space, and

• numeric transformations, in this paper referred to as embeddings, denoting data 
transformations into a spatial representation space.

These two data transformation approaches are briefly introduced below, and further 
described in the related work (Sect. 4).
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3.2  Transformations into symbolic representation space

The past decades of machine learning were characterized by symbolic learning, where 
the result of a machine learning or data mining algorithm was a predictive model of a 
set of patterns described in a symbolic representation language, resulting in symbolic 
human-understandable patterns and models. Symbolic machine learning approaches 
include rule learning (Michalski et  al. 1986; Clark and Niblett 1989), decision tree 
learning (Quinlan 1986) and learning logical representations by relational learning and 
inductive logic programming (ILP) algorithms (Muggleton 1992; Lavrač and Džeroski 
1994; De Raedt 2008).

To be able to apply a symbolic learner, the data is typically transformed into a single 
tabular data format, where each row represents a single data instance, and each column 
represents an attribute or a feature. Such transformation into symbolic vector space (i.e. a 
symbolic data table format) is well known in the ILP and relational learning community, 
where it is referred to as propositionalization. Propositionalization approaches are pre-
sented in Sect. 4.2.

3.3  Transformations into numeric representation space

In the last 20 years we have been witnessing increasing dominance of statistical machine 
learning and pattern-recognition methods, including neural network learning (Rumelhart 
and McClelland 1986), Support Vector Machines (SVMs) (Vapnik 1995; Schölkopf and 
Smola 2001), random forests (Breiman 2001), and boosting (Freund and Schapire 1997). 
These statistical approaches are quite different from the symbolic approaches mentioned in 
Sect. 3.2, however there are many approaches that cross these boundaries, including e.g., 
the CART decision tree learning algorithm (Breiman et al. 1984), the Bump hunting rule 
learning algorithm (Friedman and Fisher 1999), which are firmly based in statistics. More-
over, ensemble techniques such as boosting (Freund and Schapire 1997), bagging (Breiman 
1996) or random forests (Breiman 2001) also combine the predictions of multiple logical 
models on a sound statistical basis (Schapire et al. 1998; Mease and Wyner 2008; Bennett 
et  al. 2008). All these are also considered to belong to the family of statistical learning 
approaches.

To be able to apply a statistical learner, the data is typically transformed into a single 
tabular data format, where each row represents a single data instance, and each column is 
a numeric attribute or a numeric feature, with some predefined range of numeric values. 
Such transformation into numeric vector space (i.e. a numeric data table format) is well 
known in the deep learning community, where it is referred to as embedding. Approaches 
to embedding relational structures are presented in Sect. 4.3.

4  Related work

In this section we first outline various transformation methods in Sect.  4.1, followed by 
a more detailed description of the data transformation methods relevant for the context 
of relational learning, i.e. propositionalization and embeddings, in Sects.  4.2 and  4.3, 
respectively.
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4.1  Outline of data transformation methods

While there are many algorithms for transforming data into a spatial representation, it is 
interesting that recent approaches rely on deep neural networks, thereby harnessing the 
neural representation level as the means to transform symbolic representations into the 
spatial representation. Below we list the main types of approaches that perform transfor-
mations between representations.

Community detection and graph traversal methods. Many complex data sets can be 
represented as graphs, where nodes represent data instances and edges represent 
their relations. Graphs can be homogeneous (consisting of a single type of nodes and 
relations) or heterogeneous (consisting of different types of nodes and relations). To 
encode a graph in a tabular form by preserving the information about the relations, 
various graph encoding techniques were developed, such as propositionalization via 
random walk graph traversal, representing nodes via their neighborhoods and com-
munities (Plantié and Crampes 2013). These approaches are frequently used for data 
fusion in mining heterogeneous information networks. Neural network approaches 
(presented below) are also very competitive as means for encoding graphs.
Matrix factorization methods. When data is not explicitly presented in the form of rela-
tions but the relations between objects are implicit, given by a similarity matrix, the 
objects can be encoded in a numeric form using matrix factorization. As an example 
take Latent Semantic Analysis used in text mining, which factorizes a word similarity 
matrix to represent words in a vector form. Another example is factorization of graph 
adjacency matrices. These types of embeddings were largely superseded by deep neural 
networks which, instead of observing similarity between different objects, construct a 
prediction task and forecast similarity. For example, for text, given a word, the word-
2vec embedding method (Mikolov et al. 2013) predicts words in its neighborhood.
Propositionalization methods are used to get tabular data from multirelational databases 
as well as from a mixture of tabular data and background knowledge in the form of logic 
programs or networked data, including ontologies. These transformations were mostly 
developed within the Inductive Logic Programming and Relational Learning commu-
nity, and are still actively researched and used. Propositionalisation methods do not per-
form dimensionality reduction and are most often used with data mining and symbolic 
machine learning algorithms. We discuss these methods in Sect. 4.2.
Neural networks based methods. In neural networks the information is represented by 
activation patterns in interconnected networks of primitive units. This enables that 
concepts are gradually learned from the observed data by modifying the connection 
weights between the hierarchically organized units. These weights can be extracted 
from neural networks and used as a spatial representation that transforms relations 
between entities into distances. Recently, this approach became a prevalent way to 
build representation for many different types of entities, e.g., texts, graphs, electronic 
health records, images, relations, recommendations, etc. In Sect. 4.3 we describe the 
data types and approaches, which are capable of embedding relational structures and 
are therefore most relevant for the context of this paper. These include knowledge 
graph embeddings (presented in Sect. 4.3.1), entity embeddings capable of forming 
(both supervised and unsupervised) representations based on the similarity of enti-
ties (presented in Sect. 4.3.2), and Deep Relational Machines methodology that links 
symbolic representations to deep neural networks (presented in Sect. 4.3.3).
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Other embedding methods. Other forms of embeddings were developed by different 
communities that observed the need to better represent the (symbolic) data. For exam-
ple, Latent Dirichlet Allocation (LDA) (Blei et al. 2003) used in text analysis learns dis-
tributions of words for different topics. These distributions can be used as an effective 
embedding for words, topics, and documents. Feature extraction methods form a rich 
representation of instances by projecting them into a high dimensional space (Lewis 
1992). Another example of (implicit) transformation into high dimensional space is 
the kernel convolutional approach proposed by Haussler (1999), which introduces the 
idea that kernels can be used for discrete structures by iteratively applying convolution 
and kernels to smaller parts of the data structure. Convolutional kernels exist for sets, 
graphs, trees, strings, logical interpretations, and relations (Cumby and Roth 2003). 
This allows methods such as SVM or Gaussian Processes to work with relational data. 
Most of these embeddings are recently superseded or merged with neural networks.

All the above approaches perform data transformations from different data formats to a 
single table representation. However, their underlying principles are different: while fac-
torization and neural embeddings perform dimensionality reduction, resulting in lower-
dimensional feature vector representations capturing the semantics of the data, proposi-
tionalization results in a vector representation using relational features with a higher 
generalization potential than the features used in the original data representation. Note that 
there exist also other approaches to data transformation and fusion, including HINMINE 
(Kralj et  al. 2018), metapath2vec (Zhu et  al. 2018) and OhmNet (Žitnik and Leskovec 
2017), which are out of the main scope of this paper.

4.2  Propositionalization

In propositionalization, relational feature construction is the most common approach 
to data transformation. LINUS  (Lavrač et  al. 1991) was one of the pioneering proposi-
tionalization approaches using automated relational feature construction. LINUS was 
restricted to generation of features that do not allow recursion and existential local vari-
ables, which means that the target relation cannot be many-to-many and self-referencing. 
The second limitation was more serious: the queries could not contain joins (conjunctions 
of literals). The LINUS descendant SINUS (Lavrač and Flach 2001) incorporates more 
advanced feature construction techniques inspired by 1BC  (Flach and Lachiche 1999). 
The LINUS approach had many followers, including relational subgroup discovery system 
RSD (Železný and Lavrač 2006), which is outlined also in the list of propositionalization 
approaches below. Alternatives to relational feature construction include the construction 
of aggregation queries.

In this section we first clearly define the distinction between attributes and features, fol-
lowed by an outline of selected propositionalization approaches and of the specific Wordi-
fication approach used in the algorithms developed in this work.

4.2.1  Features

To be able to apply a symbolic propositional learner, the data should be represented in a 
single table data format, where each row represents a single data instance, and each column 
represents an attribute or a feature. For the sake of clarity, let us distinguish between attrib-
utes and features below.
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Attributes that describe the data instances can be either numeric variables (with values 
like 7 or 1.5) or nominal/discrete variables (with values like red or female). In contrast to 
attributes, a feature describes the presence or absence of some property of an instance. 
As a result, features are always Boolean-valued (values true or false). For example, for 
attribute gender with values female and male, two separate features can be constructed: f1 : 
gender=female and f2 : gender=male, and only one of these features is assumed to be true 
for an individual data instance. Note that features are different even from binary-valued 
attributes: e.g., for a binary attribute ai with values true and false, there are two corre-
sponding features: f3 : ai = true and f4 : ai = false . Furthermore, features can test a value 
of a single attribute, like aj > 3 , or they can represent complex logical and numerical rela-
tions, integrating properties of multiple attributes, like f5 : ak < 2 ⋅ (aj − ai).

Previous feature types are referred to as propositional features. On the other hand, rela-
tional features relate the values of different attributes to each other. In the simplest case, 
for example, they test for the equality or inequality of the values of two attributes of the 
same type, such as Length and Height. More complex relational features can use the back-
ground relations, e.g., f6 : adjacent(NodeX, NodeY). Even more advanced, relational fea-
tures can introduce new variables. For example, if relations are used to encode a graph, a 
relational feature such as f7 : color(CurrentNode, blue) ∧ link(CurrentNode, NewNode) ∧ 
color(NewNode, red), can introduce a new variable NewNode to subsequently test whether 
there exists a previously not visited node in the graph that is colored red.

Take a simple toy trains example learning problem illustrated in Appendix A, and two 
complex relational features describing trains:

f8 : hasCar(T,C) ∧ carLength(C,short) ∧ carRoof(C,peaked)
f9 : hasCar(T,C1) ∧ carLength(C1,short) ∧ hasCar(T,C2) ∧ carRoof(C2,peaked)
Feature f8 is a single complex relational feature, while f9 contains two distinct relational 

features. Formally, a feature is defined as a minimal set of literals such that it introduces at 
most one local (i.e. existential) variable in the feature set composing the relational feature.

