
This project has received funding from the European
 Union's Horizon 2020 research and innovation
programme under grant agreement No 825153

EMBEDDIA
Cross-Lingual Embeddings for Less-Represented
Languages in European News Media

Research and Innovation Action
Call: H2020-ICT-2018-1
Call topic: ICT-29-2018 A multilingual Next generation Internet
Project start: 1 January 2019 Project duration: 36 months

D1.9: Final interpretability and visualisation technology (T1.4)

Executive summary
The objectives of workpackage WP1 of the EMBEDDIA project are to advance cross-lingual word
embedding technologies, together with methods for deep learning, and methods for explanation and
visualisation of their outputs. The aim of T1.4 is to address advancement of explanation and visu-
alization technologies for text-based deep learning approaches. Deep neural networks are currently
the most successful approach for natural language processing and understanding. Unfortunately, the
internal functioning of neural networks is incomprehensible for humans. In this report, we extend our
prior work on adapting explanation of machine learning models to the specifics of text processing
with deep neural networks. We present TransSHAP, an adaption of explanation methods for the
most successful transformer neural network, and a novel visualisation based on the this method. As
current explanation methods can be misled by adversarial attacks, we have developed a new method
that makes explanations more robust by using advanced sampling techniques within explanation
techniques SHAP, LIME, and IME. To generate semantic explanations of explanation method output
we have developed ReEX, an explanation generalization procedure that makes use of anthologies to
produce semantic explanations from the output of explanation techniques, such as SHAP. Visualisation
design and validation is improved when task based requirements are clearly established. We present
a task based analysis of visualisation techniques for explanation methods and investigate their
applicability for explanations of text based models. We have extended our previous work on AttViz, a
neural network inspection tool, with an offline component that enables more computationally intensive
analysis, which was not supported by the previous online version.

Partner in charge: UEDIN

Project co-funded by the European Commission within Horizon 2020
Dissemination Level

PU Public PU
PP Restricted to other programme participants (including the Commission Services) –
RE Restricted to a group specified by the Consortium (including the Commission Services) –
CO Confidential, only for members of the Consortium (including the Commission Services) –

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Deliverable Information

Document administrative information

Project acronym: EMBEDDIA

Project number: 825153

Deliverable number: D1.9

Deliverable full title: Final interpretability and visualisation technology

Deliverable short title: Final interpretability and visualisation technology

Document identifier: EMBEDDIA-D19-FinalInterpretabilityAndVisualisationTechnology-T14-
submitted

Lead partner short name: UEDIN

Report version: submitted

Report submission date: 30/06/2021

Dissemination level: PU

Nature: R = Report

Lead author(s): Shane Sheenan (UEDIN), Saturnino Luz (UEDIN), Marko Robnik-Šikonja
(UL)

Co-author(s): Enja Kokalj (JSI), Blaž Škrlj (JSI), Senja Pollak (JSI), Domen Vreš (UL)

Status: draft, final, x submitted

The EMBEDDIA Consortium partner responsible for this deliverable has addressed all comments re-
ceived. Changes to this document are detailed in the change log table below.

Change log

Date Version
number

Author/Editor Summary of changes made

21/05/2021 v1.0 Shane Sheehan (UEDIN) Initial version
01/06/2021 v1.1 Shane Sheehan (UEDIN) Internal review draft
01/06/2021 v1.2 Marko Robnik-Šikonja (UL) Improvements to the text
02/06/2021 v1.3 Shane Sheehan (UEDIN) Add ReEX section
02/06/2021 v1.4 Shane Sheehan (UEDIN) Shorten introduction and robustness section
03/06/2021 v1.5 Shane Sheehan (UEDIN) Add future work and improve text
08/06/2021 v1.6 Hannu Toivonen (UH) Internal Review
09/06/2021 v1.7 Matthew Purver (QMU) Internal Review
22/06/2021 v1.8 Shane Sheehan (UEDIN) Ready for quality control
22/06/2021 prefinal Nada Lavrač (JSI) Quality control finalized
28/06/2021 final Shane Sheehan (UEDIN) Final version
30/06/2020 submitted Tina Anžič (JSI) Report submitted

2 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Table of Contents

1. Introduction .. 5

1.1 Interpretability and visualization of machine learning models .. 5

1.2 Contributions and structure of the deliverable ... 6

2. Background and related work .. 6

2.1 Deep neural networks for text classification... 6

2.2 Explanation methods for text classification .. 7

2.3 Explanation visualisations for text classification... 8

3. Explanation methods adapted for text classification ..10

3.1 TransSHAP: The SHAP method adapted for BERT ...11

3.2 Robustness of explanations and malicious attacks..12

3.3 ReEx: Semantic Reasoning from Model-Agnostic Explanations ...16

4. Contributions to visualization techniques for text classification ..17

4.1 TransSHAP: Visualization of a prediction explanation for the BERT model18

4.2 Visual variable analysis of SHAP visualisations for text ...19
4.2.1 SHAP visualisation tasks ...19
4.2.2 Data abstraction for SHAP text visualisation ...24
4.2.3 Visual encoding applicability to text explanations...25
4.2.4 Suggested Encoding designs and improvements ...30

4.3 AttViz library: statistical analysis of the attention space ..30
4.3.1 Dissecting the token space...32
4.3.2 Visualization of attention head focus..32

5. Conclusions ...32

6. Associated outputs ..35

References ..36

Appendix A: BERT meets Shapley: Extending SHAP Explanations to Transformer-based Classifiers ..39

Appendix B: Better Sampling in Explanation Methods can Prevent Dieselgate-Like Deception45

Appendix C: Semantic Reasoning from Model-Agnostic Explanations. ...69

Appendix D: Exploring Neural Language Models via Analysis of Local and Global Self-Attention
Spaces ..75

3 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

List of abbreviations
AI Artificial Intelligence
ANN Artificial Neural Networks
BERT Bidirectional Encoder Representations from Transformers
DNN Deep Neural Network
GLUE General Language Understanding Evaluation
gLIME Generator based LIME
gSHAP Generator based SHAP
IME Interactions-based Method for Explanation
JSON JavaScript Object Notation
LIME Local Interpretable Model-agnostic Explanations
ML Machine Learning
MCD-VAE Variational autoencoder with Monte Carlo dropout
NLP Natural Language Processing
RNN REcurrent Neural Networks
RBF Radial Basis Functions
rbfDataGen RBF data generator
SVM Support Vector Machines
SHAP SHapley Additive exPlanations
TransSHAP The SHAP method adapted for BERT
TreeEnsemble Random forest ensemble data generator
TEnsFillIn TreeEnsemble which fills in values

4 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

1 Introduction
The objectives of workpackage WP1 of the EMBEDDIA project are to advance cross-lingual word em-
bedding technologies, together with methods for deep learning, and methods for explanation and visu-
alisation of their outputs. The aim of T1.4 is to address advancement of explanation and visualization
technologies for text-based deep learning approaches.

Recent developments in artificial intelligence (AI) and in particular in machine learning (ML) have
brought this technology into the center of public interest and have increased the requirements for its
transparency – it is natural that people affected by automated decisions of algorithms want to get feed-
back and understand the reasoning process and biases of the underlying models.

Two types of technological approaches to increased transparency exist: interpretability approaches
and visualization of ML models. These two approaches, focused on natural language processing (NLP)
approaches, are the topic of this report, which summarizes the work performed in task T1.4 Interpretability
and visualization of the EMBEDDIA project.

1.1 Interpretability and visualization of machine learning models

Machine learning models are a crucial component of natural language processing applications. Unfor-
tunately, most of the top performing machine learning models are "black boxes", in the sense that they
do not offer an introspection into their decision processes or provide explanations of their predictions
and biases. This is true for Artificial Neural Networks (ANN), Support Vector Machines (SVM), and all
ensemble methods (for example, boosting, random forests, bagging, stacking, and multiple adaptive re-
gression splines). Approaches that do offer an intrinsic introspection, such as decision trees or decision
rules, do not perform so well or are not applicable in many cases (Meyer et al., 2003). To alleviate this
problem, two types of model explanation techniques have been proposed. The first type of methods
are general, based on perturbations of inputs, and therefore applicable to any prediction model. The
second type of methods are specific to certain learning methods such as neural networks and exploit
the internal information available during training of these methods.

The general explanation approaches try to efficiently capture the causal relationship between inputs
and outputs of the given model. To this end, they perturb the inputs in the neighborhood of a given in-
stance to observe effects of perturbations on the model’s output. Changes in the outputs are attributed
to perturbed inputs and used to estimate their importance for a particular instance. Examples of this
approach are methods IME (Štrumbelj & Kononenko, 2010), LIME (Ribeiro et al., 2016), and SHAP
(Lundberg & Lee, 2017). These methods can explain models’ decision for each individual predicted
instance as well as for the model as a whole. The computed impacts of individual inputs can be visual-
ized in the form of histograms. However, these explanation techniques and their visualizations are not
adapted to text-based classifiers as their explanations are in the form of lists of impactful words for each
individual decision. For texts with their sequential and structurally dependent nature, this is insufficient.
In addition, explanation techniques are not adapted to state-of-the-art neural networks such as BERT
(Devlin et al., 2019), which use subword input.

Recent research has shown that existing explanation methods that internally generate additional sam-
ples, such as IME, LIME and SHAP, mentioned above, are susceptible to adversarial attacks which can
trick users into believing that irrelevant attributes are responsible for the given prediction (Slack et al.,
2020a). This has put their robustness into question by showing that their outcomes can be manipulated
due to inadequate perturbation sampling employed. This weakness would allow owners of sensitive
models to deceive inspection and hide potentially unethical or illegal biases existing in their predictive
models. Such possibility could undermine public trust in machine learning models and give rise to legal
restrictions on their use.

5 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

1.2 Contributions and structure of the deliverable

This report describes the results of the work performed in T1.4 from the midpoint of the task at M18 until
the task end at M30. The main contributions presented in this report (in the order of appearance) are
as follows:

1. Updates to the adaptation of explanation method SHAP to state-of-the-art text classification method
BERT, is described in Section 3.1. The paper describing this work (Kokalj et al., 2021) is included
as Appendix A.

2. In Section 3.2 we present defense against adversarial attacks on explanation methods; we show
that better sampling in these explanation methods prevents malicious manipulations and that the
proposed sampling using data generators improves LIME and SHAP’s robustness. The paper
describing this work (Vreš & Robnik-Šikonja, 2021) is included as Appendix B.

3. ReEx (Reasoning with Explanations), a semantic explanation method which makes use of ontolo-
gies, is presented in Section 3.3. This method is applicable to explanations generated by arbitrary
instance-level explainers, such as SHAP. The paper describing this work (Stepišnik Perdih et al.,
2021) is included as Appendix C.

4. The adaptation and evaluation of visualizations for text classification method BERT is described in
Section 4.1. The paper describing this work (Kokalj et al., 2021) is included as Appendix A.

5. A study of SHAP visualisation tasks is presented in Section 4.2. We identify core tasks supported
by visualisation for tabular data and investigate their applicability for text based SHAP explana-
tions.

6. An offline analysis component for our AttViz system described in Section 4.3; this component
enables analysis of BERT’s self attention heads in an offline setting where more computationally
intensive analysis is possible. This work is part of the associated outputs, listed in Section 6. The
paper describing this work (Škrlj et al., 2021) is included as Appendix D.

This task generates explanations and visualisations of the models employed in WP3, WP4, and WP5.
The technologies will be integrated into frameworks developed in WP6.

2 Background and related work
In this section, we present a short overview of explanation and visualization techniques, with a focus on
deep neural networks and text.

2.1 Deep neural networks for text classification

Deep learning (LeCun et al., 2015; Goodfellow et al., 2016) differs from other machine learning al-
gorithms by allowing computational models that are composed of multiple processing layers to learn
representations of data with multiple levels of abstraction.

Text is usually treated as a sequence by deep neural networks. Sequences can be of different length and
typically there is some dependency between different positions in a sequence (e.g., a verb in a sentence
may determine the subsequent choice of nouns). A standard choice of neural network architecture for
sequences is recurrent neural networks (RNN) in which the state at each point in the sequence depends
on not only the current input but also the previous state. The information from the previous processing
steps persists in the network, effectively allowing the network to memorize previous processing, which
is well suited for sequences. RNNs are very effective in processing speech, text, signals, and other
sequential data. RNNs also introduce many challenges, for example the convergence of learning to
stable weights is much slower.

6 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Recently, BERT (Bidirectional Encoder Representations from Transformers) (Devlin et al., 2019), a new
state-of-the-art deep neural network approach to language modeling, text classification, and contex-
tual embeddings was introduced. BERT generalises the idea of language models to masked language
models—inspired by cloze (gap filling) tests—which test the understanding of a text by removing a cer-
tain portion of words that the participant is asked to replace. The masked language model randomly
masks some of the tokens from the input, and the task of the language model is to predict the miss-
ing token based on its neighbourhood. BERT uses the transformer ANN architecture (Vaswani et al.,
2017), uses both left and right context in predicting the masked word, and further introduces the task
of predicting whether two sentences appear in a sequence. The input representations of BERT are
sequences of tokens representing subword units. Some very common words are kept as single tokens,
others are split into subwords (e.g., common stems, prefixes, suffixes—if needed down to single-letter
tokens). The original BERT project offers pre-trained English, Chinese and multilingual models; the
latter is trained on 104 languages simultaneously. BERT has shown excellent performance on 11 NLP
tasks: 8 from the GLUE (General Language Understanding Evaluation) benchmark (Wang et al., 2018),
question answering, named entity recognition, and common-sense inference.

Rather than training an individual classifier for every classification task, which is resource and time
expensive, a pre-trained multilingual BERT language model is used and fine-tuned on a specific task.
Trained on huge text collections, BERT stores general language representation that is successfully
exploited in many tasks, Frequently, this approach requires less task-specific data.

The use of BERT in a token classification task only requires adding a final layer (number of neurons
equals the number of class values in the intended task) with softmax activation, and connections be-
tween its last hidden layer and the new neuron. To classify a sequence, one usually takes the vector
for the special class token (CLS) before the classification layer to reduce the dimensionality. The fine-
tuning process is then applied to either only the last layer of the network, or, more frequently, to the
whole network. In the latter case all parameters of BERT and new class-specific weights are fine-tuned
jointly to maximize the log-probability of the correct labels.

2.2 Explanation methods for text classification

Due to recent successes of Deep Neural Networks (DNNs) in image recognition and NLP, several expla-
nation methods specific to these two application areas emerged. For example, in language processing,
Arras et al. (2017) applied layer-wise relevance propagation to a convolutional neural network. The
explanations indicate how much individual words contribute to the overall classification decision. In
this section we focus on a general class of explanation methods, which are applicable to all types of
classifiers but may need specific adaptations for use in text classification. While we demonstrate our
adaptations of these methods on the BERT model, these adaptations are applicable to other DNN mod-
els as well.

General explanation methods can be applied to any classification model which makes them a useful tool
both for interpreting models (and their predictions) and comparing different types of models. By mod-
ification of feature values of interest, what-if analysis is also supported. Such methods cannot exploit
any model-specific properties (e.g., gradients in ANN) and are limited to perturbing the inputs of the
model and observing changes in the model’s output (Robnik-Šikonja & Kononenko, 2008; Lemaire et
al., 2008; Štrumbelj & Kononenko, 2010). Most explanation methods can provide two types of explana-
tions for prediction models: explanation of predictions for individual instances, and model explanations.
Model explanations work by summarizing a representative sample of instance explanations to show the
properties of the whole model.

The key idea of the perturbation-based explanation method is that the contribution of a particular input
value (or set of values) can be captured by “hiding” that input and observing how the output of the model
changes. As such, the key component of general explanation methods is the expected conditional
prediction – the prediction where only a subset of the input variables is known. Let Q be a subset of the
set of input variables Q ⊆ S = {X1, ... ,Xa}. Let pQ(yk |x) be the expected prediction for x, conditional on

7 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

knowing only the input variables represented in Q:

pQ(yk |x) = E(p(yk)|Xi = x(i), ∀Xi ∈ Q). (1)

Therefore, pS(yk |x) = p(yk |x). The difference between pS(yk |x) and pQ(yk |x) is a basis for explanations.
In practical settings, the classification function of the model is not known – one can only access its
prediction for any vector of input values. Therefore, exact computation of pQ(yk |x) is not possible and
sampling-based approximations are used.

In principle, to understand the behaviour of a prediction model, one would have to observe its behavior
for all subsets of input features and their values. Such a procedure demands 2a steps, where a is the
number of attributes (i.e. features), and results in the exponential time complexity. A solution was pro-
posed in (Štrumbelj & Kononenko, 2010) by observing that the contribution of each variable corresponds
to the Shapley value for the coalitional game of a players. Here, players correspond to input features,
and the coalitional game corresponds to the prediction of an individual instance.