The main point of relational features is that they localize variable sharing: this can be 
made explicit by naming the features:

f10 : hasShortCar(T) ← hasCar(T,C) ∧ clength(C,short)
f11 : hasPeakedroofCar(T) ← hasCar(T,C) ∧ carRoof(C,peaked)
The propositionalization approach to relational learning captures exactly this idea: gen-

erating complex features, such as f8 , f10 and f11 , which will allow multi-relational data 
representation of properties of target instances (such as trains T) through representations of 
properties of their components (such as cars C). Selected propositionalization approaches, 
which use complex feature construction in the automated multi-relational data transforma-
tion process are outlined below.

4.2.2  Outline of selected propositionalization algorithms

Below we outline a selection of propositionalization approaches, while an interested reader 
can find extensive overviews of different feature construction approaches in the work of 
Kramer et al. (2001) and Krogel et al. (2003).

Relaggs  (Krogel and Wrobel 2001) stands for relational aggregation. It is a proposi-
tionalization approach that takes the input relational database schema as a basis for a 
declarative bias, using optimization techniques usually used in relational databases (e.g., 
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indexes). The approach employs aggregation functions in order to summarize non-target 
relations with respect to the individuals in the target table.
1BC (Flach and Lachiche 1999) strives to enable the propositional naive Bayes classi-
fier to handle relational data. It does so by a transformation in which a set of first-order 
conditions is generated and then used as attributes in the naive Bayes classifier. The 
transformation, however, is done in a dynamic manner, as opposed to standard proposi-
tionalization, which is performed as a static step of data preprocessing. This approach 
is extended by 1BC2 (Lachiche and Flach 2003), which allows distributions over sets, 
tuples, and multisets, thus enabling the naive Bayes classifier to consider also structured 
individuals.
Tertius (Flach and Lachiche 2001) is a top-down rule discovery system, incorporating 
first-order clausal logic. The main idea is that no particular prediction target is specified 
beforehand, hence Tertius can be seen as an ILP system that learns rules in an unsuper-
vised manner. Its relevance for this survey lies in the fact that Tertius encompasses 1BC, 
i.e. relational data is handled through 1BC transformation.
RSD (Železný and Lavrač 2006) is a relational subgroup discovery algorithm composed 
of two main steps: the propositionalization step and the (optional) subgroup discovery 
step. The output of the propositionalization step can be used also as input to other prop-
ositional learners. RSD effectively produces an exhaustive list of first-order features that 
comply with the user-defined mode constraints, similar to those of Progol (Muggleton 
1995) and Aleph (Srinivasan 2007). Furthermore, RSD features satisfy the connectivity 
requirement, which imposes that no feature can be decomposed into a conjunction of 
two or more features. Mode declarations define the algorithm’s syntactic bias, i.e. the 
space of possible features.
HiFi  (Kuželka and Železný 2008) is a propositionalization approach that constructs 
first-order features with hierarchical structure. Due to this feature property, the algo-
rithm performs the transformation in polynomial time of the maximum feature length. 
Furthermore, the resulting features are the shortest in their semantic equivalence class. 
The algorithm is shown to perform several orders of magnitude faster than RSD for 
higher feature lengths.
RelF  (Kuželka and Železný 2011) is the most relevant of the algorithms in the Tree-
Liker software  (Kuželka and Železný 2011). It constructs a set of tree-like relational 
features by combining smaller conjunctive blocks. RelF preserves the monotonicity of 
feature reducibility and redundancy (instead of the typical monotonicity of frequency), 
which allows the algorithm to scale far better than other state-of-the-art propositionali-
zation algorithms.
Cardinalization  (Ahmed et  al. 2015) is specifically designed to enable more than just 
categorical attributes in propositionalization. Specifically, it can handle a threshold on 
numeric attribute values and a threshold on the number of objects satisfying the condi-
tion on the attribute simultaneously. Cardinalization can be seen as an implicit form of 
discretization. While in discretization one sets a threshold on a numeric attribute and see 
how many objects satisfy the threshold later, and the cardinality follows implicitly from 
the attribute value threshold; on the other hand, in cardinalization, we set a threshold 
on the cardinality, and let an attribute-value learner decide where the threshold value 
on the numerical attribute should lie. Hence, Cardinalization allows for context-aware 
discretization. Quantiles (Ahmed et al. 2015) is a variant of Cardinalization. Instead of 
choosing an absolute number as cardinality threshold, Quantiles uses a relative number.
CARAF (Charnay et al. 2015) approaches the problem of large relational feature search 
space by aggregating base features into complex compounds, which makes CARAF 
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similar to Relaggs. Complex aggregates run the risk of overfitting. While Relaggs tack-
les this problem by restricting itself to relatively simple aggregates, the distinguishing 
feature of CARAF is that instead it incorporates more complex aggregates into a ran-
dom forest, which ameliorates the overfitting effect.
Aleph (Srinivasan 2007) is the most popular ILP algorithm and is actually an ILP toolkit 
with many modes of functionality: learning of theories, feature construction, incremen-
tal learning, etc. Aleph uses mode declarations to define the syntactic bias. Input rela-
tions are Prolog clauses, defined either extensionally or intensionally. Aleph’s feature 
construction functionality also means it is a propositionalization approach.
Wordification (Perovšek et al. 2013, 2015) is a propositionalization method inspired by 
text mining that can be viewed as a transformation of a relational database into a corpus 
of text documents. The distinguishing property of Wordification is its efficiency when 
used on large relational data sets and the potential for using text mining approaches 
on the transformed propositional data. While most of the outlined propositionalization 
algorithms construct complex relational features including variables in the arguments of 
relational features, Wordification constructs simple, easily interpretable features that are 
treated as ‘words’ in the transformed Bag-Of-Words representation. It constructs fea-
tures of the kind ai = vij (formulated as ai_vij ). In addition to such simple features, it 
constructs also conjuncts (of size 2) of such features, e.g., ai = vij ∧ ak = vkl , formulated 
as ai_vij__ak_vkl . To avoid confusion in case the same attribute name appeared in sev-
eral tables, the actual form of features is t_ai_vij including the indicator of the name of 
table t in which attribute ai appears. For a simple example of how such features are gen-
erated, the reader is referred to Appendix A.

4.2.3  Wordification

Given that in a previous experimental evaluation of propositionalization algorithms 
(Perovšek et al. 2013, 2015) the Wordification algorithm was shown to be the most effec-
tive, we selected Wordification as the propositionalization algorithm of choice in the pro-
posed implementations combining propositionalization and embeddings in Sect. 6, where 
the Wordification algorithm was adapted to handle large data sets.

In the Wordification implementation, described in detail in Sect. 6.2.1, the original fea-
ture representation TableName_AttributeName_AttributeValue was—for implementational 
convenience—replaced by a tuple representation (t.name, c, v), where t.name refers to a 
table name, c to a given colon (attribute) in the table t, and v to a given value v of attrib-
ute c. Such features will be referred to as features or as relational items in the algorithm 
description, as appropriate.

Using this feature representation, Wordification of a multi-relational database can be 
summarized as the following operation:

where m maps a given table t’s indices to target (initial) table indices (i) and T  is the set of 
all tables from which a foreign key path exists to the target table. The ⊎ operator represents 
a disjoint union of multisets (sum), yielding a single multiset (duplicates are allowed).

Foreign keys are designated columns that link data between distinct tables. Value of a 
foreign key in a given table is referred to as the instance id (the row is uniquely determined 
by this value). Let C represent the set of all columns that are not foreign keys, ids or target 

DBi =
⨄
t∈T

WORDIFY(t(m(i)))
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classes. The WORDIFY method returns a multiset (a bag) of relational items (for the i-th 
instance) constructed as follows:

where t[c] represents the values v of table t in column c, and t.name is the name of table t. 
Thus, Wordification is naïve in the sense that it simply concatenates attribute values across 
tables by maintaining the column and table name information in constructing features. The 
original implementation, however, can become spatially intractable (see (Perovšek et  al. 
2013), proof of complexity) as its spatial complexity is O(row ⋅ tables ⋅ 2col) . Details of a 
more efficient implementation of Wordification are available in Sect. 6.2.1.

4.3  Embedding relational structures

In this section, we discuss methodologies capable of embedding relational structures. We 
start with an introduction to knowledge graph embeddings, an emerging group of meth-
ods that operate on large, real-world, annotated graphs, in Sect. 4.3.1. We proceed by the 
presentation of entity embeddings, a more general methodology capable of supervised, as 
well as unsupervised embeddings of many entities, including texts and knowledge graphs 
in Sect. 4.3.2. Finally, in Sect. 4.3.3, we present Deep Relational Machines, an emerging 
methodology that links symbolic representations to deep neural networks.

4.3.1  Knowledge graph embeddings

In knowledge graphs (KG), edges correspond to relations between entities (nodes) and 
the graphs present Subject-Predicate-Object triplets. The KG handling algorithms attempt 
to solve the problems like triplet completion, relation extraction, and entity resolution. 
The KG embedding algorithms, briefly discussed below, outline some of the key ideas 
which render these methods highly scalable and useful for large, semantics-rich graphs. 
For detailed description and a recent, extensive overview of the field, we refer the reader 
to Wang et al. (2017), from where we next summarize some of the key ideas underlying 
knowledge graph embedding.

In the below description of KG embedding algorithms, the Subject-Predicate-Object 
triplet notation is replaced by the (h, r, t) triplet notation, where h is referred to as the 
head of a triplet, t as the tail, and r as the relation connecting the head and the tail. 
A schematic representation of triplet embedding is shown in Fig.  1. The embedding 

WORDIFY(t(m(i))) =
⨄

v∈t[m(i)][c∈C]

(t.name, c, v)

Fig. 1  Schematic representation of knowledge graph embedding. Head-Relation-Tail (h,  r,  t) triplets are 
used as inputs. Triplets are embedded in a common d-dimensional vector space
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methods briefly outlined below optimize the total plausibility of the input set of triplets, 
where plausibility of a single triplet is denoted with fr(h, t).