The original Shapley values deal with a coalition of a players that cooperate and together generate a
certain overall gain. Shapley values represent a solution to the problem of finding the fairest distribution
of gain among all players, which takes into account the importance of each player in obtaining that
gain (Shapley, 1953). In the case of explaining a prediction the instance’s feature values form a coalition
which causes a change in the prediction. This change represents the difference between the prediction
for this instance and the expected prediction if no feature values are given (i.e. default class is predicted).
The gain is divided among feature values in a way that reflects their impact (i.e. average marginal
contribution across all possible sub-coalitions) on the change in the prediction.

The methods discussed in this work, IME (Štrumbelj & Kononenko, 2010), SHAP (Lundberg & Lee,
2017), and LIME (Ribeiro et al., 2016), are the state-of-the-art explanation methods. They are all based
on the Shapley value approximation principle (Lundberg & Lee, 2017). They estimate the impact of
a particular feature on the prediction of a given instance by perturbing similar instances. For textual
problems the perturbation process is nontrivial, as the generation of new perturbed text instances may
produce completely uninformative texts.

2.3 Explanation visualisations for text classification

Figure 1: Visualization of prediction explanation with LIME.

The visualization approaches implemented for the explanation methods LIME and SHAP are primarily
designed for explanations of tabular data and images, see Figure 1 and Figure 13. The visualisation is
presented with words along the vertical axis and in order of decreasing explanation contribution. This

8 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 2: Force visualization of prediction explanation with SHAP, taken from the SHAP python package documen-
tation.

removes the sentence structure and familiar horizontal representation from this visual encoding of a
text fragment explanation. Although the visualization for LIME includes adjustments for text data, the
resulting explanations are presented in the form of histograms that are sometimes hard to understand.
The text fragment is presented along with the bar visualisation and a quantitative color scale is used to
overlay the explanation contribution onto the words.

The SHAP force visualization (Lundberg et al., 2018) for the same sentence is illustrated in Figure 2.
Here, the features with the strongest impact on the prediction correspond to longer arrows that point in
the direction of the predicted class. These force diagrams can be difficult to interpret when sentence
order is maintained but some explanation contribution arrows face in different directions. In this case
the additive nature of the explanation contribution to a prediction is overlooked. Alternatively, positive
and negative contributions can be grouped together increasing the interpretability of the explanation
overview but reducing the readability of the text fragment in combination with the explanation contribution
values. These force diagrams are also used to create a summary visualisation of multiple explanation
instances from a dataset, see Figure 14. These force summaries are easy to construct for tabular
data where alignment of the explanation instances can be achieved using common features. However,
for textual data the alignment is difficult due the the lack of common features across instances. In
Section 4.2 we investigate visualisations available for SHAP explanations of models based on tabular
data. The goal of the analysis is ti identify tasks not currently served by existing text based SHAP
explanation visualisation.

Figure 3: Interactive exploration of LIME explanation instances by Sawada & Toyoda (2019). The left-hand side is
a heat map matrix as an overview of a large set of local explanations. The right-hand side is a detail view
to display information and the local explanation of the designated instance.

Sawada & Toyoda (2019) propose a heatmap overview of explanation scores for each feature and
explanation instance in a dataset, see Figure 3. The heatmap is constructed such that explanation
instances which contain a large number of the same features (words) with similar explanation scores are
positioned close together. These explanation instances can through selection be further investigated,
via a bar plot of explanation score and colored text fragment similar to the visualisation commonly used
for LIME explanations (Figure 1).

Recent developments in the generation of hierarchical explanations (Jin et al., 2019; Chen et al., 2020),
which can now be applied to BERT, enable the visualisation of explanation hierarchies consisting of

9 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 4: Hierarchical Explanations generated via feature interaction detection by Chen et al. (2020). This hierar-
chical explanation visualisation presents a set of features in each timestep (t).

Figure 5: Hierarchical Explanation of a prediction by the BERT Transformer model created by Jin et al. (2019).
Explanations are generated for all the phrases on the truncated constituency parsing tree, with positive
sentiments shown in red and negative sentiments shown in blue

word and multi-word explanation contributions. These hierarchies are visualised as a tree, where the
root node is the full text fragment and the hierarchy of explained features are displayed as subtrees.
Each node in the tree contains a text fragment or single word and is colored according to the polarity
and size of the associated contribution to the prediction, for example see Figures 4 and 5

3 Explanation methods adapted for text classifica-
tion

Many modern deep neural networks including transformer networks (Vaswani et al., 2017) (e.g., BERT-
like models) split the input text into subword tokens. This is very convenient for morphologically rich
languages such as the less-resourced EMBEDDIA languages. However, perturbation-based explana-
tion methods (such as IME, LIME, and SHAP) have problems with text input and in particular subword
input, as the credit for a given output cannot be simply assigned to syntactic units such as words,
phrases, or sentences.

In Deliverable D1.5 we described the adaptions we have made to these these explanation methods to
allow them to work with state-of-the-art text models such as BERT. In Section 3.1 we provide a brief
description of our recent work on TransSHAP the SHAP method adapted for BERT. This work builds

10 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

upon the the adaptions described in Deliverable D1.5.

Recently, Slack et al. (2020b) put the robustness of explanation methods, such as IME LIME and SHAP,
into question by showing that their outcomes can be manipulated due to inadequate perturbation sam-
pling. This weakness would allow owners of sensitive models to deceive inspection and hide potentially
unethical or illegal biases existing in their predictive models. Such possibility could undermine public
trust in machine learning models and give rise to legal restrictions on their use.

In Deliverable D1.5 we presented a short description of the work in progress on making explanation
methods more robust. In Section 3.2, we describe in detail our work on making explanation methods
more robust and prevent possible adversarial attacks which can mislead users applying existing expla-
nation methods.

In Section 3.3 we present ReEx, one of the first approaches capable of semantic generalization of model
explanations obtained by contemporary tools such as SHAP.

3.1 TransSHAP: The SHAP method adapted for BERT

We propose an adaptation of SHAP for BERT-like classifiers, but the same principles are trivially trans-
ferred to LIME and IME. The proposed adaptation is described in (Kokalj et al., 2021), included as
Appendix A.

To understand the behavior of a prediction model applied to a single instance, one should observe per-
turbations of all subsets of input features and their values, which results in exponential time complexity.
Štrumbelj & Kononenko (2010) showed that the contribution of each variable corresponds to the Shap-
ley value from the coalition game, where players correspond to input features, and the coalition game
corresponds to the prediction of an individual instance. Shapley values can be approximated in time
linear to the number of features.

The model-agnostic implementation of the SHAP method, named Kernel SHAP1, requires a classifier
function that returns probabilities. Since SHAP contains no support for BERT-like models that use
subword input, we implemented custom functions for preprocessing the input data for SHAP, to get the
predictions from the BERT model, and to prepare data for the visualization.

Figure 6 shows the components required by SHAP in order to generate explanations for the predictions
made by the BERT model. The text data we want to interpret is used as an input to Kernel SHAP along
with the special classifier function we constructed, which is necessary since SHAP requires numerical
input in a tabular form.

To achieve this, we first convert the sentence into its numerical representation. This procedure consists
of splitting the sentence into tokens and then preprocessing it. The preprocessing of different input
texts is specific to their characteristics (e.g., tweets). The result is a list of sentence fragments (with
words, selected punctuation marks and emojis), which serves as a basis for word perturbations (i.e.
word masking). Each unique fragment is assigned a unique numerical key (i.e. index). We refer to a
sentence, represented with indexes, as an indexed instance.

In summary, the TransSHAP’s classifier function first converts each input instance into a word-level
representation. Next, the representation is perturbed in order to generate new, locally similar instances
which serve as a basis for the constructed explanation. This perturbation step is performed by the
original SHAP. Then the perturbed versions of the sentence are processed with the BERT tokenizer
that converts the sentence fragments to sub-word tokens. Finally, the predictions for the new locally
generated instances are produced and returned to the Kernel SHAP explainer. With this modification,
SHAP is able to compute the features’ impact on the prediction (i.e. the explanation).

We demonstrate our TransSHAP method on tweet sentiment classification. The dataset contains 87,428
English tweets with human annotated sentiment labels (positive, negative and neutral). For tweets we

1We use the Kernel SHAP implementation of the SHAP method: https://github.com/slundberg/shap.

11 of 82

https://github.com/slundberg/shap

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 6: TransSHAP adaptation of SHAP to the BERT language model by introducing our classifier function.

split input instances using the TweetTokenizer function from NLTK library2, we removed apostrophes,
quotation marks and all punctuation marks except for exclamation and question marks. We fine-tuned
the CroSloEngual BERT model (Ulčar & Robnik-Šikonja, 2020) on this classification task and the result-
ing model achieved the classification accuracy of 66.6%.

We have adapted explanation methods to work with text based models such as BERT. To adapt the
visualization of predictions for text, we modified the histogram-based visualizations used in IME, LIME
and SHAP for tabular data. The details of this visualisation adaption and its evaluation is presented in
Section 4.1.

3.2 Robustness of explanations and malicious attacks

In this section we provide an overview of our work in the use of better generators in LIME and SHAP to
make them more resistant to the adversarial attacks. The work is detailed in (Vreš & Robnik-Šikonja,
2021), included as Appendix B

Slack et al. (2020b) presented an attack on explanations where the attacker creates an adversarial
(biased) model whose behavior it wants to hide from explanation methods, e.g., a racist model that
does not grant credits to blacks. As Figure 7 illustrates, a part of the attacker’s adversarial model is
an unbiased model, which, e.g., does not take disputed attributes such as race into account. The
adversarial model tries to manipulate the explanation method by behaving like an unbiased model on
perturbed instances used for the explanation. In this case, it uses the unbiased model’s output. On
instances from the original distributions that are a part of the regular model use, the adversarial model
uses the biased model’s output. To distinguish between the original and perturbation-sampled data, the
adversarial model contains a decision model that selects the right type of model (biased or unbiased)
based on the predicted type of instances.

We proposed a defense against adversarial attacks on explanation methods that replaces the prob-
lematic perturbation sampling with a better one, thereby making the explanation methods more robust.
We want to generate the explanation data in such a way that the attacker cannot determine whether

2https://www.nltk.org

12 of 82

https://www.nltk.org

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 7: The idea of the attack on explanation methods based on the difference of distributions. The attacker’s
adversarial model contains both the biased and unbiased model. The decision function that is part of the
cheating model decides if the instance is outside the original distribution (i.e. used only for explanation)
or an actual instance. If the case of an actual instance, the result of the adversarial model is equal to the
result of the biased model, otherwise it is equal to the result of the unbiased model.

an instance is sampled or obtained from the original data. With an improved sampling, the adversarial
model shown in Figure 7 shall not determine whether the instance x was generated by the explanation
method, or it is the original instance the model has to label. With a better data generator, the adversarial
model cannot adjust its output properly and the deception becomes ineffective.

The reason for the weakness of LIME and SHAP is inadequate sampling used in these methods. LIME
samples new instances by adding Gaussian noise to the normalized feature values. SHAP samples new
examples from clusters obtained in advance with the k-means algorithm from the training data.

Instead of using the Gaussian noise with LIME, we generate explanation samples for each instance with
one of the three better data generators We use three data generators based on different algorithms,
modeling the distribution of the training set: variational autoencoder with Monte Carlo dropout (Miok et
al., 2019), RBF network (Robnik-Šikonja, 2016), and random forest ensemble (Robnik-Šikonja, 2019). In
the remainder of the section, we refer to the listed generators consecutively as MCD-VAE, rbfDataGen,
and TreeEnsemble.

In the proposed improvment to SHAP, using the MCD-VAE and TreeEnsemble generators, the distri-
bution set D is generated in the explained instance’s vicinity. In the sampled instances, some feature
values of the explained instance are replaced with the generated values. Here, the well-informed gen-
erators consider dependencies between features detected in the original distribution. This will make
the distribution of the generated instances very similar to the original distribution. Consequently, the
attacker will not be able to recognize the generated instances used in explanations.

We call the improved explanation methods gLIME and gSHAP (g stands for generator-based). Us-
ing better generators in the explanation methods, the adversarial model’s decision function will less
likely determine which predicted instances are original and which are generated for the explanation
purposes.

The advantage of generating the distribution set close to the observed instance is demonstrated in
Figure 8. The graphs show the PCA-based 2D space of the COMPAS dataset’s (Angwin et al., 2016)

13 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

evaluation part. The left-hand side shows the SHAP-generated sampled instances using the k-means
algorithm (14 clusters determined by the silhouette score ((Rousseeuw, 1987)). The sample produced
with the MCD-VAE generator in gSHAP is shown on the right-hand side. This sample is much more
similar to the original distribution compared to the SHAP sampling.

Figure 8: Visual comparison of original and sampled distributions for the COMPASS dataset. The SHAP k-means
based generator (left) produces instances less similar to the original data, compared to the MCD-VAE
generator (right).

We test the robustness of gLIME, gSHAP, and gIME against the adversarial models. To be more re-
alistic, we equipped the adversarial models with the same improved data generators we used in the
explanation methods. It is reasonable to assume that attackers could also use better data generators
when preparing their decision function, making their attacks much stronger. As the evaluation metric for
the success of deception, we use the proportion of instances where the adversarial model deceived the
explanation methods so that they did not detect sensitive attributes as being important in the prediction
models.

To evaluate the robustness of the explanation methods with added generators (i.e. gLIME, gSHAP, and
gIME), we split the data into training and evaluation set in the ratio 90% : 10%. We used the same training
set for the training of adversarial models and explanation methods. We transformed categorical features
with more than two values into one-hot-encoded (binary) features.

We simulated the adversarial attack for every combination of generators used in explanation methods
and adversarial models (except for method IME, where we did not use rbfDataGen, which cannot gener-
ate instances in the neighborhood of a given instance). When testing SHAP, we used two variants of the
TreeEnsemble generator: generating new instances around the explained instance and generating new
instances according to the whole training set distribution. In the LIME testing, we used only the whole
training set variant of TreeEnsemble. In the IME testing, we only used the variant of TreeEnsemble that
fills in the hidden values (called TEnsFillIn variant). For training the adversarial models, we used the
whole training set based variant of TreeEnsemble, except for IME, where we used the TEnsFillIn variant.
These choices reflect the capabilities of different explanation method and attempt to make both defense
and attack realistic (as strong as possible).

In all cases, the biased model b was a simple function depending only on the value of the sensitive
feature. While this choice is overly simplistic, it allows us to measure the number of cases where the use
of the biased classifier was detected as the number of instances where sensitive features were identified
as the most important ones. Even in more realistic scenarios, biased classifiers’ decisions would rely
on values of sensitive features, therefore these features would strongly contribute to their decisions and
would be recognized by explanation methods. Note that the choice of the biased classifier has no effect
on its deployment as decision model d is trained using all features.

On COMPAS and Communities and Crime (CC) data set (Redmond & Baveja, 2002), we simulated two
attacks, one with a single unrelated feature (the result of ψ depends only on the value of the unrelated
feature 1), and another one with two unrelated features. In this way, we can compare the success of
attacks when the unbiased model is simple and when its decisions are based on interactions of features.

14 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

gLIME

gSHAP

gIME

Figure 9: The robustness results for gLIME (top), gSHAP (middle), and gIME (bottom). The graphs show the
proportion of evaluation set instances, where the sensitive feature was recognized as the most important
by the used explanation method. Rows represent the generators used for explanations. The column
labels consist of the name of the data set on which the experiment was performed and the name of
the generator used for training of the adversarial model. Compas2 and CC2 denote an attack with two
independent features. Perturbation represents the original sampling used in LIME, SHAP, and IME,
TEnsFillIn represents the TreeEnsemble variant where new instances are generated around the given
one, and TreeEns represents the generation from the whole distribution.

Again, the choice of one or two features determining the results of unbiased model ψ does not affect
deployment of the biased classifier as the decision model d is trained on all features, and both unrelated

15 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

features are created independently from one another and from all other features.

For every instance in the evaluation set, we recorded the most important feature according to the used
explanation method (i.e. the feature with the largest absolute value of the contribution as determined
by the explanation method). The results are shown as a heatmap in Figure 9. The green color means
that the explanation method was deceived in less than 30% of cases (i.e. the sensitive feature was
recognized as the most important one in more than 70 % of the cases as the scale on the heatmap
suggests), and the red means that it was deceived in more than 70% of cases (the sensitive feature
was recognized as the most important one in less than 30 % of the cases as the scale on the heatmap
suggests). We consider deception successful if the sensitive feature was not recognized as the most
important by the explanation method (the sensitive features are the only relevant features in biased
models b).

The results suggest that gLIME method is more robust with the addition of rbfDataGen and TreeEnsem-
ble than LIME and less robust with the addition of MCD-VAE. This suggests that parameters for MCD-
VAE were not well-chosen, and this pattern repeats for other explanation methods. Both TreeEnsemble
and rbfDataGen make gLIME considerably more robust on COMPAS and German datasets, but not on
the CC dataset. We believe the reason for that is that features in CC are strongly interdependent, and
many represent the same attribute as a fraction of value, e.g., we have the share of the white population,
the share of the Asian population, and so on. This interdependence dictates that all fractions have to
add up to 1. The data generators are unlikely to capture such strong conditional dependencies, but the
adversarial model’s decision function is likely to approximate it.

The gSHAP method is most robust when using the TreeEnsemble generator, but it shows less robust
behavior than the gLIME method. The reason for that could be in the feature value replacement strategy
used by the SHAP and gSHAP methods, which change only some of the feature’s values with the help
of the distribution set. This can lead to out-of-distribution instances if the instances in the distribution set
are not close enough to the explained instance. With gLIME, we generate complete instances that are
more likely to be in the distribution of the training set.

IME is quite robust even with the perturbation sampling, as we expected. This suggests that IME is
the most robust of all three tested explanation methods and shall be considered the chosen method
in sensitive situations. The gIME results when using the TreeEnsemble generator (TEnsFillIn variant)
are comparable to the original IME variant results. This suggests that sampling from a smaller data
set, which represents the neighborhood of the explained instance, does not decrease the method’s
robustness.

3.3 ReEx: Semantic Reasoning from Model-Agnostic Explanations

In this section, we provide an overview of ReEx (Reasoning with Explanations), a method applicable to
explanations generated by arbitrary instance-level explainers, such as SHAP. The paper describing this
work (Stepišnik Perdih et al., 2021) is included as Appendix C.

By using background knowledge in the form of ontologies, ReEx generalizes instance explanations in a
least general generalization-like manner. The resulting symbolic descriptions are specific for individual
classes and offer generalizations based on the explainer’s output. The derived semantic explanations
are potentially more informative, as they describe the key attributes in the context of more general
background knowledge.

Figure 10 shows the procedure for generating semantic explanations for a data item. ReEx does not
require that the data item be textual, if an ontology exists which maps the data attributes, semantic
explanations of the class predictions can be generated. The first stage in the procedure uses Kernel
SHAP (Lundberg & Lee, 2017) to generated explanations for the data items in a dataset, after which
the individual explanation instances are used to aggregate the most relevant features for each class in
the dataset. The reasoning step of the procedure uses the most relevant features and an ontology to

16 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 10: Overview of ReEx. Given a data set where the attributes map to a domain ontology, ReEx first produces
and aggregates the instance-level explanations. Top attributes are selected iteratively (vertical lines in
the second sub-image of the three vectors), followed by a reasoning procedure, which exploits the
explicitly given relations (within the ontology) to generalize the mapped terms into higher-level semantic
terms. Generalizations are obtained for each class (last sub-figure).

generate semantic generalization using two proposed generalization schemes, Selective staircase and
Ancestry.

Our work on ReEX evaluates these two different reasoning paradigms, showing both schemes out-
perform generic generalization commonly employed by e.g., statistical enrichment analysis approaches.
Further, we demonstrate how ReEx can produce logical explanations comprised of semantic term con-
juncts, specific for individual classes – these types of explanations offer direct insight into the back-
ground relevant to classifying a given instance into a particular class. Further detail can be found in
Appendix C.

4 Contributions to visualization techniques for text
classification

In this section we explain our contributions to visualisation techniques for text classification with deep
neural networks. In Section 4.1, we show how the TransSHAP technique (introduced in Section 3.1) can
be used as a novel visualisation for explanations of text classification models such as BERT. The paper
describing this work (Kokalj et al., 2021) is included as Appendix A.

Visualisation design models, such as the nested model of visualisation design (Munzner, 2009), call
for a greater emphasis on problem specification in terms of domain, tasks, and data abstraction in
visualisation design and validation. In Section 4.2 we conduct a task based analysis of visualisations
available in the SHAP python library. This analysis examines the tasks supported for tabular data and
investigated their applicability to explanations of text based classification models.

In Deliverable D1.5 the AttViz tool was presented. Here, in Section 4.3, we present additional work
on an offline component of the AttViz tool designed to address some of the limitations of the online
version.

17 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

4.1 TransSHAP: Visualization of a prediction explanation for the BERT
model

Figure 11: TransSHAP visualization of prediction explanations for negative sentiment. We obtained the features’
contribution values with the SHAP method. It is evident that the word ‘hate’ strongly contributed to the
negative sentiment classification, while the word ‘lol’ (laughing out loud) slightly opposed it.

To make a visualization of predictions better adapted to texts, we modified the histogram-based visu-
alizations used in IME, LIME and SHAP for tabular data. Figure 11 is an example of our visualization
for explaining text classifications. It was inspired by the visualization used by the LIME method but we
made some modifications with the aim of making it more intuitive and better adapted to sequences.
Instead of the horizontal bar chart of features’ impact on the prediction sorted in descending order of
feature impact, we used the vertical bar chart and presented the features (i.e. words) in the order they
appear in the original sentence. In this way, the graph allows the user to compare the direction of the
impact (positive/negative) and also the magnitude of impact for individual words. The bottom text box
representation of the sentence shows the words colored green if they significantly contributed to the
prediction and red if they significantly opposed it.

We evaluated the novel visualization method using an online survey. The targeted respondents were
researchers and PhD students not involved in the study that mostly had some previous experience with
classifiers and/or their explanation methods. In the survey, the respondents were presented with three
visualization methods on the same example: two visualizations were generated by existing libraries,
LIME and SHAP, and the third one used our novel TransSHAP library. Respondents were asked to
evaluate the quality of each visualization, suggest possible improvements, and rank the three meth-
ods.3

The results of 38 completed surveys are as follows. The most informative features of the visualization
layout recognized by the users were the impact each word had on a prediction and the importance of
the word contributions shown in a sequential view. The positioning of the visualization elements for
each of the three methods was rated on the scale of 1 to 5. Our method achieved the highest average
score of 3.66 (63.1% of the respondents rated it with a score of 4 or 5), second best was the LIME
method with an average score of 3.13 (39.1% rated it with 4 or 5), and the SHAP method was rated
as the worst with an average of 2.42 (81.5% rated it with 1 or 2). Regarding the question whether they
would use each visualization method, LIME scored highest (44.7% voted “Yes”), TransSHAP closely

3The survey questions are available here: https://forms.gle/icpYvHH78oE2TCJt7.

18 of 82

https://forms.gle/icpYvHH78oE2TCJt7

ICT-29-2018 D1.9: Final interpretability and visualisation technology

followed (42.1% voted “Yes”), while SHAP was not praised (34.2% voted “Yes”). The overall ranking
also corresponds to these results. LIME got the most votes (54.3%), TransSHAP was voted second
best (40.0% of votes), and SHAP was the least desirable (5.7% of votes). In addition, we asked the
participants to choose the preferred usage of the method out of the given options. The TransSHAP and
SHAP methods were considered most useful for the purpose of debugging and bias detection, while
the LIME method was also recognized as suitable for explaining a model to other researchers (usage in
scientific articles).

4.2 Visual variable analysis of SHAP visualisations for text

In this section we present an analysis of visualisation tasks for SHAP explanations of text. This work is
currently unpublished but is described in detail here.

The goal of this analysis was to explore the relevance of current Shapley additive explanation (SHAP)
(Lundberg & Lee, 2017) visualisations for models built on textual data. To do this, in Section 4.2.1,
we investigated the tasks supported by current SHAP visualisations applied to tabular data. The tasks
we identify are assumed to be relevant for general explanation interpretation due to the inclusion of
these visualisations in the SHAP python package4. However, since many of these visualisations are not
designed for textual data we cannot expect them to fully support the requirements of visualising SHAP
explanations of text. We aimed to make explicit the high level tasks enabled by each of the examined
visualisations so that we can investigate if these tasks are currently supported for explanations of text.
From the examined visualisations we identified eight high level tasks which are currently supported for
visual interpretation of SHAP explanations for tabular data.

We explored the unique requirements and attributes of text visualisation for SHAP explanations in Sec-
tion 4.2.2. Following this exploration the available data attributes were compared to the visual variables
used to encode them. To do this comparison we made use of Bertins visual variables (Bertin, 1983) and
Mackinlays proposed ranking of their perceptual efficiency for different data types (Mackinlay, 1986),
see Figure 12. This analysis identified that five of the eight tasks are not well supported for text by
current SHAP visualisations. This visual variable analysis can be found in Section 4.2.3.

To address gaps which were identified between the available designs and their applicability to the identi-
fied tasks, we propose potential improvements from a visualisation design perspective. We suggest that
a visualisation technique based on concordance analysis could be used to address many of the under
supported tasks and that for visualising explanations of long texts techniques such as spark lines could
improve the support for the tasks. We These proposed designs are suggested in Section 4.2.4.

4.2.1 SHAP visualisation tasks

Existing SHAP explanation visualisations are primarily designed for visualising explanations of models
developed on tabular data. The visualisations implemented by the SHAP python package are the main
focus of this analysis. We examine these existing tabular focused visualisations along with some addi-
tional text specific SHAP visualisations to establish a list of tasks currently supported by visualisation
tools.

Some visualisation techniques exist in the SHAP package for interpreting SHAP explanations on image
datasets. We choose to ignore those in this analysis as the mapping to tasks related to textual data is
not clear.

Visualisations which display the SHAP value for each of the features in an explanation instance as a
bar are a popular representation (Figure 1, Figure 13 and Figure 11). In the SHAP package waterfall
diagrams (Lundberg et al., 2020) are used to visualise instance explanations (Figure 13). The main
feature of these visualisations is the presentation of both, the feature labels from explained instance,

4https://github.com/slundberg/shap

19 of 82

https://github.com/slundberg/shap

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 12: Visual variable rankings per data type. The visual variables closer to the top are more effective at
encoding information of the associated data type.

Figure 13: Waterfall diagram of a SHAP explanation instance of tabular data, taken from the SHAP python package
documentation.

and their corresponding Shapley value. These visualisations use bars to convey the size of the SHAP
contribution of each feature to the prediction of a class. The contribution to the prediction can be positive
or negative for each feature and this polarity is often encoded using color and and/or direction of the
bar.

The SHAP feature contributions decompose a model’s prediction into additive explanatory variables,
when the SHAP values for each feature in an explanation instance are presented together the visu-
alisation provides an overview of the prediction explanation. For tabular data these SHAP values are

20 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

often reordered by the absolute SHAP vlaue of the features. The general task which can be identified
in this type of visualisations is to visually present an explanation instance using the SHAP values as-
sociated with each feature in the instance. The values of the features themselves are not used in this
visualisation.

We can split this task further into; providing an overview of the explanation of an instance of a model’s
prediction, and presenting the detail of the Shapley value for each feature’s contribution to the prediction.
The merits of different encoding choices, such as bar or waterfall charts, and vertical or horizontal
layouts will be discussed in Section 4.2.3 after tasks have been mapped to data abstractions. The first
task we have identified is:

• Visualise a generated explanation instance using the SHAP values associated with each feature.

Figure 14: Multiple SHAP explanation instance overview visualisation using aligned force plots for each instance,
taken from the SHAP python package documentation.

Another visual encoding of SHAP explanations is the force diagram (Lundberg et al., 2018), see Fig-
ure 2. This encoding represents the SHAP values of each feature as a bar, however, in this visualisation
the bars are stacked. Stacking the bars reduces the amount of space required for the explanation by
using a single axis for both the feature and explanation variables. This visualisation appears to serve
the same task as the other bar style explanation visualisations. However, this visualisation is often used
as a component for creating an overview of model predictions for multiple instance explanations in visu-
alisations similar to Figure 14. When these force visualisations are presented together the result is an
overview of the SHAP values across the model instances. This suggests that the task supported by the
SHAP force diagram is comparison of instance explanations.

When a large number of instances are visualised together the visualisation reordering is often enabled.
Multiple reordering schemes can be interactively investigated. Prediction score, selected feature values,
selected feature SHAP values and similarity scores based on either feature or SHAP values are all
possible reordering schemes. This view provides an overview of the explained predictions and is helpful
for identify trends in feature contributions for a predicted class.

These force diagrams have been applied to explanations of textual data. However, the comparison of
multiple instance in the case of text is more difficult due to the large number of features in the dataset
(words) and sparsity of the features in each explanation instance. In tabular data often each explanation
instance will use the same features or contain the majority of the features used in the dataset, for textual
data this is not the case. From the analysis of these two complementary visualisations we add the
following two tasks to our taxonomy:

• Compare SHAP values across multiple explanation instances.

• Examine similar explanation instances from a dataset.

21 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 15: SHAP scatter plot visualisation for comparing SHAP and feature values for tabular data, taken from the
SHAP python package documentation.

The SHAP dependence scatter plot, see Figure 15, is used to compare the quantitative feature values
and SHAP values for a single feature across a dataset. Interactions with an additional feature can be
investigated by colouring the points using a quantitative color scale. The tasks we can identify are
comparison of SHAP values for a single feature with the feature values of that feature across an entire
dataset, and investigating the relationship between an additional feature and the SHAP and feature
values of the feature of interest. These tasks can be summarised as:

• Investigate relationship between SHAP values and feature values for a single feature across a
dataset.

• Compare two features, using both SHAP and feature values.

Figure 16: Beehive visualisation of SHAP value per feature across a tabular dataset, taken from the SHAP python
package documentation.

The beeswarm plot provides a means of investigating the interaction between SHAP and feature values
across a dataset. Figure 16 shows an example of a beeswarm plot for a dataset with nine features. In
this visualisation the the SHAP values for multiple features are presented and the points are colored

22 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 17: Bar plot of mean SHAP value for each feature across a dataset, taken from the SHAP python package
documentation.

to display the feature value associated with each SHAP value, for each instance. Each points x-axis
position represents the SHAP value of the associated feature in one of the classified instances. Color is
used to represent the quantitative feature value for each point.

This visualisation enables comparison of the magnitude and direction of SHAP values associated with
each feature in combination with the overlay feature values. The beeswarm plot offers an overview
of the SHAP distribution for each feature and the association between the feature values and SHAP
values.

The beeswarm plot is, essentially, a feature focused overview of the explanation contribution across
the dataset. It trades the additive view of an individual explanation (which is maintained in force plot
overviews) for emphasis on global feature contribution to predictions. The interactions between SHAP
feature contributions are not supported in this visualisation. The tasks supported by this visualisation
are investigating global feature contribution to predictions across a dataset, investigating the interaction
between feature values and feature contributions for each feature in a dataset.

Another visualisation used to explore SHAP contributions across a dataset is based on simple bar plots,
see Figure 17. In this visualisation mean feature contribution to predictions across the dataset can be
easily compared between features. The value of the features are not presented in this visualisation.
This visualisation supports the task of comparing the size of the SHAP values for each feature across a
dataset. This task is similar to “investigating global feature contribution to predictions across a dataset”
and is combined for our analysis. The tasks are summarised as:

• Investigating global feature contribution to predictions across a dataset.

• Investigating the interaction between feature values and feature contributions for each feature in
the dataset.

• Comparing the magnitude of SHAP values for each feature across a dataset.

For tree based models the SHAP framework can compute pairwise SHAP interaction values. These
values are then plotted against the values of one of the features and colored by the other to reveal in-
teraction effects between the two features. These interaction plots (fig. 18) are used to identify pairwise
feature values where the explanations are correlated with the features. The task these plots support
is the investigation of the interactions between SHAP values for feature pairs and their feature val-
ues.

23 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 18: Interaction plot of pairwise SHAP interaction values for two features, taken from the SHAP python pack-
age documentation.

We have identified eight tasks through this analysis , these tasks may not all be applicable or useful for
explanation of predictions based on textual data. This may not be an exhaustive list of task supported
by these visualisations, To summarise, here are the eight tasks we have identified which are currently
supported in SHAP framework for tabular data:

1. Visualise an explanation instance using the SHAP values associated with each feature.

2. Compare multiple explanation instances.

3. View similar explanation instances from a dataset

4. Investigate the relationship between SHAP values and feature values for a single feature across a
dataset.

5. Investigate the relationship between SHAP and feature values for a feature compared with one
other feature.

6. Investigating the global SHAP feature contribution to predictions across a dataset.

7. Investigating the interaction between feature values and feature contributions for each feature in
the dataset.

8. Investigate the interaction between pairwise SHAP feature contributions and their feature values.

4.2.2 Data abstraction for SHAP text visualisation

In this section we attempt to identify the attributes of SHAP explanations for text which are available
to be visualised. We do this so that we can design and evaluate visual encodings using the mapping
between visual variables and data attributes.

One consideration when visualising textual information are the ordinal properties of text. Sentences
contain information encoded by both the meaning of words and by their order within a sentence. When
explanations are presented using word or sub-word features the context of the sentence can influence
the interpretation even if the model is not contextually aware. One of the key properties of some state
of the art approaches to language modeling, such as BERT, is the use of contextual information by the

24 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

model. Black box explanation methods ignore model specific considerations, however when visualising
explanations of models which are contextually aware an emphasis on the ordinal properties of the
underlying data could provide more informative explanations.