• The first group of KG embedding algorithms are termed translational distance mod-
els, as they exploit distance-based scoring functions. They measure the plausibility 
of a fact as the distance between the two entities, usually after a translation carried 
out by the relation. One of the representative methods for this type of embedding is 
transE (Bordes et al. 2013), where the cost function being optimized can be stated 
as: 

 For vectors � , � , and � in the obtained embedding, score fr(h, t) is high if triplet (h, r, t) 
is present in the data.

• The second group of KG embedding algorithms is not deterministic, as it takes into 
account the uncertainty of observing a given triplet. A representative method for this 
type of embeddings is KG2E (He et al. 2015), which models the triplets with multi-
variate Gaussians. It models individual entities, as well as relations as vectors, drawn 
from multivariate Gaussians, assuming that � , � and � vectors are normally distrib-
uted, with mean vectors �h,�r,�t ∈ ℝd and covariance matrices Σh,Σr,Σt ∈ ℝd×d , 
respectively. KG2E uses Kullback-Liebler divergence to directly compare the distri-
butions as follows: 

 where Nx denotes the probability density function of the normal distribution.
• Semantic matching models exploit similarity-based scoring functions. They measure 

plausibility of facts by matching latent semantics of entities and relations embodied 
in their vector space representations. One of the representative algorithms for learn-
ing by semantic matching is RESCAL (Nickel et al. 2011). RESCAL optimizes the 
following expression: 

where � and � are representations of entities, and Mr ∈ ℝd×d is a matrix associated with 
relations.

• Matching using neural networks. Deep neural networks model triplets via training 
of neural network architectures. One of the first approaches was Semantic Match-
ing Energy (SME) (Bordes et al. 2014). This method first projects entities and their 
relations to their corresponding vector embeddings. The relation’s representation is 
next combined with the relation’s head and tail entities to obtain g1(�, �) and g2(�, �) 
entity-relation representations in the hidden layer. Finally, a dot product is used to 
score the triplet relation matching 

 The simplest version of SME defines the g1 and g2 as: 

fr(h, t) = −||� + � − �||2.

fr(h, t) = KL(N(�t − �h),N(�r))

= ∫ Nx(�t − �h,Σt + Σh) ln
Nx(�t − �h,Σt + Σh)

Nx(�r,Σr)
dx,

fr(h, t) = �
T ⋅Mr ⋅ �,

fr(h, t) = g1(�, �)
T ⋅ g2(�, �).
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 Here, W (1)

1
,W

(2)

1
,W

(1)

2
 and W (2)

2
 are ℝd×d dimensional weight matrices and b1 and b2 are 

bias vectors.
Recent advances in embeddings of knowledge graphs show interesting research direc-
tions. For example, hyperbolic geometry could be used to better capture latent hierarchies, 
commonly present in real-world graphs (Nickel and Kiela 2017). Further, KG embedding 
methods are increasingly tested on large, multi-topic data collections, for example, the 
Linked Data (LD) which standardize and fuse data from different resources. Knowledge 
graph embeddings, such as RDF2vec (Ristoski and Paulheim 2016) attempt to exploit vast 
amounts of information in LD and transform it into a learning-suitable format. As knowl-
edge graphs are not necessarily the only source of available information, algorithms exploit 
also other information, e.g., textual information available for each triplet (Wang et  al. 
2014). Recent trends in knowledge graph embeddings also explore how symbolic, logical 
structures could be used during embedding construction. Approaches such as KALE (Guo 
et al. 2016) construct embeddings by taking into account logical rules (e.g., Horn clauses) 
related to the knowledge graph, thus increasing the quality of embeddings. Similar work 
was proposed by Rocktäschel et  al. (2015), where pairs of embeddings were considered 
during optimization. The same group also showed how relations can be modeled without 
grounding the head and tail entities for simple implication-like clauses (Demeester et al. 
2016). Wang et al. (2015) demonstrated that logical rules can aid in knowledge graph com-
pletion on large knowledge bases. They showed that inclusion of rules can reduce the solu-
tion space and significantly improve the inference accuracy of embedding models.

4.3.2  Entity embedding with the StarSpace approach

The guiding principle behind all embeddings, described in the previous section, is the per-
sistence of similarity, i.e. that entities which are similar in the knowledge graph must be 
represented by vectors that are similar in the embedding space. A general approach imple-
menting this principle is to use any similarity function between entities to form a prediction 
task for a neural network. Below we describe a successful example of this approach, called 
StarSpace (Wu et al. 2018). As this approach assumes discrete features from a fixed dic-
tionary, it is particularly appealing to relational learning and inductive logic programming.

The idea of StarSpace is to form a prediction task where a neural network is trained to 
predict the similarity between an entity and its related entity (e.g., its label or some other 
entity). The resulting neural network can be used for several purposes: directly in classifi-
cation, to rank instances by their similarity, or weights of the trained network can be used 
as pretrained embeddings.

In StarSpace, each entity has to be described by a set of discrete features from a fixed-
length dictionary and forms a so called Bag-Of-Features. This representation is general 
enough to cover texts (documents or sentences can be described by bags-of-words or bags-
of-n-grams), users (described by bags of documents, movies, or items they like), relations 
and links in graphs (described by semantic triples), etc. During training, entities of differ-
ent kinds are embedded in the same latent space, suitable for various down-stream learning 
tasks, e.g., a user can be compared with the recommended items. Note that entities can be 
embedded along with target classes, resulting in supervised embedding learning. This type 

g1(�, �) = W
(1)

1
⋅ � +W

(2)

1
⋅ � + b1

g2(�, �) = W
(1)

2
⋅ � +W

(2)

2
⋅ � + b2.
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of representation learning is the key element of the proposed PropStar algorithm outlined 
in Sect. 6.1.2 and presented in detail in Sect. 6.2.3.

The StarSpace approach trains a neural network model to predict which pairs of enti-
ties are similar and which are dissimilar. Two kinds of training instances are formed, posi-
tive (a, b) ∈ E+ , which are task dependent and contain correct relations between entities 
(e.g., document a with its correct label b), and negative instances (a, b−

1
),… , (a, b−

k
) ∈ E−

a
 . 

For each entity a (e.g., a document) appearing in the positive instances, negative instances 
are formed using k-negative sampling from labels {b−

i
}k
i=1

 as in word2vec (Mikolov et al. 
2013). In each batch, the neural network tries to minimize the loss function L, defined as 
follows:

For each batch update in the training of neural network, k negative examples (a param-
eter) are formed by randomly sampling labels b−

i
 from within the set of entities that can 

appear in b. For example, in the document classification task, document a has its correct 
label b, while k negative instances have their labels b−

i
 sampled from the set of all pos-

sible labels. Similarity function sim represents the similarity between the vector represen-
tations of the two entities; typically a dot product similarity is used. Within one batch, 
loss function Loss sums the losses of the positive instance (a, b) and the average of the 
k negative instances (a, b−

i
), i ∈ 1… k . To asses the loss, margin ranking loss is used, 

Loss = max(0,m − sim(a, b�)) , where m is the margin parameter, i.e. the similarity thresh-
old, and b′ is a label.

The trained network can be used for several purposes. To classify a new instance a, one 
iterates over all possible labels b′ and chooses argmaxb�sim(a, b�) as the prediction. For 
ranking, entities can be sorted by their predicted similarity score. The embedding vectors 
can also be extracted and used for some other downstream task. Wu et al. (2018) recom-
mend that the similarity function sim(⋅, ⋅) is shaped in such a way that it will directly fit the 
intended application, so that training will be more effective.

A few examples of tasks successfully tackled with the StarSpace feature transformation 
approach are described below.

• In multiclass text classification the positive instances (a, b) are taken from the training 
set of documents E+ , represented with bags-of-words and their labels b. For negative 
instances, entities b−

i
 are sampled from the set of possible labels.

• In recommender systems users are described with a bag of items they liked (or bought). 
The positive instances use a single user ID as a and one of the items that user liked as 
b. Negative instances take b−

i
 from the set of possible items. Alternatively, to work for 

new users, the a part of user representation is composed of all the items that user liked, 
except one, which is used as b.

• For link prediction the concepts in a graph are represented as triples head-relation-tail 
(h, r,  t), e.g., gene-generates-protein. A positive instance a consists either of h and r, 
while b consists of t; alternatively, a consists of h, and b consists of r and t. Negative 
instances b−

i
 are sampled from the set of possible concepts. The trained network can 

then predicted links, e.g., gene-generates-what.

L =
�

(a,b)∈E+

⎛
⎜⎜⎜⎜⎜⎝

Loss(sim(a, b)) +
1

k

k�
i = 1

(a, b−
i
) ∈ E−

a

Loss(sim(a, b−
i
))

⎞⎟⎟⎟⎟⎟⎠
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• For sentence embedding in an unsupervised fashion, a collection of documents, con-
taining sentences, is turned into a training set. For positive instances, a and b are sen-
tences from the same document (or are close together in a document), while for nega-
tive instances, sentences b−

i
 are coming from different documents. This definition of a 

task tries to capture the semantic similarity between sentences in a document.

In the PropStar algorithm proposed in this work, we use StarSpace similarly to the first case 
mentioned above (multiclass text classification). Namely, Wordification returns a bag of 
features (relational items) for each instance in the target table. The embeddings are learned 
for each feature separately, and class labels are also embedded in the same space. During 
classification, representations of relational items associated with a given instance (bag of 
features) are averaged to obtain the representation of the instance—a similar idea as in 
the document representation adopted in the highly efficient doc2vec branch of algorithms 
aimed at document classification (Le and Mikolov 2014). The embedded instances, now 
located in the same vector space as the embeddings of class labels, are directly used for 
classification. The label, closest to the representation of a given target instance is selected 
as the final prediction.