Predictions for textual data can be made for textual units, for example sentence level predictions or doc-
ument level class predictions. This should be considered when designing visualisations. Visualisations
serving the tasks we have identified should consider sentence level predictions and predictions on text
spans longer than an individual sentence.

The dimensionality and sparsity of the underlying textual data often make it challenging to visualise in the
same manner as tabular numeric and categorical data. For example, when comparing the explanations
generated for two sentences it is likely many of the words will not occur in both. This makes it difficult
to compare explanation instance as most of the features in the dataset will not be present in any one
explanation instance.

A further consideration is that that all of the the features (words) in each explanation do not have an
easily interpretable quantitative value. While the words may be represented by the model using a
numerical value or embedding vector, the values may not be available when using black box explanation
methods. Even if available, these numerical representations of words are difficult to interpret and not
usually considered in black box explanation methods where the goal is to explain the predictions made
by a model rather than its internal behaviour.

With these considerations in mind we now describe a data abstraction of textual model explanations,
consisting of instance and dataset level data attributes.

At the instance level the data abstraction has attributes; ordered word positions, text length (number
of features), categorical feature values (words) and quantitative additive explanation values for each
word. The model prediction can be considered as a categorical variable and also as a quantitative value
(prediction score). Additional attributes such as part of speech for each word could be considered a
data attribute, but since these are not available from the SHAP explanation they will not be included in
the data abstraction.

At the dataset level the data abstraction also has several attributes. The collection of instances which
make up the dataset may have an associated ordinal property. This ordinal property of the instances
could be used to represent position in an ordered dataset (e.g., sentences from a single document,
temporally annotated data), or some other ordinal property of the instances (e.g., low to high class
prediction score).

The quantitative values of word count and SHAP value totals per word can be calculated across all
explanation instances. Similarly positional or windowed word counts and SHAP value totals can be
calculated across all instances, these provide quantitative values for feature interactions in terms of
word co-occurrence and cumulative co-occurring SHAP value.

4.2.3 Visual encoding applicability to text explanations

In this section we consider SHAP visualisation tasks, identified in Section 4.2.1, in the context of vi-
sualising SHAP explanations of text. The goal is to identify differences between the data required for
the tasks and the information available in the specific case of SHAP explanations of text based models.
In addition, existing visualisations are evaluated in terms of their encoding efficiency and suitability for
these tasks when visualising results of SHAP explanations of text based models.

Task 1: Visualise an explanation instance

The visualisations shown in Figures 1, 13 and 11 offer quite similar encodings which can be used to
visualise instances of SHAP explanations of text. The style of plot often used for LIME explanations
(Figure 1) and the waterfall plot (Figure 13) encode feature explanation magnitude by ordering the
features on the using vertical position.

25 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

For text based explanations maintaining word order may be beneficial, for languages which are read
horizontally positioning the features along this axis can also make the explanation easier to interpret.
TranShap visualisations, see Figure 11, make this encoding choice, this visualisation is designed specif-
ically for visualising SHAP text based model explanations. All of these visualisations encode explanation
values using length, the second best choice for quantitative data.

Waterfall plots make use of position to encode the cumulative contributions of each feature explanation
value to the prediction, Since position is a higher ranked visual variable than length the additive proper-
ties of the explanation values will be emphasised. When presenting text using a waterfall diagram the
axis should be flipped and the word order maintained for right to left and left to right languages.

Force Diagrams, see Figure 2, are an alternative encoding of SHAP explanation instances and have
been used for explaining models based on text. The encoding is not as good for quantitative compar-
isons of the explanation values as the axis used to represent these values is overloaded, the ordinal
feature values of the words are also encoded using the same axis as the SHAP explanation contribu-
tions.

All of these explanation instance visualisations work well for explanations of short spans of text, such
as sentences. Mapping these techniques to explanations of longer texts in not trivial. Extending the
visualisation along the feature axis or compressing the axis to fit more features (words) reduces the
readability of both the text and quantitative values as the number of features grows.

For longer texts the explanation contributions are sometimes visualised by presenting the page of text
and applying a background color to each word, see Figure 1. In this encoding the visual variable color
hue is used to represent the polarity of the explanation contribution for a word. Since this is a nominal
data attribute color is a good encoding choice being the second highest ranking visual variable. The
magnitude of the explanation contributions are encoded using color saturation, this visual variable is
rank eight for effective encoding of quantitative data. Given the low rank of the quantitative encoding
choice alternate encoding choices can increase their emphasis in the visualisation. This requires careful
consideration of the visualisation goals in relation to text, the legibility of the symbols (words) and their
ordinal arrangement (sentences and document structure) might be negatively impacted by alternate
encoding choices.

Task 2: Compare multiple explanation instances

Force Diagrams, see Figure 2, can be used to visualise a single explanation instance of text based
models, but their encoding also allows for the combination of multiple explanation instances to form an
overview of model explanation across a dataset. Using force diagrams to compare multiple explanation
instances, see Figure 14, for text based models is challenging. When comparing multiple instances of
tabular data, where each instance has a consistent set of features with varying values, the individually
force diagrams can be aligned horizontally or vertically to display similarities and differences between
the feature contributions across multiple explanation instances.

For text based models, using words as features, this style of visualisation fails due to the majority
of the features not being present in any one example. While the explanation instances can still be
arranged in this style of visualisation, the ability to compare the instances is limited. Using a measure
of similarity and rearranging the word order within the instance to help align them could improve the
comparisons but choosing a correct word order within the instances and positioning across the instances
is an additional challenge where the result will be that the majority of the instances are only comparable
via high frequency words in the dataset.

The encoding choices in force diagrams for tabular data are sensible, ordering the explanation instance
along one axis, and using position to encode prediction similarity strongly encodes this dataset level
attribute. Using length to encode the individual SHAP values makes that quantitative attribute eas-
ily comparable across explanations. By stacking the feature bars within each explanation the overall
prediction value of each instance can be compared across the entire dataset.

This task does not appear to be fully addressed by current SHAP visualisation techniques when applied

26 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

to text based models. To compare multiple text explanation instances some form of feature overlap
or alignment is an additional requirement necessary to deal with the sparsity of text features across a
dataset. Comparing subsets of the dataset where alignment is possible could prove more informative
than attempting to compare the entire set of explanation instance for a dataset.

Task 3: View similar explanation instances from a dataset

This task is closely related to task 2, it is currently served by the same force visualisation of multiple
explanation instances, see Figure 14. While it is possible to group text explanation instances using
some measure of similarity, many of the features within the similar instances will not be shared. However
where prediction score and feature overlap do occur the explanation instance context may be of interest.
This suggests that viewing the entire set of explanations in the dataset may provide more visual clutter
than useful information and similar subsets may be of greater interest to an analyst.

Within a set of similar explanations, feature frequency, feature co-occurrence and cumulative SHAP fea-
ture score are quantitative attributes that can be displayed visually. Since these values are summaries
calculated over a subset of explanations, the sparsity of the data is less problematic. Visualising these
quantities using summary visualisations, such as beehive or simple bar plots, removes the individual
instances from view by providing an overview of the quantities associated with the similar subset. This
would seem to be contrary to the task we seek to facilitate (investigating similar explanation instances)
as the instances are now hidden. However, by using visualisations of these quantities as an overview
of the similar instances, and providing the detail of the associated explanations on demand, we can
support this task.

How we provide this detail on demand leads us back to the problem of Task 2; how to visualise textual
explanation instances for easy comparison. The difference being that in this case the starting point
is; seeking to view a set of instances which share at least one common feature. By using selection
interactions on an overview of quantitative information associated with a set of similar instance the detail
of those instances can be displayed and aligned using the common feature which is selected.

Task 4: Investigate the relationship between SHAP values and feature values for a single feature across a
dataset

Since the feature values of the textual features do not have a quantitative representation which changes
across the instances in the dataset this task can not be directly mapped to the tabular case. The feature
values in each instance are a binary, either the instance contains the word at a position or it does not.
Due to this binary feature value Scatter plots of feature value against SHAP value, see Figure 15, are
not useful for SHAP text explanations. This is because he feature will only have an associated SHAP
score when it exists at a position in an instance so the feature axis of a single feature will only have one
data point.

An alternative could be to use sentence word position as the feature value and plot the distribution of ex-
planation contribution for a single word across all explanations. This encoding emphasises explanation
contribution at absolute word positions in the explained text instances, for a single word.

Task 5: Investigate the relationship between SHAP and feature values for a feature compared with one other
feature.

This task is strongly related to task 4. This task is also not possible to address by using the scatter plot
visualisation, see Figure 15, which is used for tabular data.

By extending the solution proposed for task 4 we can visualise the feature contribution distribution of
one feature (word) relative to the position of another feature (word). This would result in a visualisation,
perhaps a bar chart, showing explanation contribution position and distribution for two co-occurring
words across all instances in the dataset.

Task 6: Investigating the global SHAP feature contribution to predictions across a dataset

The beehive and bar plot visualisations , see Figures 16 and 17, are both offer efficient encodings for
this task. These visualisations encodings map to the data attributes of SHAP explanations of text.

27 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

In beehive plots each feature is presented using dots to represent the SHAP values of the feature in
each explanation that contains the feature. The sparse nature of the features means the number of
features to display will be much larger than the tabular example, and their should be fewer dots for most
of the features. The colouring of the dots by feature value can be ignored or used for some other quantity
of interest, perhaps prediction polarity and size.

Bar plots simply encode the SHAP value totals for each feature using the length visual variable. In
Figure 17 the total SHAP values are calculated using the absolute value of the SHAP contributions.
Alternatively two bars could be used for each feature, one of positive and one for negative SHAP contri-
bution.

The main difference between these encodings is that the beehive plot encodes the SHAP value of each
feature occurrence while the bar plot encodes the combined total of each instance. The bar plot makes
it easier to compare the total contribution of each feature to the explanations while the beehive plot
provides a more detailed breakdown of a features contribution to explanations.

Both of these plots address the requirements of the task and could serve as useful overview visualisa-
tions to inform the feature choices required in tasks 2 and 3.

Task 7: Investigating the interaction between feature values and feature contributions for each feature in
the dataset

The beehive visualisation is used for this task when explaining models based on tabular data. The
feature values are encoded using a quantitative color scale. This enables analysis of the SHAP expla-
nation contributions of each feature to be viewed in the context of their feature values. For text based
models the dimensionality of the features and the lack of quantitative value associated with the features
makes the investigation of all of the features and their associated SHAP scores together a challenging
task.

Perhaps this task and tasks 4, 5, and 6 could be addressed by enriching the textual data with computed
quantitative information such as word embeddings. Visualisations could then be devised for visualising
explanation scores against embeddings for the tokens in an instance or across a group of instances.
This however moves away from the concept of black-box explanations where the data and explanation
scores are all that is required for interpretation.

Task 8: Investigate the interaction between pairwise SHAP feature contributions and their feature val-
ues

This is another task where feature values are needed for comparison with explanation values. As we
have already seen the feature values are not available to visualise in text based model explanations.
However, pairwise SHAP feature contributions could be a useful quantity to visualise and analyse for
text based models. An alternative encoding for this task is a heatmap where the all features (words) are
shown on both axis. The intersection of the words would display the total SHAP contributions of word b
given word a appears in the same explanation instance.

Task Overview

The task of displaying a single short text explanation instance (task 1) is well served by visualisations
such as TransSHAP. However, visualising longer text explanation instances is not well supported by
current encodings.

Tasks 2 and 3 are related to comparing or viewing multiple explanation instances. These tasks are not
well served by current visualisation tools. The high dimensions and sparsity of text features when com-
paring multiple explanation instances is a challenge not addressed by the existing tools. It is possible
these tasks could be supported by developing visualisations for displaying subsets of the data which
contain overlapping features.

Visualising global explanation values (the sum of explanation values for a feature across all explanation
instances) for a dataset or a subset can be achieved efficiently using bar plots or beehive plots. These

28 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Figure 19: Concordance Mosaic visualisation which could be adapted for comparing SHAP contribution across
explanation instances

overview visualisations provide support for task 6 and could also be useful for supporting tasks 2 and 3
for text explanation.

Tasks 4 and 5 can be considered sub-tasks of tasks 3 and 4. Tasks 4 and 5 are concerned with
observing the explanation values of a feature in relation to its feature values across a dataset. For text
explanations feature value does not have an obvious quantitative attribute. The value of the textual
feature can be more creatively interpreted as the context in which it appears. In this interpretation
visualisations which support simultaneous investigation of total feature contribution across the dataset
and collocated features could improve the ability to perform these tasks.

Task 8 calls for the ability to investigate interactions between features in relation to their pairwise expla-
nation values. Interpreting this task through the lens of text explanations can, again, be interpreted as a
task requiring analysis of collocations in the corpus of explained instances.

29 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

4.2.4 Suggested Encoding designs and improvements

SHAP Concordance Mosaic

Taking an overview visualisation as the starting point of an analysis of multiple text explanation instances
removes some of the challenges in dealing with the sparsity of the features. This overview could take the
form of a beeswarm or bar plot of global explanation score for the features across the dataset. Interesting
features could be selected to view the subset of explanation instances which contain that feature. A well
established technique for the analysis of a word and its surrounding context is the keyword-in-context
concordance. By aligning the word of interest centrally its left and right contexts can be examined
for concurrence patterns. These concordance displays, see Figure 19, offer the ability to sort word
positions relative to the keyword of interest to enhance the ability to identify common co-occurrence
patterns.

For text explanations the concordance offers alignment of the explanation instances using a common
feature. It does not fully support the task of comparing explanation instance quantitatively as this view
can’t encode the explanation contribution values. Concordance Mosaic (Luz & Sheehan, 2020) a visual-
isation designed to complement the concordance view by providing a positional overview of quantitative
information related to co-occurrence patterns could be modified to display explanation contribution val-
ues. To do this each positional tile height, see Figure 19, represents the sum of SHAP explanation
values for that feature across the instances containing the keyword selected from the overview. These
explanation values are calculated per position relative to the keyword. This visualisation displays the
distribution of co-occurring feature explanation contributions per position and word.

The mosaic is interactively linked to the concordance view allowing selection of a tile to highlight and
sort the text fragments in the concordance. This lets us use the overview of co-occurring explanation
contributions to explore the associated text fragments.

Visualising Explanation Instances for Long Texts

We identified limitations in visualising explanations for long texts. There is both a lack of visualisation
support and poor encoding choice for quantitative data in the existing visualisation. One suggestion
to improve the encoding of the quantitative explanation scores is to use spark lines, or spark bars, to
present the explanation contributions in the body of the text. This would improve the encoding of the
quantitative information compared with using color saturation to overlay the quantities. This would make
the magnitude of the explanation values easier to compare between features, while still presenting the
text in a natural document format.

Waterfall or line chart of the additive explanation variables could be used as an overview. This overview
could be linked interactively to a document view. Interesting sections of the overview could be se-
lected and the corresponding section of the document brought into view with the explanation scores
encoded.

4.3 AttViz library: statistical analysis of the attention space

In Deliverable D1.5 we presented how the online version of AttViz can be used for direct analysis of model
output (in the JSON format). Here we describe subsequent work on a complementary offline component
of the tool which was designed to address some of the limitations of the online tool.

Albeit suitable for quick inspections, the online system has its limitations such as poor support for com-
putationally more intensive types of analysis (in terms of waiting times), and the lack of customized
visualization tools accessible in the Python ecosystem. To address these aspects, we developed AttViz
library5 that offers more detailed analysis of a given neural language model’s properties. The library op-
erates on the same JSON structures as the online version and is compatible with the initial user input.
We demonstrate the analytical capabilities of our visualization tools on three datasets.

5AttViz library: https://github.com/EMBEDDIA/attviz.

30 of 82

https://github.com/EMBEDDIA/attviz

ICT-29-2018 D1.9: Final interpretability and visualisation technology

(a) Top 35 tokens in the BBC dataset. (b) Top 35 tokens in the insults dataset.

(c) Top 35 tokens in the hate speech dataset.

Figure 20: Visualization of the 35 most attended-to tokens for the three inspected data sets. Interestingly, the
attention peaks of tokens (maximum, in the background) all take high values, albeit lower-ranked tokens
are on average characterized by lower mean attention values.

31 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

4.3.1 Dissecting the token space

The first offline functionality is a barplot visualization that offers insight into relevant aspects of the atten-
tion distribution at token level. Whilst understanding the attention peaks is relevant for direct inspections,
the attention space of a given token can be contextualized on the dataset level as well. The AttViz library
offers fast visualization of the mean and spread of attention distributions, simultaneously showing the
attention peaks for individual tokens. We visualized the distribution for three classification datasets (Fig-
ure 20): BBC news (Figure 20a), insults6 (Figure 20b), and hate speech comments (Figure 20c)7.