4.3.3  Deep relational machines

Deep neural networks are effective learners in numeric space, capable of constructing inter-
mediate knowledge constructs and thereby improve semantics of baseline input represen-
tation. Training deep neural networks on propositionalized relational data were explored 
by Srinivasan et  al. (2019), following the work of Lodhi (2013), where Deep Relational 
Machines (DRMs) were first introduced. In Lodhi’s work, the DRMs used bodies of first 
order Horn clauses as input to restricted Boltzmann machines, where conjuncts of bonds 
and other molecular structure information compose individual complex features; when all 
structural properties are present in a given instance, the target’s value is true, and false oth-
erwise. For example, consider the following propositional representation of five instances 
(rows), where complex features are comprised of conjuncts of atoms fi , as illustrated in 
Fig. 2.

Note that the propositionalized data set P is usually a sparse matrix, which can represent 
additional challenge for neural networks. The DRMs proposed by Lodhi (2013) were used 
for prediction of protein folding properties, as well as mutagenicity assessment of small 
molecules. This approach used feature selection with information theoretic measures such 
as information gain as the sparse matrix resulting from the propositionalization was not 

Fig. 2  Example input data for 
a deep relational machine that 
operates on the instance level
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suitable as an input to the neural network. The initial studies regarding DRMs explored 
how deep neural networks could be used as an extension of relational learning.

Recently, promising results were demonstrated in the domain of molecule classification 
(Dash et al. 2018) using ILP learner Aleph in its propositionalization mode for feature con-
struction. After obtaining propositional representation of data, the obtained data table was 
fed into a neural network that associated such representations with the output space (e.g., 
a molecule’s activity). Again, sparsity and size of the propositionalized representation is a 
problem for deep neural networks. Again, stochastic feature selection of relational features 
that are used as input to deep relational machines can improve the performance and inter-
pretability (Dash et al. 2019).

The work of Srinivasan et al. (2019) is relevant for the interpretability of deep relational 
machines, proposing a logical approximation of well-known prediction explanation method 
LIME (Ribeiro et al. 2016) and showing how it can be efficiently computed.

In summary, DRMs address the following issues at the intersection of deep learning and 
relational learning:

• DRMs demonstrated that deep learning on propositionalized relational structures is a 
sensible approach to relational learning.

• Their input is comprised of logical conjuncts, offering the opportunity to obtain human-
understandable explanations.

• DRMs were successfully employed for classification and regression.
• Emerging ideas in the area of representation learning have only recently been explored 

in the ILP context (Dumančić et al. 2018), indicating there are many possible improve-
ments both in terms of execution speed, as well as more informative feature construc-
tion on the symbolic side of computation.

We further discuss DRMs in the context of efficiency of their implementation in 
Sects. 6.1.1 and 6.2.2. Development of DRMs that are efficient with respect to both space 
and time is an ongoing research effort. Building on the ideas of DRMs, we implemented 
a variant of this approach, capable of learning directly from large, sparse matrices that 
are returned from Wordification of a given relational database, rather than using feature 
selection or the output of Aleph’s feature construction approach. Our novel, efficient DRM 
implementation is presented in Sect. 6.2.2.

5  Unifying framework for propositionalization and embeddings

The connection we made between different information representation levels and differ-
ent transformation techniques shows that propositionalization and embeddings are two 
sides of the same coin. If we view embeddings as transformations for texts, graphs, recom-
mendations, electronic health records, and other entities with defined similarity function, 
we can conclude that all these transformation present a multifaceted approach to feature 
construction.

To this end, the paper contributes a novel understanding of these data transformation 
techniques. In Sect. 5.1, we first present a unified terminology and definitions, and explain 
the apparent differences between the definitions of propositionalizationa and embed-
dings as variants of a complex data transformation task. In further sections we explore the 
apparent differences between the two approaches. In Sects.  5.2, 5.3, and 5.4 we discuss 
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differences in data representation, learning, and use. Finally, in Sect.  5.5 we summarize 
strengths and limitations of propositionalization and embeddings.

5.1  Unifying definitions

Below we present a unified view on the definitions of propositionalization and embedding 
tasks, as instances of a general data transformation task defined in Sect. 1 via Definition 1.

Definition 2 (Propositionalization)

Given:  Input data of a given data type and format, and heterogeneous background 
knowledge of various data types and formats.

Find:  A tabular representation of the data enriched with the background knowledge, 
where each row represents a single data instance, and each column represents a 
feature in a d-dimensional symbolic1 vector space Fd.

Definition 3 (Embedding)

Given:  Input data of a given data type and format, and heterogeneous background 
knowledge of various data types and formats.

Find:  A tabular representation of the data enriched with the background knowledge, 
where each row represents a single data instance, and each column represents 
one of the dimensions in the d-dimensional numeric vector space ℝd.

5.2  Unifying propositionalization and embeddings in terms of data representation

Both data transformation techniques result in a vector space representation. The unifying 
dimensions of propositionalization and embeddings in terms of data representation, which 
are summarized in Table 1, are explained below.

In propositionalization, the transformation results in a binary matrix of sparse 
binary vectors, where rows corresponds to training instances and columns correspond 

Table 1  Unifying and 
differentiating aspects of 
propositionalization and 
embeddings in terms of data 
representation

Representation Propositionalization Embeddings

Vector space Symbolic Numeric
Features/variables Symbolic Numeric
Feature values Boolean (0 or 1) Numeric
Sparsity Sparse Dense
Space complexity Space consuming Mostly efficient
Interpretability Interpretable features Non-interpretable

1 In the case of binary valued features, each value in each column is ∈ {0, 1}.
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to symbolic features constructed by a particular propositionalization algorithm. These 
features are human interpretable, as they are either simple logical features (such as 
attribute values), conjunctions of such features, relations among simple features (such 
as e.g., a test for the equality or inequality of values of two attributes of the same 
type), or relations among entities (such as links among nodes in a graph). Given that 
the number of constructed features is usually large, such transformation results in a 
sparse binary matrix with few non-zero elements.

Embeddings output is usually a dense matrix of a user-defined dimensionality, com-
posed of vectors of numeric values, one for each object of interest. For neural network 
based embeddings, vectors usually represent the activation of neural network nodes 
of one or more levels of a deep neural network. Given a relatively low dimensional-
ity of these vectors (from 100 to 1000) this dense representation is efficient in terms 
of space. However, the features/dimensions are non-interpretable, therefore a separate 
explanation mechanisms and visualizations are required.

5.3  Unifying propositionalization and embeddings in terms of learning

For both data transformation techniques, the resulting vector space representation is 
used as an input to a learning algorithm of the user’s choice. The unifying dimen-
sions of propositionalization and embeddings in terms of most frequently used learners 
(summarized in Table 2) are explained below.

After propositionalization, any learner capable of processing symbolic features can 
be used. Typical learners include rule learning, decision tree learning, random for-
ests for a supervised setting, or association rules and symbolic clustering algorithms 
applied in a non-supervised learning setting. Learners usually use heuristic search to 
find a global optimum in terms of heuristics to be optimized (exceptions being, e.g., 
association rule learners using exhaustive search with constraints). Typical algorithms 
are decision tree learners, rule learners, linear regression and SVMs. Learners require 
some parameter tuning to achieve optimal results, but parameters are relatively few. 
Learning is typically performed on CPUs.

The embedded vectors are best suited for distance-based learners, such as neural 
networks, and to a lesser degree for kernel methods or logistic regression. Deep neural 
networks use greedy search to find locally optimal solutions, and are usually trained 
on GPUs, but can be used for prediction on both CPUs or GPUs. As a weakness, deep 
learning algorithms require substantial (hyper)parameter tuning.

Table 2  Unifying and 
differentiating aspects of 
propositionalization and 
embeddings in terms of learning 
context

Learning Propositionalization Embeddings

Meaning capturing Via symbols Via distances
Search strategy Heuristic search Greedy
Search goal Global optimum Local optimum
Typical algorithms Symbolic, linear 

regression, SVM
Deep neural networks

Parameters Few Many
Hardware CPU CPU/GPU
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5.4  Unifying propositionalization and embeddings in terms of use

The unifying dimensions of propositionalization and embeddings in terms of their use 
(summarized in Table 3) are explained below.

Propositionalization (Kramer et al. 2001) is one of the established methodologies used 
in relational learning (Džeroski and Lavrač 2001; De Raedt 2008) and ILP (Muggleton 
1992; Lavrač and Džeroski 1994; De Raedt 2008) (see the propositionalization methods 
outlined in Sect. 4.2). The propositionalization approach was applied also in the semantic 
data mining where ontologies are used as a background knowledge in relational learning 
(Podpečan et al. 2011; Lavrač et al. 2009; Vavpetič and Lavrač 2011).

The embedding technologies are mostly used in the context of deep learning for vari-
ous data formats, including tabular data, texts, images, and graphs (including knowledge 
graphs). In addition to knowledge graph embedding approaches (see Sect. 4.3.1), we out-
line some other approaches to graph embeddings below.

The first studies of graph embeddings were influenced by embedding construction from 
textual data. For example, the well known skip-gram model, initially used as part of word-
2vec (Mikolov et al. 2013) was successfully applied to learn node representations. Deep-
Walk (Perozzi et al. 2014) was one of the first learners that treats short random walks in 
graphs as sentences (or short phrases) to learn latent node embeddings. DeepWalk was 
revisited as node2vec (Grover and Leskovec 2016) to take into account different types 
of random walks, parameterized by breadth, as well as depth-first search. LINE (Tang 
et al. 2015b) performs similarly well for the tasks of classification and link prediction by 
attempting to optimize both local, as well as global network structure.

As for fusing heterogeneous data types, a propositionalization approach was proposed 
as a mechanism for heterogeneous data fusion (Grčar et al. 2013). As for data type fusion 
using embedding-based methods, PTE (Tang et al. 2015a) exploits heterogeneous networks 
of texts for supervised embedding construction. NetMF (Qiu et al. 2018) is a generaliza-
tion of Deepwalk, node2vec, LINE and PTE, re-formulating them as a matrix factorization 
problem. Furthermore, struc2vec (Ribeiro et  al. 2017) builds on two main ideas: repre-
sentations of two nodes must be close if the two nodes are structurally similar, and the 
latent node representation should not depend on any node or edge attribute, including the 
node labels. Examples of approaches to heterogeneous graph embeddings include HIN-
MINE (Kralj et al. 2018), metapath2vec (Zhu et al. 2018) and OhmNet (Žitnik and Lesko-
vec 2017), an extension of node2vec to a heterogeneous biological setting. Heterogeneous 
data embeddings (Chang et al. 2015) of images, videos and text were also formulated as a 
task of heterogeneous graph embedding.