The proposed visualizations present top k tokens according to their mean attention throughout the
whole dataset. It is interesting to observe, that the insults and hate speech data sets are not completely
characterized by swear words or similar single-token-like features. This potentially indicates that the
attention tries to detect interactions between the byte-pair encoded tokens, even for data sets where the
attention could be focused on single tokens. It is interesting to observe that the terms with the highest
attention are not necessarily keywords or other tokens carrying large semantic meaning. Similarly,
the high maxima indicate that the emphasis of the tokens is very contextual, and potentially not as
informative for global aggregation.

4.3.2 Visualization of attention head focus

Contemporary neural language model architectures comprise multiple attention heads. These separate
weight spaces capture distinct aspects of the considered learning task. Even though the weight spaces
are easily accessible, it is not trivial to convert the large amount of information into a quick-to-inspect
visualization. With the proposed visualization, shown in Figure 21, we leverage word clouds (Kaser
& Lemire, 2007) to reveal human-understandable patterns captured by separate attention heads and
display this information in a compact way.

For more details see our paper Škrlj et al. (2021), presented in Appendix D.

5 Conclusions
We presented a modification to the SHAP method to adapt it to work with BERT. We described the
necessary adaptations in the explanations and visualize them with the new TransSHAP visualisation
approach. We have shown the results of the TransSHap method on the Twitter sentiment prediction
problem, classified with our CroSloEngual BERT produced in task T1.2 of WP1. The TransSHAP visual-
isation method was evaluated via a usability survey, where it compared favorably against current SHAP
and LIME explanation instance visualisations.

We presented a defense against adversarial attacks on explanation methods. We replaced the perturba-
tion sampling with data generators that better capture the distribution of a given data set. This prevents
the detection of instances used in explanation and disarms attackers. We have shown that the modified
gLIME and gSHAP explanation methods, which use better data generators, are more robust than the
original variants, while IME is already quite robust. The difference in explanation values between original
and enhanced gSHAP and gIME is negligible, while for gLIME, it is considerable.

We presented ReEx, one of the first approaches capable of semantic generalization of model explana-
tions obtained by contemporary tools such as SHAP. We implement two different reasoning paradigms
(Selective staircase and Ancestry), showing both schemes out-perform generic generalization com-
monly employed.

We presented an analysis of visualisation tasks supported by current SHAP visualisations for tabular
data and their applicability to SHAP explanations for text based models, such as BERT. We identified

6https://www.kaggle.com/c/detecting-insults-in-social-commentary/overview
7https://github.com/aitor-garcia-p/hate-speech-dataset

32 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

(a) Insults. (b) Hatespeech.

(c) BBC news.

Figure 21: The distribution of tokens over individual attention heads for the three datasets summarised with word
clouds.

eight key supported tasks and identified several areas where current visualisations do not support textual
explanations with these tasks. To address this we propose potential visualisation tools which could
address these limitations.

We presented an extension to our prior work on the AttViz tool for visualizing BERT’s self-attention head.
We extend the work by providing an offline component for computationally intensive analysis which was
not feasible using the online version of the tool.

This explanation and visualization technologies, developed in T1.4 were tested in prediction models
developed in tasks T1.1, T1.2, and T1.3. We expect their further use on models employed in WP3,
WP4, and WP5. The technologies will be integrated into the frameworks developed in WP6.

This work opens a range of possibilities for further research. The proposed defense and attacks shall
be tested on other datasets with different numbers and types of features, missing data, and various
problems such as text, images, and graphs. The work on useful generators shall be extended to find

33 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

time-efficient generators with easy-to-set parameters and the ability to generate new instances in the
vicinity of a given one. Generative adversarial networks may be a promising line of research.

In the future TransSHAP will take into account specific properties of text data and apply language models
in the sampling step of the method. We plan to restrict the sampling candidates for each word based on
their part-of-speech and general context of the sentence. We believe that better sampling will improve
the speed of explanations and decrease the variance of explanations. Furthermore, the explanations
could be additionally improved by expanding the features of explanations from individual words to larger
textual units consisting of words that are grammatically and semantically linked.

Further work on ReEx will extended the technique to use knowledge graphs, where the data is semi-
automatically curated. The use of knowledge graphs could increase the data available for reasoning but
potentially add more noise to the semantic explanations. In addition, we plan to apply the technique
in multiple domains to investigate the impact and applicability of semantic explanations across a wider
array of problems.

Our work on task analysis, for explanation visualisations of text, will be used to inform future visuali-
sation design and implementation. As new visualisations for explanation methods are proposed they
will be evaluated within the framework of identified tasks. The recommended design specifications for
supporting these tasks will address the identified gaps in explanation visualisation for text.

AttViz allows for direct model inspection via self-attention. In future work we will further explore poten-
tially interesting relations emerging from the attention matrices. Privacy is a concern when investigating
data which has not been anonymized, in future work, we will develop privacy preserving techniques for
the investigation of self-attention.

34 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

6 Associated outputs
Description URL Availability

AttViz tutorials and code github.com/EMBEDDIA/attviz Public (GPLv3)
AttViz self-attention visualization server attviz.ijs.si Public

MCD AE and VAE data generators github.com/EMBEDDIA/MCD-VAE Public (MIT)
TransShap library https://github.com/EMBEDDIA/TransSHAP Public (MIT)

∗Robust SHAP, IME, and IME https://github.com/domenVres/Robust-LIME-SHAP-and-IME To become public
∗ReEx library https://github.com/OpaqueRelease/ReEx Public (GPLv3)

∗ Resources marked here as “To become public” are available only within the consortium while under
development and/or associated with work yet to be published. They will be released publicly when the
associated work is completed and published.

Parts of this work are also described in detail in the following publications.

Citation Status Appendix
Kokalj, Enja, Blaž Škrlj, Nada Lavrač, Senja Pollak, and Marko Robnik-
Šikonja. "BERT meets Shapley: Extending SHAP Explanations to
Transformer-based Classifiers." In Proceedings of the EACL Hackashop
on News Media Content Analysis and Automated Report Generation.
2021.

Published Appendix A

Domen Vreš and Marko Robnik-Šikonja. Better Sampling in Ex-
planation Methods can Prevent Dieselgate-Like Deception. 2021.
(arXiv:2101.11702v1)

Submitted Appendix B

Perdih, Timen Stepišnik, Nada Lavrač, and Blaž Škrlj. "Semantic Rea-
soning from Model-Agnostic Explanations." In 2021 IEEE 19th World
Symposium on Applied Machine Intelligence and Informatics (SAMI).
2021. (preprint http://arxiv.org/abs/2106.15433)*

Published Appendix C

Škrlj, Blaž, Shane Sheehan, Nika Eržen, Marko Robnik-Šikonja, Sat-
urnino Luz, and Senja Pollak. Exploring Neural Language Models via
Analysis of Local and Global Self-Attention Spaces. Proceedings of
the EACL Hackashop on News Media Content Analysis and Automated
Report Generation. 2021.

Published Appendix D

∗ In this paper, the EMBEDDIA acknowledgement was added only in the ArXiv version.

35 of 82

https://github.com/EMBEDDIA/attviz
http://attviz.ijs.si
https://github.com/EMBEDDIA/MCD-VAE
https://github.com/EMBEDDIA/TransSHAP
https://github.com/domenVres/Robust-LIME-SHAP-and-IME
https://github.com/OpaqueRelease/ReEx

ICT-29-2018 D1.9: Final interpretability and visualisation technology

References

Angwin, J., Larson, J., Mattu, S., & Kirchner, L. (2016). Machine bias. ProPublica, May 23.

Arras, L., Horn, F., Montavon, G., Müller, K.-R., & Samek, W. (2017). What is relevant in a text docu-
ment?: An interpretable machine learning approach. PloS ONE , 12(8), e0181142.

Bertin, J. (1983). Semiology of Graphics. University of Wisconsin Press.

Chen, H., Zheng, G., & Ji, Y. (2020, 04). Generating hierarchical explanations on text classification via
feature interaction detection.

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional
Transformers for Language Understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long and Short Papers) (pp. 4171–4186).

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. MIT Press.

Jin, X., Du, J., Wei, Z., Xue, X., & Ren, X. (2019, 11). Towards hierarchical importance attribution:
Explaining compositional semantics for neural sequence models.

Kaser, O., & Lemire, D. (2007). Tag-cloud drawing: Algorithms for cloud visualization. arXiv preprint
cs/0703109.

Kokalj, E., Škrlj, B., Lavrač, N., Pollak, S., & Robnik-Šikonja, M. (2021). Bert meets shapley: Extending
shap explanations to transformer-based classifiers. In Proceedings of the eacl hackashop on news
media content analysis and automated report generation (pp. 16–21).

LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444.

Lemaire, V., Féraud, R., & Voisine, N. (2008). Contact Personalization using a Score Understanding
Method. In Proceedings of International Joint Conference on Neural Networks (IJCNN).

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., . . . Lee, S.-I. (2020). From
local explanations to global understanding with explainable ai for trees. Nature Machine Intelligence,
2(1), 2522-5839.

Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems (pp. 4768–4777).

Lundberg, S. M., Nair, B., Vavilala, M. S., Horibe, M., Eisses, M. J., Adams, T., . . . Lee, S.-I. (2018).
Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nature
Biomedical Engineering, 2(10), 749.

Luz, S., & Sheehan, S. (2020). Methods and visualization tools for the analysis of medical, political and
scientific concepts in genealogies of knowledge. Palgrave Communications, 6(1), 1–20.

Mackinlay, J. (1986). Automating the design of graphical presentations of relational information. ACM
Transactions on Graphics, 5(2), 110–141.

36 of 82

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Meyer, D., Leisch, F., & Hornik, K. (2003). The support vector machine under test. Neurocomputing,
55, 169-186.

Miok, K., Nguyen-Doan, D., Zaharie, D., & Robnik-Šikonja, M. (2019). Generating data using Monte
Carlo dropout. In International conference on intelligent computer communication and processing
(iccp) (p. 509-515).

Munzner, T. (2009). A nested model for visualization design and validation. IEEE transactions on
visualization and computer graphics, 15(6), 921–928.

Redmond, M., & Baveja, A. (2002). A data-driven software tool for enabling cooperative information
sharing among police departments. European Journal of Operational Research, 141, 660-678.

Ribeiro, M. T., Singh, S., & Guestrin, C. (2016). Why should i trust you?: Explaining the predictions of
any classifier. In Proceedings of ACM SIGKDD (pp. 1135–1144).

Robnik-Šikonja, M. (2016). Data generators for learning systems based on RBF networks. IEEE
Transactions on Neural Networks and Learning Systems, 27 (5), 926-938.

Robnik-Šikonja, M. (2019). semiartificial: Generator of semi-artificial data [Computer software manual].
Retrieved from https://cran.r-project.org/package=semiArtificial (R package version 2.3.1)

Robnik-Šikonja, M., & Kononenko, I. (2008). Explaining classifications for individual instances. IEEE
Transactions on Knowledge and Data Engineering, 20(5), 589-600.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20, 53 - 65.

Sawada, S., & Toyoda, M. (2019). Model-agnostic visual explanation of machine learning models based
on heat map. In Eurovis (posters) (pp. 37–39).

Shapley, L. S. (1953). A value for n-person games. In H. Kuhn & K. Tucker (Eds.), Contributions to the
Theory of Games, Vol. II (pp. 307–317). Princeton University Press.

Škrlj, B., Sheehan, S., Eržen, N., Robnik-Šikonja, M., Luz, S., & Pollak, S. (2021). Exploring neural
language models via analysis of local and global self-attention spaces. In Proceedings of the eacl
hackashop on news media content analysis and automated report generation (pp. 76–83).

Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020a). Fooling LIME and SHAP: Adversarial
attacks on post hoc explanation methods. In Proceedings of the AAAI/ACM Conference on AI, Ethics,
and Society (pp. 180–186).

Slack, D., Hilgard, S., Jia, E., Singh, S., & Lakkaraju, H. (2020b). Fooling LIME and SHAP: Adversarial
attacks on post-hoc explanation methods. In Aaai/acm conference on ai, ethics, and society (aies).

Stepišnik Perdih, T., Lavrač, N., & Škrlj, B. (2021). Semantic reasoning from model-agnostic explana-
tions. In 2021 ieee 19th world symposium on applied machine intelligence and informatics (sami) (pp.
000105–000110).

Ulčar, M., & Robnik-Šikonja, M. (2020). FinEst BERT and CroSloEngual BERT: less is more in multilin-
gual models. In Proceedings of Text, Speech, and Dialogue, TSD 2020. (accepted)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., . . . Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998–6008).

Vreš, D., & Robnik-Šikonja, M. (2021). Better sampling in explanation methods can prevent dieselgate-
like deception. arXiv:2101.11702v1. (Submitted)

Štrumbelj, E., & Kononenko, I. (2010). An efficient explanation of individual classifications using game
theory. Journal of Machine Learning Research, 11(Jan), 1–18.

37 of 82

https://cran.r-project.org/package=semiArtificial

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., & Bowman, S. (2018). GLUE: A Multi-Task Benchmark
and Analysis Platform for Natural Language Understanding. In Proceedings of the 2018 EMNLP
Workshop BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (pp. 353–355).

38 of 82

Proceedings of the EACL Hackashop on News Media Content Analysis and Automated Report Generation, pages 16–21
April 19, 2021 © Association for Computational Linguistics

16

BERT meets Shapley: Extending SHAP Explanations to
Transformer-based Classifiers

Enja Kokalj
Jožef Stefan International

Postgraduate School
Jožef Stefan Institute

enja.kokalj@ijs.si

Blaž Škrlj
Jožef Stefan International

Postgraduate School
Jožef Stefan Institute

Nada Lavrač
Jožef Stefan International

Postgraduate School
Jožef Stefan Institute

Senja Pollak
Jožef Stefan International

Postgraduate School
Jožef Stefan Institute

Marko Robnik-Šikonja
Faculty for Computer and Information Science

Ljubljana

Abstract
Transformer-based neural networks offer very
good classification performance across a wide
range of domains, but do not provide explana-
tions of their predictions. While several ex-
planation methods, including SHAP, address
the problem of interpreting deep learning mod-
els, they are not adapted to operate on state-
of-the-art transformer-based neural networks
such as BERT. Another shortcoming of these
methods is that their visualization of expla-
nations in the form of lists of most relevant
words does not take into account the sequential
and structurally dependent nature of text. This
paper proposes the TransSHAP method that
adapts SHAP to transformer models includ-
ing BERT-based text classifiers. It advances
SHAP visualizations by showing explanations
in a sequential manner, assessed by human
evaluators as competitive to state-of-the-art so-
lutions.

1 Introduction

Recent wide spread use of deep neural networks
(DNNs) has increased the need for their transpar-
ent classification, given that DNNs are black box
models that do not offer introspection into their
decision processes or provide explanations of their
predictions and biases. Several methods that ad-
dress the interpretability of machine learning mod-
els have been proposed. Model-agnostic expla-
nation approaches are based on perturbations of
inputs. The resulting changes in the outputs of the
given model are the source of their explanations.
The explanations of individual instances are com-
monly visualized in the form of histograms of the
most impactful inputs. However, this is insuffi-
cient for text-based classifiers, where the inputs are
sequential and structurally dependent.

We address the problem of incompatibility of
modern explanation techniques, e.g., SHAP (Lund-
berg and Lee, 2017), and state-of-the-art pretrained
transformer networks such as BERT (Devlin et al.,
2019). Our contribution is twofold. First, we
propose an adaptation of the SHAP method to
BERT for text classification, called TransSHAP
(Transformer-SHAP). Second, we present an im-
proved approach to visualization of explanations
that better reflects the sequential nature of input
texts, referred to as the TransSHAP visualizer,
which is implemented in the TransSHAP library.

The paper is structured as follows. We first
present the background and motivation in Sec-
tion 2. Section 3 introduces TransSHAP, an
adapted method for explaining transformer lan-
guage model such as BERT, which includes the
TransSHAP visualizer for improved visualization
of the generated explanations. Section 4 presents
the results of an evaluation survey, followed by
the discussion of results and the future work in
Section 5.

2 Background and motivation

We first present the transformer-based language
models, followed by an outline of perturbation-
based explanation methods, in particular the SHAP
method. We finish with the overview of visualiza-
tions for prediction explanations.

BERT (Devlin et al., 2019) is a large pretrained
language model based on the transformer neural
network architecture (Vaswani et al., 2017). Nowa-
days, BERT models exist in many mono- and mul-
tilingual variants. Fine-tuning BERT-like models
to a specific task produces state-of-the-art results
in many natural language processing tasks, such
as text classification, question answering, POS-

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Appendix A: BERT meets Shapley: Extending SHAP
Explanations to Transformer-based Classifiers

39 of 82

17

tagging, dependency parsing, inference, etc.

There are two types of explanation approaches,
general and model specific. The general explana-
tion approaches are applicable to any prediction
model, since they perturb the inputs of a model
and observe changes in the model’s output. The
second type of explanation approaches are specific
to certain types of models, such as support vector
machines or neural networks, and exploit the inter-
nal information available during training of these
methods. We focus on general explanation meth-
ods and address their specific adaptations for use
in text classification, more specifically, in text clas-
sification with transformer models such as BERT.

The most widely used perturbation-based ex-
planation methods are IME (Štrumbelj and
Kononenko, 2010), LIME (Ribeiro et al., 2016),
and SHAP (Lundberg and Lee, 2017). Their key
idea is that the contribution of a particular input
value (or set of values) can be captured by ‘hid-
ing’ the input and observing how the output of the
model changes. In this work, we focus on the state-
of-the-art explanation method SHAP (SHapley Ad-
ditive exPlanations) that is based on the Shapley
value approximation principle. Lundberg and Lee
(2017) noted that several existing methods, includ-
ing IME and LIME, can be regarded as special
cases of this method.

We propose an adaptation of SHAP for BERT-
like classifiers, but the same principles are trivially
transferred to LIME and IME. To understand the
behavior of a prediction model applied to a single
instance, one should observe perturbations of all
subsets of input features and their values, which
results in exponential time complexity. Štrumbelj
and Kononenko (2010) showed that the contribu-
tion of each variable corresponds to the Shapley
value from the coalition game, where players cor-
respond to input features, and the coalition game
corresponds to the prediction of an individual in-
stance. Shapley values can be approximated in time
linear to the number of features.

The visualization approaches implemented in
the explanation methods LIME and SHAP are pri-
marily designed for explanations of tabular data
and images. Although the visualization with LIME
includes adjustments for text data, the resulting ex-
planations are presented in the form of histograms
that are sometimes hard to understand, as Figure 1
shows. The visualization with SHAP for the same
sentence is illustrated in Figure 2. Here, the fea-

tures with the strongest impact on the prediction
correspond to longer arrows that point in the di-
rection of the predicted class. For textual data this
representation is non-intuitive.

Various approaches have been proposed to inter-
pret neural text classifiers. Some of them focus on
adapting existing SHAP based explanation meth-
ods by improving different aspects, e.g., the word
masking (Chen and Ji, 2020), or reducing feature
dimension (Zhao et al., 2020), while others explore
the complex interactions between words (contex-
tual decomposition) that are crucial when dealing
with textual data but are ignored by other post-hoc
explanation methods (Jin et al., 2019; Chen et al.,
2020).

3 TransSHAP: The SHAP method
adapted for BERT

Many modern deep neural networks, including
transformer networks (Vaswani et al., 2017) such as
BERT-like models, split the input text into subword
tokens. However, perturbation-based explanation
methods (such as IME, LIME, and SHAP) have
problems with the text input and in particular sub-
word input, as the credit for a given output cannot
be simply assigned to clearly defined units such as
words, phrases, or sentences. In this section, we
first present the components of the new method-
ology and describe the implementation details re-
quired to make explanation method SHAP to work
with state-of-the-art transformer prediction models
such as BERT, followed by a brief description of
the dataset used for training the model. Finally
we introduce the TransSHAP visualizer, the pro-
posed visualization method for text classification
with neural networks. We demonstrate it using the
SHAP method and the BERT model.

3.1 TransSHAP components

The model-agnostic implementation of the SHAP
method, named Kernel SHAP1, requires a classifier
function that returns probabilities. Since SHAP
contains no support for BERT-like models that use
subword input, we implemented custom functions
for preprocessing the input data for SHAP, to get
the predictions from the BERT model, and to pre-
pare data for the visualization.

Figure 3 shows the components required by
SHAP in order to generate explanations for the

1We use the Kernel SHAP implementation of the SHAP
method: https://github.com/slundberg/shap.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

40 of 82

18

Figure 1: Visualization of prediction explanation with LIME.

Figure 2: Visualization of prediction explanation with SHAP.

predictions made by the BERT model. The text
data we want to interpret is used as an input to Ker-
nel SHAP along with the special classifier function
we constructed, which is necessary since SHAP
requires numerical input in a tabular form.

To achieve this, we first convert the sentence into
its numerical representation. This procedure con-
sists of splitting the sentence into tokens and then
preprocessing it. The preprocessing of different
input texts is specific to their characteristics (e.g.,
tweets). The result is a list of sentence fragments
(with words, selected punctuation marks and emo-
jis), which serves as a basis for word perturbations
(i.e. word masking). Each unique fragment is as-
signed a unique numerical key (i.e. index). We
refer to a sentence, represented with indexes, as an
indexed instance.

In summary, the TransSHAP’s classifier func-
tion first converts each input instance into a word-
level representation. Next, the representation is
perturbed in order to generate new, locally similar
instances which serve as a basis for the constructed
explanation. This perturbation step is performed by
the original SHAP. Then the perturbed versions of
the sentence are processed with the BERT tokenizer
that converts the sentence fragments to sub-word

tokens. Finally, the predictions for the new locally
generated instances are produced and returned to
the Kernel SHAP explainer. With this modification,
SHAP is able to compute the features’ impact on
the prediction (i.e. the explanation).

3.2 Datasets and models
We demonstrate our TransSHAP method on tweet
sentiment classification. The dataset contains
87,428 English tweets with human annotated sen-
timent labels (positive, negative and neutral). For
tweets we split input instances using the Tweet-
Tokenizer function from NLTK library2, we re-
moved apostrophes, quotation marks and all punc-
tuation marks except for exclamation and question
marks. We fine-tuned the CroSloEngual BERT
model (Ulčar and Robnik-Šikonja, 2020) on this
classification task and the resulting model achieved
the classification accuracy of 66.6%.

3.3 Visualization of a prediction explanation
for the BERT model

To make a visualization of predictions better
adapted to texts, we modified the histogram-based
visualizations used in IME, LIME and SHAP for

2https://www.nltk.org

ICT-29-2018 D1.9: Final interpretability and visualisation technology

41 of 82

19

Figure 3: TransSHAP adaptation of SHAP to the BERT language model by introducing our classifier function.

Figure 4: TransSHAP visualization of prediction explanations for negative sentiment. We obtained the features’
contribution values with the SHAP method. It is evident that the word ‘hate’ strongly contributed to the negative
sentiment classification, while the word ‘lol’ (laughing out loud) slightly opposed it.

tabular data. Figure 4 is an example of our visu-
alization for explaining text classifications. It was
inspired by the visualization used by the LIME
method but we made some modifications with the
aim of making it more intuitive and better adapted
to sequences. Instead of the horizontal bar chart
of features’ impact on the prediction sorted in de-
scending order of feature impact, we used the verti-
cal bar chart and presented the features (i.e. words)
in the order they appear in the original sentence.

In this way, the graph allows the user to compare
the direction of the impact (positive/negative) and
also the magnitude of impact for individual words.
The bottom text box representation of the sentence
shows the words colored green if they significantly
contributed to the prediction and red if they signifi-
cantly opposed it.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

42 of 82

20

4 Evaluation

We evaluated the novel visualization method using
an online survey. The targeted respondents were
researchers and PhD students not involved in the
study that mostly had some previous experience
with classifiers and/or their explanation methods.
In the survey, the respondents were presented with
three visualization methods on the same example:
two visualizations were generated by existing li-
braries, LIME and SHAP, and the third one used
our novel TransSHAP library. Respondents were
asked to evaluate the quality of each visualization,
suggest possible improvements, and rank the three
methods.3

The results of 38 completed surveys are as fol-
lows. The most informative features of the visu-
alization layout recognized by the users were the
impact each word had on a prediction and the im-
portance of the word contributions shown in a se-
quential view. The positioning of the visualiza-
tion elements for each of the three methods was
rated on the scale of 1 to 5. Our method achieved
the highest average score of 3.66 (63.1% of the
respondents rated it with a score of 4 or 5), sec-
ond best was the LIME method with an average
score of 3.13 (39.1% rated it with 4 or 5), and
the SHAP method was rated as the worst with
an average of 2.42 (81.5% rated it with 1 or 2).
Regarding the question whether they would use
each visualization method, LIME scored highest
(44.7% voted “Yes”), TransSHAP closely followed
(42.1% voted “Yes”), while SHAP was not praised
(34.2% voted “Yes”). The overall ranking also
corresponds to these results. LIME got the most
votes (54.3%), TransSHAP was voted second best
(40.0% of votes), and SHAP was the least desir-
able (5.7% of votes). In addition, we asked the
participants to choose the preferred usage of the
method out of the given options. The TransSHAP
and SHAP methods were considered most useful
for the purpose of debugging and bias detection,
while the LIME method was also recognized as
suitable for explaining a model to other researchers
(usage in scientific articles).

5 Conclusion and further work

We presented the TransSHAP library, an extension
of the SHAP explanation approach for transformer

3The survey questions are available here: https://
forms.gle/icpYvHH78oE2TCJt7.

neural networks. TransSHAP offers a novel test-
ing ground for better understanding of neural text
classifiers, and will be freely accessible after accep-
tance of the paper (for review purposes available
here: https://bit.ly/2UVY2Dy).

The explanations obtained by TransSHAP were
quantitatively compared in a user survey, where
we assessed the visualization capabilities, showing
that the proposed TransSHAP’s visualizations were
simple, yet informative when compared to existing
instance-based visualizations produced by LIME or
SHAP. TransSHAP was scored better than SHAP,
while LIME was scored slightly better in terms of
overall user preference. However, in specific ele-
ments, such as positioning of the visualization ele-
ments, the visualization produced by TransSHAP
is slightly better.

In further work, we plan to address problems of
the perturbation-based explanation process when
dealing with textual data. Currently, TransSHAP
only supports random sampling from the word
space, which may produce unintelligible and gram-
matically wrong sentences, and overall completely
uninformative texts. We intend to take into account
specific properties of text data and apply language
models in the sampling step of the method. We plan
to restrict the sampling candidates for each word
based on their part of speech and general context of
the sentence. We believe that better sampling will
improve the speed of explanations and decrease the
variance of explanations. Furthermore, the explana-
tions could be additionally improved by expanding
the features of explanations from individual words
to larger textual units consisting of words that are
grammatically and semantically linked.

Acknowledgements

We would like to acknowledge the Slovenian Re-
search Agency (ARRS) for funding the first and
the second author through young researcher grants
and supporting other authors through the research
program Knowledge Technologies (P2-0103) and
the research project Semantic Data Mining for
Linked Open Data. Further, we acknowledge the
European Union’s Horizon 2020 research and in-
novation programme under grant agreement No
825153, project EMBEDDIA (Cross-Lingual Em-
beddings for Cross-Lingual Embeddings for Less-
Represented Languages in European News Media).

ICT-29-2018 D1.9: Final interpretability and visualisation technology

43 of 82

21

References
Hanjie Chen and Yangfeng Ji. 2020. Learning varia-

tional word masks to improve the interpretability of
neural text classifiers.

Hanjie Chen, Guangtao Zheng, and Yangfeng Ji. 2020.
Generating hierarchical explanations on text classifi-
cation via feature interaction detection.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Xisen Jin, Junyi Du, Zhongyu Wei, Xiangyang Xue,
and Xiang Ren. 2019. Towards hierarchical impor-
tance attribution: Explaining compositional seman-
tics for neural sequence models.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 4765–4774.

Marco Túlio Ribeiro, Sameer Singh, and Carlos
Guestrin. 2016. "why should I trust you?": Explain-
ing the predictions of any classifier. In Proceed-
ings of the 22nd ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
San Francisco, CA, USA, August 13-17, 2016, pages
1135–1144. ACM.

Matej Ulčar and Marko Robnik-Šikonja. 2020. FinEst
BERT and CroSloEngual BERT: less is more in mul-
tilingual models. In Proceedings of Text, Speech,
and Dialogue, TSD 2020. Accepted.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Erik Štrumbelj and Igor Kononenko. 2010. An ef-
ficient explanation of individual classifications us-
ing game theory. Journal of Machine Learning Re-
search, 11(Jan):1–18.

Wei Zhao, Tarun Joshi, Vijayan Nair, and Agus Sud-
jianto. 2020. Shap values for explaining cnn-based
text classification models.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

44 of 82

BETTER SAMPLING IN EXPLANATION METHODS CAN
PREVENT DIESELGATE-LIKE DECEPTION

Domen Vreš, Marko Robnik-Šikonja
University of Ljubljana, Faculty of Computer and Information Science
Večna pot 113, 1000 Ljubljana, Slovenia
domen.vres@siol.net, marko.robnik@fri.uni-lj.si

ABSTRACT

Machine learning models are used in many sensitive areas where, besides predic-
tive accuracy, their comprehensibility is also important. Interpretability of pre-
diction models is necessary to determine their biases and causes of errors and is a
prerequisite for users’ confidence. For complex state-of-the-art black-box models,
post-hoc model-independent explanation techniques are an established solution.
Popular and effective techniques, such as IME, LIME, and SHAP, use perturba-
tion of instance features to explain individual predictions. Recently, Slack et al.
(2020) put their robustness into question by showing that their outcomes can be
manipulated due to poor perturbation sampling employed. This weakness would
allow dieselgate type cheating of owners of sensitive models who could deceive
inspection and hide potentially unethical or illegal biases existing in their predic-
tive models. This could undermine public trust in machine learning models and
give rise to legal restrictions on their use.
We show that better sampling in these explanation methods prevents malicious
manipulations. The proposed sampling uses data generators that learn the training
set distribution and generate new perturbation instances much more similar to the
training set. We show that the improved sampling increases the LIME and SHAP’s
robustness, while the previously untested method IME is already the most robust
of all.

1 INTRODUCTION

Machine learning models are used in many areas where besides predictive performance, their com-
prehensibility is also important, e.g., in healthcare, legal domain, banking, insurance, consultancy,
etc. Users in those areas often do not trust a machine learning model if they do not understand why it
made a given decision. Some models, such as decision trees, linear regression, and naı̈ve Bayes, are
intrinsically easier to understand due to the simple representation used. However, complex models,
mostly used in practice due to better accuracy, are incomprehensible and behave like black boxes,
e.g., neural networks, support vector machines, random forests, and boosting. For these models, the
area of explainable artificial intelligence (XAI) has developed post-hoc explanation methods that are
model-independent and determine the importance of each feature for the predicted outcome. Fre-
quently used methods of this type are IME (Štrumbelj & Kononenko, 2013), LIME (Ribeiro et al.,
2016), and SHAP (Lundberg & Lee, 2017).

To determine the features’ importance, these methods use perturbation sampling. Slack et al. (2020)
recently noticed that the data distribution obtained in this way is significantly different from the
original distribution of the training data as we illustrate in Figure 1a. They showed that this can
be a serious weakness of these methods. The possibility to manipulate the post-hoc explanation
methods is a critical problem for the ML community, as the reliability and robustness of explana-
tion methods are essential for their use and public acceptance. These methods are used to interpret
otherwise black-box models, help in debugging models, and reveal models’ biases, thereby estab-
lishing trust in their behavior. Non-robust explanation methods that can be manipulated can lead to
catastrophic consequences, as explanations do not detect racist, sexist, or otherwise biased models if
the model owner wants to hide these biases. This would enable dieselgate-like cheating where own-
ers of sensitive prediction models could hide the socially, morally, or legally unacceptable biases

1

ar
X

iv
:2

10
1.

11
70

2v
1

 [
cs

.L
G

]
 2

6
Ja

n
20

21

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Appendix B: Better Sampling in Explanation Methods
can Prevent Dieselgate-Like Deception

45 of 82

a)

b)
Figure 1: a) PCA based visualization of a part of the COMPAS dataset. The blue points show the
original instances, and the red points represent instances generated with the perturbation sampling
used in the LIME method. The distributions are notably different. b) The idea of the attack on
explanation methods based on the difference of distributions. The attacker’s adversarial model con-
tains both the biased and unbiased model. The decision function that is part of the cheating model
decides if the instance is outside the original distribution (i.e. used only for explanation) or an actual
instance. If the case of an actual instance, the result of the adversarial model is equal to the result of
the biased model, otherwise it is equal to the result of the unbiased model.

present in their models. As the schema of the attack on explanation methods on Figure 1b shows,
owners of prediction models could detect when their models are examined and return unbiased pre-
dictions in this case and biased predictions in normal use. This could have serious consequences in
areas where predictive models’ reliability and fairness are essential, e.g., in healthcare or banking.
Such weaknesses can undermine users’ trust in machine learning models in general and slow down
technological progress.

In this work, we propose to change the main perturbation-based explanation methods and make
them more resistant to manipulation attempts. In our solution, the problematic perturbation-based
sampling is replaced with more advanced sampling, which uses modern data generators that better
capture the distribution of the training dataset. We test three generators, the RBF network based gen-
erator (Robnik-Šikonja, 2016), random forest-based generator, available in R library semiArtificial
(Robnik-Šikonja, 2019), as well as the generator using variational autoencoders (Miok et al., 2019).
We show that the modified gLIME and gSHAP methods are much more robust than their original
versions. For the IME method, which previously was not analyzed, we show that it is already quite
robust. We release the modified explanation methods under the open-source license1.