Concerning the interpretability of results, propositionalization approaches are mostly 
used with symbolic learners whose results can be interpretable, given the interpretability 
of features used in the transformed data description. For embedding-based methods, given 
the non-interpretable numeric features/dimensions, specific mechanisms need to be imple-
mented to ensure results explanation (Robnik-Šikonja and Kononenko 2008; Štrumbelj and 

Table 3  Unifying and 
differentiating aspects of 
propositionalization and 
embeddings in terms of use

Use Propositionalization Embeddings

Problems/context Relational Tabular, texts, graphs
Data type fusion Enabled Enabled
Explanation Directly interpretable Special approaches
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Kononenko 2014). A recent well-known approach, which can be used in a post-process-
ing phase of an arbitrary prediction model, is named SHAP (Lundberg and Lee 2017). 
In this approach, Shapley values offer insights into instance-level predictions by assign-
ing fair credit to individual features for participation in prediction-explaining interactions. 
Explanation methods such as SHAP are commonly used to understand and debug black-
box models. We refer the reader to Lundberg and Lee (2017) for a detailed overview of the 
method.

5.5  Summary of strengths and limitations of propositionalization and embeddings

Let us summarize the unified presentation of propositionalization and embeddings by pre-
senting the strengths and weaknesses of the two approaches. The main strength of propo-
sitionalization is the interpretability of the constructed features, while the main strength 
of embeddings is high performance of classifiers learned from embeddings due to their 
compact representation in a vector space.

In terms of their strengths, both approaches to data transformation are: (a) automated, 
(b) fast, (c) semantic similarity of instances is preserved in the transformed instance space 
(as a remark, due to a more compact representation, embeddings preserve semantic simi-
larity of features even better than propositionalization), (d) transformed data can be used as 
input to standard propositional learners, as well as to contemporary approaches.

In addition to these characteristics, embeddings have other favorable properties: (a) 
embedded vectors representations allow for transfer learning, e.g., for cross-lingual appli-
cations in text mining or image classification from different types of images, (b) cover a 
very wide range of data types (text, relations, graphs, images, time series), and (c) have a 
very wide community of developers and users, including industry.

In terms of their limitations when used in a multi-relational setting, both approaches to 
data transformation: (a) are limited to 1-many relationships (cannot handle many-to-many 
relationships between the connected data tables), (b) cannot handle recursion, and (c) can-
not be used for predicate invention.

In addition to these characteristics, limitations of propositionalization include: (a) only 
boolean values are used in the transformed vector space, (b) generated sparse vectors can 
be memory inefficient, (c) limited range of data types are handled (relations, graphs), and 
(d) a small community of developers and users (mainly from ILP).

Embeddings also have several limitations: (a) loss of explainability of features and con-
sequently of the models trained on the embedded representations, (b) many user-defined 
hyper-parameters, (c) high memory consumption due to many weights in neural networks, 
and (d) requirement for specialized hardware (GPU) for efficient training of embeddings, 
which may be out of reach for many researchers.

6  Proposed unification methodology and its two implementations

The unifying aspects analyzed in Sect. 5 can be used as a basis for a unifying methodology 
that combines propositionalization and embeddings, and benefits from the advantages of 
both. The propositionalization successfully captures relational information through com-
plex relational feature construction, but results in a sparse symbolic feature vector represen-
tation. This weakness can be successfully overcome by embedding the constructed feature 
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vectors into a lower dimensional numeric vector space, resulting in a condensed numeric 
feature vector representation appropriate for use by modern deep learning algorithms.

To this end, we describe two novel data transformation algorithms, combining proposi-
tionalization and embedding based transformations into a joint data transformation frame-
work. We first briefly outline the two approaches in Sect. 6.1, followed by their detailed 
descriptions in Sect. 6.2.

6.1  Outline of proposed data transformation and learning methods

We first overview the proposed unifying data transformation approaches. The first, named 
PropDRM, is an instance-based data transformation approach. The second one is a feature-
based data transformation pipeline, called PropStar. The approaches are outlined in the 
next two subsections.

6.1.1  PropDRM: an instance‑based approach

The first unifying approach for embedding of multi-relational databases is based on Deep 
Relational Machines (Dash et al. 2018) (DRMs), presented in Sect. 4.3.3. Rather than using 
the output of Aleph’s feature construction approach, as was the case in the DRM implemen-
tation of Dash et al. (2018), we implemented a variant of this approach, capable of learning 
directly from large, sparse matrices that are returned by the Wordification (Perovšek et al. 
2015) approach to propositionalization of relational databases. In this work, following the 
paradigm of propositionalization by Wordification, each instance is described by a bag (a 
multiset that allows for multiple appearances of its elements) of features of the form Table-
Name_AttributeName_Value. Wordification treats these simple easily interpretable features 
as ‘words’ in the transformed Bag-Of-Words representation. In this work, they represent 
individual ‘relational items’ and we use the notation (table.name, column.name, value).

Relational representations are thus obtained for individual instances, resulting in embed-
dings of instances (e.g., molecules, persons, companies etc). Batches of instances are then 

Fig. 3  Overview of the PropDRM instance-based embedding methodology, based on DRMs. Note that fea-
tures in the propositionalized relational database represent either single features fi or conjuncts of features, 
e.g., fi ∧ fj , given that Wordifications constructs both feature forms. For simplicity, the propositionalized 
database shows only two instances
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fed to a neural network, which performs the desired down-stream task, such as classifica-
tion or regression. Schematically, the approach is illustrated in Fig. 3.2

Note that although propositionalization and subsequent learning are conceptually two 
distinct steps, they are not necessarily separated when implemented in practice: as neural 
networks operate with small batches of input data, if propositionalization is capable of sim-
ilar batch functionality, relational features can be generated in a lazy manner when needed 
by the neural network. The technical details of the proposed PropDRM implementation are 
presented in Sect. 6.2.2.

When compared to our PropStar algorithm presented in Sects. 6.1.2 and 6.2.3 below, 
the key difference of the outlined DRM-based implementation of the unifying methodol-
ogy is the type of embeddings: PropDRM embeds instances (i.e. whole bags of constructed 
features), whereas PropStar embeds features along with the class values in the same vector 
space.

6.1.2  PropStar: a feature‑based approach

In this section, we outline the proposed PropStar algorithm for classification via feature 
embedding. Its details and implementation are presented in Sect. 6.2.3. Unlike the Prop-
DRM algorithm, where each embedding vector represents a single data instance, the idea 
of PropStar is to use embedding vectors to represent the features of the data set. Here, indi-
vidual relational features, obtained as the result of propositionalization by Wordification, 
are used by a supervised embeddings learner to obtain representations, co-located with 
instance labels. This approach is conceptually different in the sense that representations are 
not learned for individual instances (as is the case of DRMs); instead, they are learned for 
every single relational feature that is the output of the selected propositionalization algo-
rithm (i.e. Wordification).

The fact that PropStar produces vector representations of features means that the labels 
(label=true and label=false) are also represented by vectors in the same dense space as 
the other vectors. This leads to an intuitive direct classification of new examples. We can 
observe the set of vectors representing the relational items present in the itemset represent-
ing the new example. To classify a new instance, the embeddings of the set of its features 
(i.e. true values) are averaged and the result is compared to the embedding of class labels. 
The nearest class label is chosen as the predicted value.

Figure 4 illustrates how new instances are classified by direct comparison of the repre-
sentations of their features in the latent dense semantics-preserving space that also contains 
the information on labels. The classification is based on the proximity to a given label (in 
the latent space). If the center of feature vectors of a given instance is closer to the vector 
representing the feature label=true, then the example is classified as positive.

In contrast to the instance-based embeddings discussed in Sect.  6.1.1, which relies 
on batches, the whole data set is needed to obtain representations for individual fea-
tures. To avoid high spatial complexity, this class of algorithms would ideally operate 
on sparse inputs. An example of feature-based embeddings are items that are to be rec-
ommended to users, where the representation of a given item is obtained by jointly opti-
mizing the item’s co-occurrence with other items, as well as other user’s properties. In 

2 As its last step, the methodology includes the explanation of results using the SHAP approach. However, 
as Sect. 6 focuses on our research contributions, this well known approach and its results are presented in 
Appendix D.
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a relational setting considered in this work, we follow the paradigm of propositionaliza-
tion by Wordification, where each instance is described by a bag of features of the form 
(table.name, column.name, value) . Consequently, in the PropStar approach the embed-
dings represent bags of such features and their conjunctions (of size 2). There are as many 
embeddings as there are unique features in the propositionalized representation of a given 
relational database. As such embeddings by themselves do not contain any information 
which relates them to the desired output space, target values get embedded alongside other 
features in a supervised manner.

6.2  Detailed description of proposed data transformation and learning methods

This section presents the implementations of the proposed methods, preceded by the 
description of the updates to the Wordification algorithm (Perovšek et al. 2015 for multi- 
propositionalization algorithm presented in Sect. 6.2.1. In Sect. 6.2.2 we discuss how Deep 
Relational Machines (described briefly in Sect. 4.3.3), which use neural networks for learn-
ing from relational databases, were adapted to operate on sparse matrices generated by an 
improved Wordification algorithm. In Sect.  6.2.3 we describe a novel algorithm, called 
PropStar, which embeds relational features, extracted as part of propositionalization.

6.2.1  Improving the efficiency of Wordification

In this work we significantly extend the ideas proposed in Wordification (Perovšek et al. 
2013, 2015) with the aim to maintain the classification performance, yet improve its scal-
ability. Both proposed algorithms build on the idea of Wordification, yet its use in our 
algorithms is differentiated by the following design decisions: 

1. Inputs do not need to be hosted in relational databases. PropStar operates on .sql files 
directly. The algorithm supports SQL conventions, as commonly used in the ILP com-

Fig. 4  Overview of the proposed feature-based embedding methodology PropStar. Note that embedded fea-
tures represent embeddings of single features fi or of conjuncts of features, e.g., fi ∧ fj , given that Wordi-
fications constructs both feature forms. For simplicity, the propositionalized database shows two instances 
Blank and shaded circles correspond to embedded representations of instances and features, respectively
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munity.3 This modification renders the method completely local, enabling offline exe-
cution without additional overhead. Such setting also offers easier parallelism across 
computing clusters.