In this work, we use the term robustness of the explanation method as a notion of resilience against
adversarial attacks, i.e. as the ability of an explanation method to recognize the biased classifier in
an adversary environment. This type of robustness could be more formally defined as the number of
instances where the adversarial model’s bias was correctly recognized. We focus on the robustness
concerning the attacks described in Slack et al. (2020). There are other notions of robustness in ex-
planation methods; e.g., (Alvarez-Melis & Jaakkola, 2018) define the robustness of the explanations
in the sense that similar inputs should give rise to similar explanations.

The remainder of the paper is organized as follows. In Section 2, we present the necessary back-
ground and related work on explanation methods, attacks on them, and data generators. In Section 3,
we propose a defense against the described weaknesses of explanation methods, and in Section 4,
we empirically evaluate the proposed solution. In Section 5, we draw conclusions and present ideas
for further work.

2 BACKGROUND AND RELATED WORK

In this section, we first briefly describe the background on post-hoc explanation methods and attacks
on them, followed by data generators and related works on the robustness of explanation methods.

2.1 POST-HOC EXPLANATION METHODS

The current state-of-the-art perturbation-based explanation methods, IME, LIME, and SHAP, ex-
plain predictions for individual instances. To form an explanation of a given instance, they measure

1https://github.com/domenVres/Robust-LIME-SHAP-and-IME

2

ICT-29-2018 D1.9: Final interpretability and visualisation technology

46 of 82

the difference in prediction between the original instance and its neighboring instances, obtained
with perturbation sampling. Using the generated instances, the LIME method builds a local inter-
pretable model, e.g., a linear model. The SHAP and IME methods determine the impact of the
features as Shapley values from the coalitional game theory (Shapley, 1988). In this way, they as-
sure that the produced explanations obey the four Shapley fairness axioms (Štrumbelj & Kononenko,
2013). Due to the exponential time complexity of Shapley value calculation, both methods try to
approximate them. The three methods are explained in detail in the above references, and a formal
overview is presented in Appendix A, while below, we present a brief description. In our exposition
of the explanation methods, we denote with f the predictive model and with x the instance we are
explaining.

Explanations of instances with the LIME method is obtained with an interpretable model g. The
model g has to be both locally accurate (so that it can obtain correct feature contributions) and simple
(so that it is interpretable). Therefore in LIME, g is a linear regression model trained on the instances
sampled in the neighborhood of the explained instance x, which is first normalized.The perturbed
explanation instances are generated by adding Gaussian noise to each feature of x independently.
Using linear models to determine the contributions of features, LIME is fast but may produce poor
explanations for instances close to complex decision boundaries.

SHAP estimates Shapley values using the approach of LIME (i.e. local linear models computed with
the weighted least squares algorithm) but using a different neighborhood and loss function for local
accuracy, which ensures that Shapley values are obtained. The sampling of explanation instances in
SHAP relies on the distribution set D, obtained from the training set, by computing the centroids of
k-means clusters.

IME computes Shapley values using a pure sampling approach (no proxy with an interpretable
model). Its sampling replaces part of the explained instance with existing values of selected features
and then averages differences in the prediction of explained instance and samples. This makes the
method slower but also potentially more robust as the method does not assume the shape of the
dependency.

2.2 ATTACKS ON EXPLANATIONS

The idea of the attack on explanations presented in Slack et al. (2020) is that the attacker creates
an adversarial (biased) model whose behavior it wants to hide from explanation methods, e.g., a
racist model that does not grant credits to blacks. As Figure 1b illustrates, a part of the attacker’s
adversarial model is an unbiased model, which, e.g., does not take disputed attributes such as race
into account. The adversarial model tries to manipulate the explanation method by behaving like
an unbiased model on perturbed instances used for the explanation – in this case, it uses the unbi-
ased model’s output. On instances from the original distributions that are a part of normal model
use, the adversarial model uses the biased model’s output. To distinguish between the original and
perturbation-sampled data, the adversarial model contains a decision model that selects the right
type of model (biased or unbiased) based on the predicted type of instances.

The reason that the decision function can distinguish between the original data and sampled in-
stances are the shortcomings of explanation methods that use the perturbation sampling (see Fig-
ure 1a). For that graph, we created new instances based on the COMPAS dataset (see Section 4)
with the Gaussian noise as in the LIME explanation method. We mapped the original and sampled
instances to 2D space using the PCA transformation. We can see that the sampled data is distributed
differently than the original data. As the difference is revealed with PCA, other machine learning
algorithms can also effectively distinguish between sampled and original data.

The attack can be formally defined in the following way. The attacker has a biased model b and a
sample S from the distribution Xdist. The attacker has no additional information about the distribu-
tion Xdist. The attacker’s goal is to produce an adversarial model e that behaves like b on the data
from Xdist but does not reveal b’s bias to the explanation methods. We assume that the attacker also
has an unbiased model ψ that hides the f ’s bias. The attacker creates a decision model d, that should
output 1 if the input instance x is from Xdist and 0 otherwise. The model d is trained on S and
generated perturbation samples. The attacker creates the adversarial model e with its output defined

3

ICT-29-2018 D1.9: Final interpretability and visualisation technology

47 of 82

by the following equation:

e(x) =

{
b(x), d(x) = 1

ψ(x), d(x) = 0
(1)

2.3 DATA GENERATORS

We used three different data generators based on different algorithms, modeling the distribution
of the training set: variational autoencoder with Monte Carlo dropout (Miok et al., 2019), RBF
network (Robnik-Šikonja, 2016), and random forest ensemble (Robnik-Šikonja, 2019). In the re-
mainder of the paper, we refer to the listed generators consecutively as MCD-VAE, rbfDataGen, and
TreeEnsemble.

Autoencoder (AE) consists of two neural networks called encoder and decoder. It aims to compress
the input instances by passing them through the encoder and then reconstructing them to the original
values with the decoder. Once the AE is trained, it can be used to generate new instances. Variational
autoencoder (Doersch, 2016) is a special type of autoencoder, where the vectors z in the latent
dimension (output of the encoder and input of the decoder) are normally distributed. Encoder is
therefore approximating the posterior distribution p(z|x), where we assume p(z|x) ∼ N (µx,Σx).
The generator proposed by Miok et al. (2019) uses the Monte Carlo dropout (Gal & Ghahramani,
2016) on the trained decoder. The idea of this generator is to propagate the instance x through the
encoder to obtain its latent encoding z. This can be propagated many times through the decoder,
obtaining every time a different result due to the Monte Carlo dropout but preserving similarity to
the original instance x.

The RBF network (Moody & Darken, 1989) uses Gaussian kernels as hidden layer units in a neural
network. Once the network’s parameters are learned, the rbfDataGen generator (Robnik-Šikonja,
2016) can sample from the normal distributions, defined with obtained Gaussian kernels, to generate
new instances.

The TreeEnsemble generator (Robnik-Šikonja, 2019) builds a set of random trees (forest) that de-
scribe the data. When generating new instances, the generator traverses from the root to the leaves of
a randomly chosen tree, setting values of features in the decision nodes on the way. When reaching
a leaf, it assumes that it has captured the dependencies between features. Therefore, the remaining
features can be generated independently according to the observed empirical distribution in this leaf.
For each generated instance, all attributes can be generated in one leaf, or another tree can be ran-
domly selected where unassigned feature values are filled in. By selecting different trees, different
features are set in the interior nodes and leaves.

2.4 RELATED WORK ON ROBUSTNESS OF EXPLANATIONS

The adversarial attacks on perturbation based explanation methods were proposed by Slack et al.
(2020), who show that LIME and SHAP are vulnerable due to the perturbation based sampling
used. We propose the solution to the exposed weakness in SHAP and IME based on better sampling
using data generators adapted to the training set distribution.

In general, the robustness of explanation methods has been so far poorly researched. There are
claims that post-hoc explanation methods shall not be blindly trusted, as they can mislead users
(deliberately or not) and disguise gender and racial discrimination (Lipton, 2016). Selbst & Barocas
(2018) and Kroll et al. (2017) showed that even if a model is completely transparent, it is hard to
detect and prevent bias due to the existence of correlated variables.

Specifically, for deep neural networks and images, there exist adversarial attacks on saliency map
based interpretation of predictions, which can hide the model’s bias (Dombrowski et al., 2019; Heo
et al., 2019; Ghorbani et al., 2019). Dimanov et al. (2020) showed that a bias of a neural network
could be hidden from post-hoc explanation methods by training a modified classifier that has similar
performance to the original one, but the importance of the chosen feature is significantly lower.

The kNN-based explanation method, proposed by Chakraborty et al. (2020), tries to overcomes the
inadequate perturbation based sampling used in explanation methods by finding similar instances to
the explained one in the training set instead of generating new samples. This solution is inadequate
for realistic problems as the problem space is not dense enough to get reliable explanations. Our
defense of current post-hoc methods is based on superior sampling, which has not yet been tried.

4

ICT-29-2018 D1.9: Final interpretability and visualisation technology

48 of 82

Saito et al. (2020) use the neural CT-GAN model to generate more realistic samples for LIME and
prevent the attacks described in Slack et al. (2020). We are not aware of any other defenses against
the adversarial attacks on post-hoc explanations.

3 ROBUSTNESS THROUGH BETTER SAMPLING

We propose the defense against the adversarial attacks on explanation methods that replaces the
problematic perturbation sampling with a better one, thereby making the explanation methods more
robust. We want to generate the explanation data in such a way that the attacker cannot determine
whether an instance is sampled or obtained from the original data. With an improved sampling,
the adversarial model shown in Figure 1b shall not determine whether the instance x was generated
by the explanation method, or it is the original instance the model has to label. With a better data
generator, the adversarial model cannot adjust its output properly and the deception, described in
Section 2.2, becomes ineffective.

The reason for the described weakness of LIME and SHAP is inadequate sampling used in these
methods. Recall that LIME samples new instances by adding Gaussian noise to the normalized
feature values. SHAP samples new instances from clusters obtained in advance with the k-means
algorithm from the training data.

Instead of using the Gaussian noise with LIME, we generate explanation samples for each instance
with one of the three better data generators, MCD-VAE, rbfDataGen, or TreeEnsemble (see Sec-
tion 2.3). We call the improved explanation methods gLIME and gSHAP (g stands for generator-
based). Using better generators in the explanation methods, the decision function in the adversarial
model will less likely determine which predicted instances are original and which are generated for
the explanation purposes.

Concerning gLIME, we generate data in the vicinity of the given instance using MCD-VAE, as the
LIME method builds a local model. Using the TreeEnsemble and rbfDataGen generators, we do not
generate data in the neighborhood of the given instance but leave it to the proximity measure of the
LIME method to give higher weights to instances closer to the explained one.

In SHAP, the perturbation sampling replaces the values of hidden features in the explained instance
with the values from the distribution set D. The problem with this approach is that it ignores the
dependencies between features. For example, in a simple dataset with two features, house size, and
house price, let us assume that we hide the house price, but not the house size. These two features
are not independent because the price of a house increases with its size. Suppose we are explaining
an instance that represents a large house. Disregarding the dependency, using the sampled set D,
SHAP creates several instances with a low price, as such instances appeared in the training set. In
this way, the sampled set contains many instances with a small price assigned to a large house, from
which the attacker can determine that these instances were created in perturbation sampling and
serve only for the explanation.

In the proposed gSHAP, using the MCD-VAE and TreeEnsemble generators, the distribution set D
is generated in the vicinity of the explained instance. In the sampled instances, some feature values
of the explained instance are replaced with the generated values, but the well-informed generators
consider dependencies between features detected in the original distribution. This will make the
distribution of the generated instances very similar to the original distribution. In our example, the
proposed approach generates new instances around the instance representing a large house, and most
of these houses will be large. As the trained generators capture the original dataset’s dependencies,
these instances will also have higher prices. This will make it difficult for the attacker to recognize
the generated instances used in explanations. The advantage of generating the distribution set close
to the observed instance is demonstrated in Appendix B.

The rbfDataGen generator does not support the generation of instances around a given instance.
Therefore, we generate the sampled set based on the whole training set and not for each instance
separately (we have this option also for TreeEnsemble). This is worse than generating the distribu-
tion set around the explained instance but still better than generating it using the k-means sampling in
SHAP. There are at least three advantages. First, the generated distribution set D can be larger. The
size of the k-means distribution set cannot be arbitrarily large because it is limited by the number of
clusters in the training set. Second, the centroids of the clusters obtained by the k-means algorithm

5

ICT-29-2018 D1.9: Final interpretability and visualisation technology

49 of 82

Data set # inst. # features # categorical sensitive unrelated 1 unrelated 2
COMPAS 6172 7 4 race random1 random2
German 1000 25 15 gender pctOfIncome /
CC 1994 100 0 racePctWhite random1 random2

Table 1: Basic information and sensitive features in the the used data sets. The target variable is
not included in the number of features and is binary for all data sets. The pctOfIncome full name is
loanRateAsPercentOfIncome.

do not necessarily provide a good summary of the training set and may not be valid instances from
training set distribution. They also do not capture well the density of instances (e.g., most of the
data from the training set could be grouped in one cluster). Third, using the proposed generators,
SHAP becomes easier to use compared to the k-means generator, where users have to determine
the number of clusters, while the data generators we tested can be used in the default mode without
parameters,

4 EVALUATION

To evaluate the proposed improvements in the explanation methods, we first present the used datasets
in Section 4.1, followed by the experiments. In Section 4.2, we test the robustness of gLIME,
gSHAP, and gIME against the adversarial models. To be more realistic, we equipped the adversarial
models with the same improved data generators we used in the explanation methods. It is reasonable
to assume that attackers could also use better data generators when preparing their decision function,
making their attacks much stronger. As the evaluation metric for the success of deception, we use the
proportion of instances where the adversarial model deceived the explanation methods so that they
did not detect sensitive attributes as being important in the prediction models. In Section 4.3, we test
if enhanced generators produce different explanations than the original ones. As the attacker might
decide to employ deception only when it is really certain that the predicted instance is used inside
the explanation method, we test different thresholds of the decision function d from Equation (1)
(currently set to 0.5). We report on this analysis in Section 4.4.

4.1 SENSITIVE DATASETS PRONE TO DECEPTION

Following (Slack et al., 2020), we conducted our experiments on three data sets from domains
where a biased classifier could pose a critical problem, such as granting a credit, predicting crime
recidivism, and predicting the violent crime rate. The basic information on the data sets is presented
in Table 1. The statistics were collected after removing the missing values from the data sets and
before we encoded categorical features as one-hot-encoded vectors.

COMPAS (Correctional Offender Management Profiling for Alternative Sanctions) is a risk assess-
ment used by the courts in some US states to determine the crime recurrence risk of a defendant.
The dataset (Angwin et al., 2016)) includes criminal history, time in prison, demographic data (age,
gender, race), and COMPAS risk assessment of the individual. The dataset contains data of 6,172
defendants from Broward Couty, Florida. The sensitive attribute in this dataset (the one on which the
adversarial model will be biased) is race. African Americans, whom biased model associates with
a high risk of recidivism, represent 51.4% of instances from the data set. This set’s target variable
is the COMPAS score, which is divided into two classes: a high and low risk. The majority class is
the high risk, which represents 81.4% of the instances.

The German Credit dataset (German for the rest of the paper) from the UCI repository (Dua & Graff,
2019) includes financial (bank account information, loan history, loan application information, etc.)
and demographic data (gender, age, marital status, etc.) for 1,000 loan applicants. A sensitive
attribute in this data set is gender. Men, whom the biased model associates with a low-risk, represent
69% of instances. The target variable is the loan risk assessment, divided into two classes: a good
and a bad customer. The majority class is a good customer, which represents 70% of instances.

Communities and Crime (CC) data set (Redmond & Baveja, 2002) contains data about the rate of
violent crime in US communities in 1994. Each instance represents one community. The features
are numerical and represent the percentage of the community’s population with a certain property
or the average of population in the community. Features include socio-economic (e.g., education,
house size, etc.) and demographic (race, age) data. The sensitive attribute is the percentage of the

6

ICT-29-2018 D1.9: Final interpretability and visualisation technology

50 of 82

white race. The biased model links instances where whites’ percentage is above average to a low
rate of violent crime. The target variable is the rate of violent crime divided into two classes: high
and low. Both classes are equally represented in the data set.

4.2 ROBUSTNESS OF EXPLANATION METHODS

To evaluate the robustness of explanation methods with added generators (i.e. gLIME, gSHAP, and
gIME), we split the data into training and evaluation set in the ratio 90% : 10%. We used the same
training set for the training of adversarial models and explanation methods. We encoded categorical
features as one-hot-encoded vectors.