2. Algorithm is implemented in Python 3 with minimum dependencies for computationally 
more intense parts, such as the Scikit-learn (Pedregosa et al. 2011), Pandas, and Numpy 
libraries (Van Der Walt et al. 2011). All database operations are implemented as array 
queries, filters or similar, unlocking the potential to run PropDRM and PropStar also 
on GPUs.

3. As shown by Perovšek et al. (2015), Wordification’s caveat is extensive sampling of (all) 
tables. We relax this constraint to close (up to second order) foreign key neighborhood, 
notably speeding up the relational item sampling part, but with some loss in terms of 
relational item diversity. For larger databases, minimum relational item frequency can 
be specified, constraining potentially noisy parts of the feature space.

One of the original Wordification’s most apparent problems is its spatial complexity. In this 
work we address this issue as follows: 

1. Relational items are hashed for minimal spatial overhead during sampling.
2. During construction of the final representation, a sparse matrix is filled based on rela-

tional item occurrence.
3. The matrix is serialized directly into list-like structures, suitable for StarSpace algorithm 

and thus we maintain minimal spatial overhead.
4. Only the final representation is stored as a low-dimensional (e.g., 32) dense matrix.

6.2.2  Detailed description of the proposed PropDRM implementation

The novelty of the proposed implementation of DRM instance-based embedding, inspired 
by the work of Dash et al. (2018), concerns its capability to effectively handle the sparse-
ness of the data with deep neural networks. The main novelty of the proposed implementa-
tion is that it is indeed capable of operating on larger, sparse matrices directly. Such capa-
bility is necessary for DRMs to be compatible with propositionalization, which yields large 
sparse matrices as the main output. Below we discuss the neural network architecture and 
its adaptations.

Let P represent a sparse item matrix, as returned by Wordification (discussed in 
Sects. 4.2.3 and 6.2.1). Note that Wordification is unsupervised, and thus does not include 
any information on instance labels. The neural network we use (termed � ) represents the 
mapping � ∶ P → C , where C is the set of classes. In this work, we experimented with 
dense feed-forward neural networks, regularized using dropout (Srivastava et  al. 2014), 
and ELU activation function (Clevert et  al. 2016) (of intermediary weights). The output 
weights are activated using sigmoid activation ( � ) in order to obtain binary predictions.

where c is the user-specified constant. For a given input matrix P, an example of a single 
hidden-layer neural network is defined as follows.

ELU(x) =

{
c(ex − 1), for x < 0

x for x ≥ 0
,

3 https ://relat ional .fit.cvut.cz/.
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Here, the � is a sigmoid activation, defined as �(x) = 1

1+e−x
 . The W1 is the weight matrix, 

P the sparse input space, and bl the bias vector of a given layer l ∈ {0, 1} . The described 
neural network returned satisfactory results, hence, we did not perform neuroevolution or 
similar large-scale search for potentially better performing architectures. Throughout this 
work, we use the binary cross-entropy loss, referred to as Loss. For a given probabilistic 
classifier, which returns a probability pij of an instance i belonging to a class j, the loss 
function is defined as follows:

Here yij is a binary value (0 or 1) indicating whether class j is the correct class label 
assigned to instance i, and C is a set of all the target classes. In the case of DRMs, where 
the instances of a relational database (one of the tables) are classified, each of the |C| output 
neurons predicts a single probability pij for a given target class j ∈ C . If the neural net-
works are trained in small batches, the results of the Loss function are averaged to obtain 
the overall loss of a given batch of instances.

Neural networks are adapted for dense inputs such as images and texts, and are not nec-
essarily suitable for large sparse matrices, as considered in this work (i.e. P). The proposed 
variant of DRMs is adapted as follows. Once the batch size bs (a free parameter) is deter-
mined, propositionalized representation P is traversed (in chunks of bs instances). Note 
that each instance is effectively a d-dimensional vector. As the neural network operates 
with dense batches, each batch is converted to a dense matrix of bs ⋅ d elements that is used 
during matrix multiplication within the neural network. The spatial complexity is thus at 
most O(bs ⋅ d) . We observed that even by considering batch size of one, the DRMs are 
stable and efficient.

6.2.3  Detailed description of the PropStar algorithm

We next present the novel feature-based embedding algorithm that can operate directly on 
the propositionalized relational databases. The proposed PropStar algorithm merges sym-
bolic and non-symbolic representations as part of a single procedure for obtaining real-
valued representations of features in arbitrary relational databases. The pseudocode of the 
PropStar algorithm is given in Algorithm 1.

� = �(WT
o
(ELU(Drop(WT

1
P + b1))) + bo).

Loss(i) =
∑
j∈C

yij ⋅ log pij.
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The algorithm consists of two main steps. First, a relational database is transformed into 
sets of features describing individual instances. The WORDIFY method constructs fea-
tures of the form (table.name, column.name, value) and uses them to describe each indi-
vidual instance (see Sect. 6.2.1 for a detailed formulation of this step).

Second, sets of relational items (features) are used as input to the StarSpace entity 
embedding algorithm (described in Sect.  4.3.2), producing embeddings for each distinct 
relational item. The StarSpace embeddings are computed using efficient C++ implementa-
tion. We wrote a wrapper which seemingly integrates the first part of PropStar (sampling 
and propositionalization) with the embedding construction. The problem is formulated as 
a multiclass classification, where the positive pair generator comes directly from a training 
set of labeled data specifying (a, b) ∈ E+ pairs where a are relational item ‘documents’ and 
b are labels (singleton features). Negative entities b−

i
 are sampled from the set of possible 

labels. Inputs can be described as (multi) sets comprised of both relational items fi , their 
conjuncts, as well as class labels ci . For example,

represents a simple input consisting of three relational items, a conjunct and the target label 
c1 . Note that we apply StarSpace in such manner that the representations are learned for 
individual relational items. A representation matrix of dimension ℝ|W|×d is produced as the 
final output (|W| represents the number of unique relational items considered). Intuitively, 
the embedding construction can be understood as determining relational item locations in a 
latent space based on their co-occurrence with other items present in all training instances. 
The wrapper can be called via ‘fit’ and ‘predict’ methods, commonly used in contemporary 
data science and machine learning. In this work, we consider the inner product similarity 

{f1, f2, f6, f6 ∧ f2, c1}
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between a pair of vectors e1, e2 for the construction of embeddings.4, i.e. The complexity 
of obtainingsim(e1, e2) = eT

1
⋅ e2. As the class labels are embedded in the same space as 

individual relational items, classification of novel bags of relational items is possible by 
direct comparison, as common tasks operating on word embeddings. We discuss this clas-
sification below.

Let M represent a novel instance to be classified. Note that M (without additional index) 
is considered a multiset of relational items. For prediction purposes, StarSpace averages 
the representations of relational items present in a given input instance (a bag). The rep-
resentation is normalized (as during training) and compared to label embeddings in the 
common space. Representation of a relational bag eM is computed (with considered hyper-
parameters) as:

which is a d-dimensional, real-valued vector. Note that ⊕ in this expression denotes ele-
ment-wise summation. The Munique represents the set of all (unique) relational features cur-
rently considered. Note that original bags of features can be redundant (multisets), yet rep-
resentations are learned for unique features. Next, the similarity of this vector is compared 
to the label embeddings in the same space. The label that is the most similar to eM is the 
top-ranked prediction, the second most similar label is the second-ranked prediction, etc. 
In this work we consider only the top-ranked prediction, resulting in the following label 
assignment:

The complexity of obtaining a single prediction is hence O(|C|) , not taking the complexity 
of scalar product for function sim into account. The PropStar algorithm first samples the 
relational items with respect to the target table (lines 2-11 in Algorithm 1). Binary indica-
tor function (relationalFeatures) is applied to obtain the propositionalized representation 
of the target table (line 12). Here, zeros represent absence of a given relational items, and 
ones their presence.5 Finally, StarSpace is used to embed the table into a low-dimensional, 
real valued embedding (line 19).

The spatial complexity of PropStar is linear with respect to the number of non-zero ele-
ments in the propositionalized version of a relational database. The exact spatial complex-
ity can be formulated as follows. Let row represent the average number of rows per table. 
Let nt represent the number of tables and col the average number of columns per table. We 
improve the original spatial complexity of O(rows ⋅ nt ⋅ 2

col) by introducing a constraint, 
which determines the maximum number of relational items that can be considered. The 
exponential term in the initial complexity thus reduces to col times some constant, yielding 
the complexity of O(rows ⋅ col ⋅ nt) . This formulation yields a scalable propositionalization.

eM =

⊕
fi∈M

efi
√

|Munique|
,

label(eM) = argmax
c∈C

[
sim(eM , ec)

]
.

4 Note that e1, e2 represent vector representations of relational items (i.e. features) in the output of proposi-
tionalization.
5 Note that in the actual implementation CSR format of sparse matrices is used to reduce the spatial over-
head of storing zeros.
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7  Experimental evaluation

In this section we describe the implementation details of the proposed methods, the rela-
tional data sets used in the experiments, and the experimental evaluation of the proposed 
methods.

7.1  Implementation and hyperparameters

We discuss how the proposed methods were implemented, along with the hyperparameters 
explored. Both new methods (PropDRM and PropStar) are implemented in Python, with 
the following exceptions. In PropDRM, the DRMs are implemented in PyTorch. For Prop-
Star we used the efficient StarSpace implementation written in C++, for which we build a 
wrapper offering basic embedding training and prediction functionality.

We used 10-fold stratified cross validation, which was conducted for individual hyper-
parameter settings. The best setting is reported, other are discussed in ablation studies. 
Experiments were performed on an of-the-shelf workstation with no GPUs (even though 
PropDRM and PropStar can exploit them). We intentionally omit the GPU-based training 
to explore the minimum hardware, required to perform competitively on the selected data 
sets—ILP baselines, such as Aleph and RSD are Prolog-based, and are to our knowledge 
not able to use multiple GPU threads simultaneously. The machine on which experiments 
were conducted had 128GB of RAM and 12 CPUs (Intel i8 series).

In PropDRM, we varied the dropout rate, learning rate, number of epochs, and the hid-
den layer size. In PropStar, we varied the number of negative samples, embedding dimen-
sion, learning rate, and the number of epochs.

The source code of our implementation is publicly available6.

7.2  Relational data sets

Five relational database sources7 (Motl and Schulte 2015) were used in the experiments. 
Their characteristics are summarized in Table 4.

Trains (Michie et al. 1994) data set is used in the East-West trains challenge problem, 
which is well-known in ILP. The East-West trains challenge is to predict whether a train 
is eastbound or westbound, based on the properties of eastbound and westbound cars. 
Trains contain variable number of cars, each having one of various shapes and carrying 
various loads.
Carcinogenesis  (Srinivasan et  al. 1997) task is to predict carcinogenicity of a diverse 
set of chemical compounds. The data set was obtained by testing different chemicals on 
rodents, where each trial would take several years and hundreds of animals. The data set 
consists of 329 compounds, of which 182 are carcinogens.
Mutagenesis (Debnath et al. 1991) task addresses the problem of predicting mutagen-
icity of aromatic and heteroaromatic nitro compounds. Predicting mutagenicity is an 
important task as it is very relevant to the prediction of carcinogenesis. The compounds 
from the data are known to be more structurally heterogeneous than in any other ILP 

6 https ://githu b.com/SkBla z/PropS tar.
7 Freely accessible at https ://relat ional .fit.cvut.cz/.
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Table 4  Properties of the experimental data tables

Trains #rows #attributes

Cars 63 10
trains 20 2

Carcinogenesis #rows #attributes

atom 9,064 5
canc 329 2
sbond_1 13,562 4
sbond_2 926 4
sbond_3 12 4
sbond_7 4,134 4

Mutagenesis 42 #rows #attributes

atoms 1,001 5
bonds 1,066 5
drugs 42 7
ring_atom 1,785 3
ring_strucs 279 3
rings 259 2

Mutagenesis 188 #rows #attributes

atoms 4,893 5
bonds 5,243 5
drugs 188 7
ring_atom 9,330 3
ring_strucs 1,433 3
rings 1,317 2

IMDB #rows #attributes

actors 7,118 4
directors 130 3
directors_genres 1,123 4
movies 166 4
movies_directors 180 3
movies_genres 408 3
roles 7,738 4

MovieLens #rows #attributes

actors 99,129 3
directors 2,201 3
movies 3,832 5
movies2actors 152,532 3
movies2directors 4,141 3
u2base 946,828 3
users 6,039 4
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data set of chemical structures. The database contains 230 compounds of which 138 
have positive levels of mutagenicity and are labeled as ‘active’. Others have class value 
‘inactive’ and are considered to be negative examples. We took the data sets from the 
original paper (Debnath et al. 1991), where the data was split into two subsets: a 188 
compound data set and a smaller data set with 42 compounds.
IMDB database is publicly available in the SQL format.8 This database contains tables 
of movies, actors, movie genres, directors, and director genres. The data set used in our 
experiments encompasses only movies whose titles and years of production appear in 
the IMDB’s top-250 and bottom-100 chart (Snapshot taken on July 2, 2012). The snap-
shot contains 166 movies, along with all of their actors, genres and directors. We des-
ignate movies present in the IMDB top-250 chart as positive examples, and those in the 
bottom-100 as negatives.
MovieLens data set from the UC Irvine machine learning repository.9 The data set is 
similar to IMDB above, however is much larger. Overall, the database consists of more 
than 1.2 million instances. The task is to predict gender of the movie database’s users.

7.3  Results

We present the results of the empirical evaluation of the proposed methodologies on the 
presented set of standard benchmark ILP data sets. The accuracies of individual learners 
are given in Table 5, and the AUC scores are reported in Table 6. The results for Aleph, 
RSD, RelF and Wordification were taken from previous work of Perovšek et al. (2015).

It can be observed that the proposed unifying approaches perform competitively on 
most data sets. We can observe a distinct difference in performance on the Mutagenesis 
data sets, where both PropDRM as well as PropStar do not outperform the baselines on 
the smaller data set (Mut42), yet notably outperform the (best) baselines on the larger one 
(Mut188). Further, minor improvement over the baseline algorithms is also achieved on 
Carcinogenesis data set.

In terms of spatial complexity, the proposed methodology greatly outperforms the alter-
natives under a given set of constraints. Only PropDRM and PropStar scale to very large 
relational databases without specialized hardware. Detailed studies regarding the sensitiv-
ity of PropDRM and PropStar to their parameters are discussed in Appendices B and C, 
respectively.

We consider the presented results as very favorable for the two proposed approaches. In 
particular, PropStar is better than current state-of-the-art methods on 3 out of 6 data sets, 
and is therefore a method to take into consideration when attempting to solve any new rela-
tional problem.

7.3.1  Study of propositionalization projections

The considered propositionalization is entirely unsupervised. Only once the symbolic rep-
resentations of instances are obtained, PropDRM and PropStar learn the associations to 

9 https ://relat ional .fit.cvut.cz/datas et/Movie Lens.

8 http://www.webst epboo k.com/suppl ement s/datab ases/imdb.sql.
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individual classes. A good representation, however, already contains relevant information 
on the instance space. In Fig. 5, we projected the propositionalized Mutagenesis 188 and 
Trains instance space to two dimensions to qualitatively explore whether instances group 
or any meaningful patterns emerge. Understanding whether the symbolic space exhibits 
distinct structure on its own could offer insights into why the proposed methods perform 
well. For projecting the 10,000 dimensional space to two dimensions we used UMAP, a 
recently introduced non-linear dimensionality reduction method based on insights from 
manifold theory (McInnes et al. 2018).

We can observe an apparent distinction in the clustering of the UMAP projections of 
the two propositionalized data sets. The Mutagenesis 188 data set consists of two distinct 
clusters that, when colored according to the class labels, approximately correspond to the 
two classes (Fig. 5a). On the other hand, the clustering is not apparent in the case of the 
Trains data set (Fig. 5b), where the instances do not group distinctly. The purpose of the 
considered visualizations is twofold. First, we show how the symbolic space can exhibit 
clustering properties, related to properties of instances such as class labels. Next, we show 
that projections do not necessarily exhibit such properties, indicating potentially harder 
classification problems. We believe that UMAP and similar tools offer insights into repre-
sentation structure.

Table 5  Classification accuracy on different relational data sets

The best score for each dataset is in bold
For the proposed methods, we report average performance over 5 runs. The runs, marked with—were una-
ble to finish in 12 h

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains MovieLens
MajorityVote 0.55 0.73 0.67 0.69 0.50 0.72

Aleph (Perovšek et al. 2015) J48 0.55 0.73 0.60 0.69 0.55 –
Aleph (Perovšek et al. 2015) SVM 0.55 0.73 0.60 0.69 0.70 –
RSD (Perovšek et al. 2015) J48 0.60 0.75 0.68 0.98 0.60 –
RSD (Perovšek et al. 2015) SVM 0.56 0.73 0.71 0.69 0.80 –
RelF (Perovšek et al. 2015) J48 0.60 0.70 0.75 0.76 0.65 –
RelF (Perovšek et al. 2015) SVM 0.56 0.73 0.69 0.76 0.80 –
Wordification (Perovšek et al. 

2015)
J48 0.62 0.82 0.67 0.98 0.50 –

Wordification (Perovšek et al. 
2015)

SVM 0.61 0.73 0.82 0.79 0.50 –

Aleph (replicated) J48 0.55 – 0.80 0.76 0.70 –
Aleph (replicated) SVM 0.55 – 0.80 0.79 0.60 –
RSD (replicated) J48 0.56 0.84 0.88 0.92 0.60 –
RSD (replicated) SVM 0.60 0.82 0.89 0.84 0.80 –
Wordification (replicated) J48 0.47 0.85 0.91 0.88 0.90 0.60
Wordification (replicated) SVM 0.39 0.80 0.83 0.33 0.50 0.72
Treeliker J48 0.58 – 0.77 0.81 0.50 –
Treeliker SVM 0.60 – 0.90 0.80 0.70 –
PropDRM 0.63 0.73 0.91 0.86 0.70 0.72
PropStar 0.66 0.74 0.92 0.90 0.80 0.74
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7.3.2  Statistical comparison of PropDRM and PropStar

In previous sections, we demonstrated that both PropDRM and PropStar perform well on 
the considered data sets, indicating that both approaches are successfully unifying proposi-
tionalization and embeddings. We further study the differences in performances of the two 
approaches. For this purpose, we employ the hierarchical Bayesian t-test, a Bayesian test 
capable of comparing a pair of classifiers across multiple data sets (Benavoli et  al. 2017; 
Corani et al. 2017). For this comparison, we selected the overall best performing hyperpa-
rameter sets for each method, and conducted ten repetitions of stratified ten-fold cross valida-
tion (for each data set). The results are visualized as probability distributions across the space 
of both classifiers and the ‘rope’ region (region of practical equivalence) within which the 
two classifiers perform the same. The size of this region is a free parameter of the hierarchical 

Table 6  AUC scores on individual data sets

The best score for each dataset is in bold
We report average performance over 5 runs. The runs, marked with—were unable to finish in 12 h

Propositionalization Learner Carc. IMDB Mut188 Mut42 Trains Movies

Aleph (from Perovšek et al. 2015) J48 0.50 0.50 0.68 0.50 0.55 –
Aleph (from Perovšek et al. 2015) SVM 0.50 0.50 0.68 0.50 0.70 –
RSD (from Perovšek et al. 2015) J48 0.59 0.59 0.54 0.96 0.60 –
RSD (from Perovšek et al. 2015) SVM 0.52 0.50 0.58 0.50 0.80 –
RelF (from Perovšek et al. 2015) J48 0.59 0.66 0.68 0.68 0.75 –
RelF (from Perovšek et al. 2015) SVM 0.52 0.50 0.54 0.62 0.75 –
Wordification (from Perovšek et al. 2015) J48 0.61 0.75 0.55 0.96 0.95 –
Wordification (from Perovšek et al. 2015) SVM 0.58 0.50 0.78 0.65 0.50 –
Alpeh (replicated) J48 0.50 – 0.71 0.72 0.70 –
Aleph (replicated) SVM 0.50 – 0.75 0.73 0.60 –
RSD (replicated) J48 0.55 0.71 0.87 0.92 0.60 –
RSD (replicated) SVM 0.58 0.65 0.90 0.73 0.80 –
Wordification (replicated) J48 0.48 0.72 0.90 0.86 0.90 0.52
Wordification (replicated) SVM 0.42 0.62 0.81 0.50 0.50 0.50
Treeliker J48 0.58 – 0.75 0.71 0.50 –
Treeliker SVM 0.58 – 0.88 0.68 0.70 –
PropDRM 0.63 0.68 0.90 0.87 0.80 0.54
PropStar 0.63 0.66 0.87 0.87 0.95 0.56

(a) (b)

Fig. 5  Two UMAP projections of selected propositionalized data sets
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t-test, and was set to 0.05 in this work. Other parameters of the test were left as defaults. The 
exact methodology for the interested reader is explained by Benavoli et al. (2017).

In terms of AUC, the probabilities returned by the Bayesian test were as follows: 
p(PropStar) = 0.07 and p(PropDRM) = 0.54 ), and in terms of classification accuracy, 
p(PropStar) = 0.96 and p(PropDRM) = 0.04 . The results of statistical analysis indicate that 
with respect to AUC performance, the two approaches perform similarly, even though the prob-
ability that PropDRM will outperform PropStar is higher. With respect to the classification accu-
racy, PropStar outperforms PropDRM in majority of comparisons. Thus, considering the 95% 
or higher as the probability denoting significance boundary, we can determine that PropStar is 
(significantly) more suitable choice if accuracy is being optimized for. As Bayesian comparisons 
are computationally expensive, we compared the two methods using default hyperparameter set-
tings. The PropStar’s default configuration is not necessarily optimal when AUC is considered.

8  Conclusions and further work

This paper first provides a critical survey of propositionalization and embedding tech-
niques, especially relevant for relational learning and inductive learning programming. 
While both data approaches, propositionalization and embeddings, aim at transforming 
data into the tabular data format, the research papers describing the approaches use dif-
ferent terminology and task definitions, claim to have different goals, and are used in very 
different contexts. In this paper, we define the main categories of data transformation tech-
niques based on the representation they use and approaches employed. Propositionalization 
approaches produce tabular data from multirelational databases as well as from a mixture 
of tabular data and background knowledge in the form of logic programs or networked 
data, including ontologies. Knowledge stored in graphs can be assessed with commu-
nity detection and graph traversal methods. Relations described with similarity matrices 
are encoded in a numeric form using matrix factorization. Currently, the most promising 
approach to data transformations are neural networks based methods which can be applied 
to text, graphs, and other entities for which we can define a suitable similarity function.

One of the main strategic problems machine learning has to solve is better integration 
of knowledge and models across different domains and representations. While the research 
area of embeddings can unify different representations in a numeric space, symbolic learn-
ing may be an essential ingredient for integration of different knowledge areas. We see 
our PropStar approach that combines advantages of propositionalization and neural embed-
dings in the same data fusion pipeline as a step in that direction.

The first minor contribution of the paper is that our exposition is based on three cogni-
tive representation levels introduced by Gärdenfors (2000), i.e. neural, spatial, and sym-
bolic. As most of human knowledge is stored in the symbolic form, while the most powerful 
machine learning algorithms take as input spatial representations, this explains a plethora of 
techniques that transform other forms of human knowledge into the spatial representation 
space. The next contribution is the unifying framework in which we describe propositionali-
zation and embedding techniques in terms of their joint properties and their differences. We 
show how the propositionalization techniques can be merged with deep neural network based 
embedding to produce a joint embedding, such that spatial representation can be used with 
any deep learning algorithm and the predictions can be comprehensively explained. The main 
contributions of our work are thus the two implementations that merge propositionalization 
and embeddings in the same unifying methodology. The first is an efficient reimplementation 
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of existing Deep Relational Machines, while the second one is the novel Deep Proposition-
alization algorithm. We also contribute an experimental evaluation of the two algorithms and 
show favorable results in terms of predictive performance, as well as time and space require-
ments. The source code of both algorithms, DeepProp and PropDRM, is publicly available.10

In further work, it is worth investigating the integration of symbolic and deep learn-
ing, considering them as multitask learning approaches which try to integrate many differ-
ent learning tasks and use embeddings as input representations. The issue is that different 
embedding methods have so far only been used in isolation. We already address this chal-
lenge in the current work of the authors, where we combine complementary embedding 
methods from different classes: in particular, to use network traversal methods to produce 
initial embeddings that are then refined using a deep neural network (Škrlj et al. 2019).
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Appendix A: Wordification example

The Wordification approach is illustrated on a modified and substantially simplified version 
of the well-known East-West Trains domain (Michie et al. 1994). Our input database con-
sists of just two tables shown in Fig. 6, where we have only one east-bound and one west-
bound train, each with just two cars with certain properties11.

The TRAIN table is the main table and the trains are the instances, with a class label 
denoting the direction of the train (east of west). As Fig. 7 shows, a multiset (a bag) of 
features is generated for each train t1 and t5 with the class label appended to the resulting 
feature vector (bag of features). Both single features and conjunctive features are shown in 
this example.

10 https ://githu b.com/SkBla z/PropS tar.
11 Note that in the experiments we use the standard version of the East-West Trains domain.
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Fig. 6  Example input for Wordification in the East-West Trains domain

Fig. 7  The database from Fig.  6 in the bag-of-features representation (as in the original Wordification 
implementation, conjunctions of features are denoted by a long underscore instead of ∧)

(a) Dependence on hidden layer size. (b) Dependence on the number of epochs.

(c) Dependence on the learning rate. (d) Dependence on Dropout.

Fig. 8  Sensitivity of PropDRM to hyperparameter settings
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Appendix B: Ablation study—PropDRM

We discuss the impact of individual hyperparameters on the performance of PropDRM. We 
first visualize the performance of PropDRM w.r.t. individual hyperparameters in Fig. 8.

We can observe that the relevance of individual hyperparameters varies from data set to 
data set. The learning rate, when too small, decreases the performance. In terms of embed-
ding dimension, even smaller dimensions are sufficient for the considered data sets. This 
result potentially implies that the considered data sets are relatively small and contain 
only a small set of relevant features (when propositionalized). Thus, if the neural network 
detects the correct features as relevant, not many parameters are needed for a successful 
classification. An alternative explanation would imply that PropDRM learns hierarchi-
cal representations efficiently, albeit not optimized with their hierarchical nature in mind, 
which was previously demonstrated to capture hierarchical relations well (Nickel and Kiela 
2017).

ality.
(a) Dependence on embedding dimension- (b) Dependence on the number of epochs.

(c) Dependence on the learning rate. (d) Dependence on the maximum negative
sampling number.

Fig. 9  Sensitivity of PropStar to various hyperparameter settings
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Appendix C: Ablation study—PropStar

We first explore the behavior with respect to various hyperparameter settings and visual-
ize them in Fig. 9. We can observe that the amount of negative samples (Subfigure 9d)) 
impacts the PropStar’s performance the most on the mutagenesis 42 data set, overall reduc-
ing the performance, even though a handful of models (outliers marked as dots) perform 
well. This indicates the importance of negative sample selection. As StarSpace does not 
use any sophisticated technique for sampling negative examples, the variability in perfor-
mance could be notable due to this parameter.

It can be observed that a relatively small relational item embedding dimensionality is 
needed for successful performance. The dependence on other parameters varies from data 
set to data set. For example, the learning rate does not impact the larger Mutagenesis data 
set (Mut188) as much as it does the Trains data set. As the proposed methodology is not 
well adapted to such small data sets (e.g., tens of instances), large variability in perfor-
mance could be linked to potential overfitting. Further, sufficient number of epochs are 
needed for PropStar to converge on individual data sets.

Appendix D: Interpretability of embedding‑based methods using 
SHAP

The approximation power of deep neural network which are commonly used with embed-
dings comes at a cost of lesser interpretability. Compared to symbolic relational (or propo-
sitional) learners, one cannot understand the deep relational models’ deductive process by 
inspecting the model. However, post hoc explanation methods for prediction models can 
be used to better understand which parts of the feature space are relevant for the neural 
network’s individual predictions. In this work, we leverage the state-of-the-art explanation 
tool SHAP (Lundberg and Lee 2017), based on the coalitional game theory. This tool cap-
tures the importance of interactions between features with Shapley values.

When considered in a feature importance scenario, the contribution of the i-th instance 
�i , is approximated by SHAP with the following expression:

where S is a subset of all features F, f is the used predictive model, and xS is an instance 
containing only features from the subset S. Shapley valufs offer insights into instance-level 
predictions by assigning fair credit to individual features for participation in interactions. 
They are commonly used to understand and debug black-box models.

In this work, we use the SHAP kernel approximator, the recently introduced, model-
agnostic method for explaining model outputs. The used SHAP kernel explainer is consid-
ered an additive feature attribution method. Such methods are characterized as having an 
explanation model g that is a linear function of binary variables:

𝜏i =
∑

S⊆F⧵{i}

|S|!(|F| − |S| − 1)!

|F|!
�������������������������������������

All possible subsets

[
f (xS∪{i}) − f (xS)

]
���������������������

Difference in predictive performance
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where z� ∈ {0, 1}|F| , |F| is the number of input features and �i ∈ ℝ . This class of models 
assign an effect �i to each feature, and summing the effects of all such feature attributions 
approximates the output f(x) of the original model. Detailed theoretical analysis of how this 
idea can be extended to approximation of outputs via a kernel is given in Lundberg and Lee 
(2017).

As an example demonstrating the explainability of the two paradigms, we visualize 
the Shapley values as explanations of learned classifiers for Mutagenesis 188 problem in 
Fig. 10. Explanations indicate parts of the feature space that have the largest impact on the 
model’s output. Even though the considered SHAP kernel explainer is known to be a com-
putationally expensive variant of SHAP (it is also the most general one), explanations were 
obtained in the order of minutes, indicating the potential of this methodology for explana-
tions of predictors in larger relational databases.
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