We simulated the adversarial attack for every combination of generators used in explanation methods
and adversarial models (except for method IME, where we did not use rbfDataGen, which cannot
generate instances in the neighborhood of a given instance). When testing SHAP, we used two vari-
ants of the TreeEnsemble generator for explanation: generating new instances around the explained
instance and generating new instances according to the whole training set distribution. In the LIME
testing, we used only the whole training set variant of TreeEnsemble inside the explanation. In the
IME testing, we only used the variant of Tree Ensemble that fills in the hidden values (called TEns-
FillIn variant). For training the adversarial models, we used the whole training set based variant
of TreeEnsemble, except for IME, where we used the TEnsFillIn variant. These choices reflect the
capabilities of different explanation method and attempt to make both defense and attack realistic
(as strong as possible). More details on training the decision model d inside the adversarial model
can be found in Appendix D.

In all cases, the biased model b (see Section 2.2) was a simple function depending only on the value
of the sensitive feature. The unbiased model ψ depended only on the values of unrelated features.
The sensitive and unrelated features are shown on the right-hand side of Table 1. Features random1
and random2 were uniformly randomly generated from the {0, 1} set. On COMPAS and CC, we
simulated two attacks, one with a single unrelated feature (the result of ψ depends only on the value
of the unrelated feature 1), and another one with two unrelated features.

For every instance in the evaluation set, we recorded the most important feature according to the used
explanation method (i.e. the feature with the largest absolute value of the contribution as determined
by the explanation method). The results are shown as a heatmap in Figure 2. The green color means
that the explanation method was deceived in less than 30% of cases (i.e. the sensitive feature was
recognized as the most important one in more than 70 % of the cases as the scale on the heatmap
suggests), and the red means that it was deceived in more than 70% of cases (the sensitive feature
was recognized as the most important one in less than 30 % of the cases as the scale on the heatmap
suggests). We consider deception successful if the sensitive feature was not recognized as the most
important by the explanation method (the sensitive features are the only relevant features in biased
models b).

The gLIME method is more robust with the addition of rbfDataGen and TreeEnsemble than LIME
and less robust with the addition of MCD-VAE. This suggests that parameters for MCD-VAE were
not well-chosen, and this pattern repeats for other explanation methods. Both TreeEnsemble and
rbfDataGen make gLIME considerably more robust on COMPAS and German datasets, but not on
the CC dataset. We believe the reason for that is that features in CC are strongly interdependent,
and many represent the same attribute as a fraction of value, e.g., we have the share of the white
population, the share of the Asian population, and so on. This interdependence dictates that all
fractions have to add up to 1. The data generators are unlikely to capture such strong conditional
dependencies, but the adversarial model’s decision function is likely to approximate it.

The gSHAP method is most robust when using the TreeEnsemble generator, but it shows less robust
behavior than the gLIME method. The reason for that could be in the feature value replacement
strategy used by the SHAP and gSHAP methods, which change only some of the feature’s values
with the help of the distribution set. This can lead to out-of-distribution instances if the instances
in the distribution set are not close enough to the explained instance. With gLIME, we generate
complete instances that are more likely to be in the distribution of the training set.

IME is quite robust even with the perturbation sampling, as we expected. This suggests that IME is
the most robust of all three tested explanation methods and shall be considered the chosen method in

7

ICT-29-2018 D1.9: Final interpretability and visualisation technology

51 of 82

Figure 2: The robustness results for gLIME (top), gSHAP (middle), and gIME (bottom). The graphs
show the proportion of evaluation set instances, where the sensitive feature was recognized as the
most important by the used explanation method. Rows represent the generators used for explana-
tions. The column labels consist of the name of the data set on which the experiment was performed
and the name of the generator used for training of the adversarial model. Compas2 and CC2 de-
note an attack with two independent features. Perturbation represents the original sampling used in
LIME, SHAP, and IME, TEnsFillIn represents the TreeEnsemble variant where new instances are
generated around the given one, and TreeEns represents the generation from the whole distribution.

sensitive situations. The gIME results when using the TreeEnsemble generator (TEnsFillIn variant)
are comparable to the original IME variant results. This suggests that sampling from a smaller data
set, which represents the neighborhood of the explained instance, does not decrease the method’s
robustness.

4.3 COMPARING EXPLANATIONS OF ORIGINAL AND MODIFIED METHODS

We checked if improved data generators affect explanations in a non-adversary environment. We
compared the explanations of original and modified methods for four different classification models
on three different datasets. As a measure of differences, we use the mean of the absolute difference
between the original and enhanced explanations over the whole evaluation set. Details of these ex-
periments are reported in Appendix F, below we shortly summarize the results, contained in Table 4.

8

ICT-29-2018 D1.9: Final interpretability and visualisation technology

52 of 82

The differences between original LIME and gLIME explanations are considerable (see the top part
of Table 4). This is not surprising since LIME fits local linear models in its local explanations,
which can strongly differ even for small perturbations of the model’s input. The differences in
SHAP and IME explanations are small (the average MAD is almost negligible). We can conclude
that explanations of gSHAP and gIME are not significantly different from SHAP and IME in the
non-adversary environment.

4.4 BEHAVIOR OF ADVERSARIAL CLASSIFIER WITH DIFFERENT PREDICTION THRESHOLDS

The attacker might be wary of being discovered by the regulator and decide to employ deception
only when it is really certain that the predicted instance is used inside the explanation method. We
express different levels of attacker’s conservatism by changing the decision function threshold d
from Equation (1), where it is currently set to 0.5. We tested the robustness of modified explanation
methods on the COMPAS dataset with adversarial models that use different certainty thresholds for
deploying the biased classifier (simulating different levels of aggressiveness). For results and a more
detailed description of the experiment, see Appendix G. Below, we shortly summarize the results.

Even with different thresholds, gIME is still the most robust of the three explanation methods, and
treeEnsemble still gives the best results as the data generator. The sensitive feature is recognized
as the most important more often when the threshold is lower, which is expected as in this case the
adversarial model behaves more aggressively. While the percentage of the instances on which the
racist behavior of the adversarial model is recognized drops with higher values of the thresholds, it
remains high enough to warn the regulator about the problematic behavior of the prediction model
(especially in the case of gSHAP and gIME using treeEnsemble as data generator). We can con-
clude that the enhanced explanation methods remain robust enough, even with more conservative
adversarial models.

5 CONCLUSIONS

We presented the defense against adversarial attacks on explanation methods. The attacks exploit
the shortcomings of perturbation sampling in post-hoc explanation methods. This sampling used
in these methods produces instances too different from the original distribution of the training set.
This allows unethical owners of biased prediction models to detect which instances are meant for
explanation and label them in an unbiased way. We replaced the perturbation sampling with data
generators that better capture the distribution of a given data set. This prevents the detection of
instances used in explanation and disarms attackers. We have shown that the modified gLIME and
gSHAP explanation methods, which use better data generators, are more robust than the original
variants, while IME is already quite robust. The difference in explanation values between original
and enhanced gSHAP and gIME is negligible, while for gLIME, it is considerable. Our preliminary
results in Appendix C show that using the TreeEnsemble generator, the gIME method converges
faster and requires from 30-50% fewer samples.

The effectiveness of the proposed defense depends on the choice of the data generator and its param-
eters. While the TreeEnsemble generator turned out the most effective in our evaluation, in practice,
several variants might need to be tested to get a robust explanation method. Inspecting authorities
shall be aware of the need for good data generators and make access to training data of sensitive pre-
diction models a legal requirement. Luckily, even a few non-deceived instances would be enough to
raise the alarm about unethical models.

This work opens a range of possibilities for further research. The proposed defense and attacks shall
be tested on other data sets with a different number and types of features, with missing data, and on
different types of problems such as text, images, and graphs. The work on useful generators shall be
extended to find time-efficient generators with easy to set parameters and the ability to generate new
instances in the vicinity of a given one. Generative adversarial networks (Goodfellow et al., 2014)
may be a promising line of research. The TreeEnsemble generator, currently written in pure R, shall
be rewritten in a more efficient programming language. The MCD-VAE generator shall be studied
to allow automatic selection of reasonable parameters for a given dataset. In SHAP sampling, we
could first fix the values of the features we want to keep, and the values of the others would be
generated using the TreeEnsemble generator.

9

ICT-29-2018 D1.9: Final interpretability and visualisation technology

53 of 82

ACKNOWLEDGMENTS

The work was partially supported by the Slovenian Research Agency (ARRS) core research pro-
gramme P6-0411. This paper is supported by European Union’s Horizon 2020 research and inno-
vation programme under grant agreement No 825153, project EMBEDDIA (Cross-Lingual Embed-
dings for Less-Represented Languages in European News Media).

10

ICT-29-2018 D1.9: Final interpretability and visualisation technology

54 of 82

REFERENCES

David Alvarez-Melis and Tommi S Jaakkola. On the robustness of interpretability methods. arXiv
preprint arXiv:1806.08049, 2018.

Julia Angwin, Jeff Larson, Surya Mattu, and Lauren Kirchner. Machine bias. ProPublica, May 23,
2016.

Joymallya Chakraborty, Kewen Peng, and Tim Menzies. Making fair ML software using trustworthy
explanation. arXiv preprint arXiv:2007.02893, 2020.

Botty Dimanov, Umang Bhatt, Mateja Jamnik, and Adrian Weller. You shouldn’t trust me: Learning
models which conceal unfairness from multiple explanation methods. In SafeAI@ AAAI, pp.
63–73, 2020.

Carl Doersch. Tutorial on variational autoencoders. ArXiv, abs/1606.05908, 2016.

Ann-Kathrin Dombrowski, Maximillian Alber, Christopher Anders, Marcel Ackermann, Klaus-
Robert Müller, and Pan Kessel. Explanations can be manipulated and geometry is to blame.
In Advances in Neural Information Processing Systems, pp. 13589–13600, 2019.

Dheeru Dua and Casey Graff. UCI machine learning repository. http://archive.ics.uci.
edu/ml, 2019. [Accessed: 9. 8. 2020].

Yarin Gal and Zoubin Ghahramani. Dropout as a Bayesian Approximation: Representing Model
Uncertainty in Deep Learning. In Proceedings of The 33rd International Conference on Machine
Learning, volume 48, pp. 1050–1059, 2016.

Amirata Ghorbani, Abubakar Abid, and James Zou. Interpretation of neural networks is fragile.
Proceedings of the AAAI Conference on Artificial Intelligence, 33:3681–3688, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Juyeon Heo, Sunghwan Joo, and Taesup Moon. Fooling neural network interpretations via adversar-
ial model manipulation. In Advances in Neural Information Processing Systems, pp. 2925–2936,
2019.

Joshua A Kroll, Joanna Huey, Solon Barocas, Edward W Felten, Joel R Reidenberg, David G Robin-
son, and Harlan Yu. Accountable algorithms. University of Pennsylvania Law Review, 165(3):
633–705, 2017.

Zachary Chase Lipton. The mythos of model interpretability. CoRR, abs/1606.03490, 2016.

Scott M Lundberg and Su-In Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems 30, pp. 4765–4774. Curran Associates, Inc., 2017.

Kristian Miok, Deng Nguyen-Doan, Daniela Zaharie, and Marko Robnik-Šikonja. Generating data
using Monte Carlo dropout. In 2019 IEEE 15th International Conference on Intelligent Computer
Communication and Processing (ICCP), pp. 509–515, 2019.

J. Moody and C. J. Darken. Fast learning in networks of locally-tuned processing units. Neural
Computation, 1:281–294, 1989.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Michael Redmond and Alok Baveja. A data-driven software tool for enabling cooperative infor-
mation sharing among police departments. European Journal of Operational Research, 141:
660–678, 2002.

11

ICT-29-2018 D1.9: Final interpretability and visualisation technology

55 of 82

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. ”Why should I trust you?”: Explaining the
predictions of any classifier. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1135–1144, 2016.

Marko Robnik-Šikonja. Data generators for learning systems based on RBF networks. IEEE Trans-
actions on Neural Networks and Learning Systems, 27(5):926–938, 2016.

Marko Robnik-Šikonja and Igor Kononenko. Explaining classifications for individual instances.
IEEE Transactions on Knowledge and Data Engineering, 20:589–600, 2008.

Marko Robnik-Šikonja. semiArtificial: Generator of Semi-Artificial Data, 2019. URL https:
//cran.r-project.org/package=semiArtificial. R package version 2.3.1.

Peter J. Rousseeuw. Silhouettes: A graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics, 20:53 – 65, 1987.

Sean Saito, Eugene Chua, Nicholas Capel, and Rocco Hu. Improving lime robustness with smarter
locality sampling, 2020.

Andrew D Selbst and Solon Barocas. The intuitive appeal of explainable machines. Fordham Law
Review, 87:1085, 2018.

Lloyd S. Shapley. A value for n-person games. In Alvin E. Roth (ed.), The Shapley Value: Essays
in Honor of Lloyd S. Shapley, pp. 31–40. Cambridge University Press, 1988.

Dylan Slack, Sophie Hilgard, Emily Jia, Sameer Singh, and Himabindu Lakkaraju. Fooling LIME
and SHAP: Adversarial attacks on post-hoc explanation methods. In AAAI/ACM Conference on
AI, Ethics, and Society (AIES), 2020.

Erik Štrumbelj and Igor Kononenko. An efficient explanation of individual classifications using
game theory. Journal of Machine Learning Research, 11:1–18, 2010.

Erik Štrumbelj and Igor Kononenko. Explaining prediction models and individual predictions with
feature contributions. Knowledge and Information Systems, 41:647–665, 2013.

A DETAILS ON POST-HOC EXPLANATION METHODS

For the sake of completeness, we present further details on the explanation methods LIME (Ribeiro
et al., 2016), SHAP (Lundberg & Lee, 2017), and IME (Štrumbelj & Kononenko, 2013). Their com-
plete description can be found in the above-stated references. In our exposition of the explanation
methods, we denote with f the predictive model, with x the instance we are explaining, and with n
the number of features describing x.

A.1 LIME

Explanations of instances with the LIME method is obtained with an interpretable model g. The
model g has to be both locally accurate (so that it can obtain correct feature contributions) and
simple (so that it is interpretable).

The explanation of the instance x for the predictive model f , obtained with the LIME method, is
defined with the following equation:

ξ(x) = arg min
g∈G

(L(f, g, πx) + Ω(g)), (2)

where Ω(g) denotes the measure of complexity for interpretable model, πx(z) denotes the proximity
measure between x and generated instances z, L(f, g, πx) denotes the measure of local fidelity of
interpretable model g to the prediction model f , and G denotes the set of interpretable models. We
use the linear version of the LIME method, where G represents the set of linear models. With x′
we denote the normalized presentation of instance x, i.e. the numerical attributes have their mean
set to 0 and variance to 1, and the categorical attributes contain value 1 if they have the same value

12

ICT-29-2018 D1.9: Final interpretability and visualisation technology

56 of 82

as the exoplained instance and 0 otherwise. The proximity function πx is defined on the normalized

instances (hence we use the notation πx′), and uses the exponential kernel: πx′(z′) = e
d(x′,z′)
σ2 ,

where d(x′, z′) denotes a distance measure between x′ and z′. The local fidelity measure L from
Equation (2) is defined as:

L(f, g, πx′) =
∑

z′∈Z
πx′(z′)(f(z)− g(z′))2, (3)

whereZ denotes the set of samples. In LIME, each generated sample is obtained by adding Gaussian
noise to each feature of x′ independently.

Using linear models as the set of interpretable models, LIME is relatively fast but may produce poor
explanations for instances close to complex decision boundaries.

A.2 SHAP

We refer to SHAP as the method called Kernel SHAP by (Lundberg & Lee, 2017). SHAP essentially
estimates Shapley values using LIME’s approach, which means that the calculation of explanations
is fast due to the use of local linear models computed with the weighted least squares algorithm.
The explanation of the instance x with the SHAP method are feature contributions φi, i = 1, 2, ..., n
that are coefficients of the linear model g(x′) = φ0 +

∑n
i=1 φi · x′i, obtained with LIME, where

x′i ∈ {0, 1} for i ∈ {1, 2, ..., n}.
As LIME does not compute Shapley values, this property is assured with the proper selection of
functions Ω(g), πx′(z′), and L(f, g, πx′). Let us first define the function hx(z′) that maps from
the {0, 1}n to the original feature space. The function hx is defined implicitly with the equation
f(hx(z′)) = E[f(z)|zi = xi ∀i ∈ {j; z′j = 1}]. This is the expected value of the model f when we
do not know the values of features at indices where z′ equals 0 (these values are hidden). Functions
Ω(g), πx′(z′) and L(f, g, πx′) that enforce the computation of Shapley values are:

Ω(g) = 0,

πx′(z′) =
n(

n
|z′|
)
· |z′| · (n− |z′|) ,

L(f, g, πx′) =
∑

z′∈Z
(f(hx(z′))− g(z′))2 · πx′(z′),

where |z′| denotes the number of nonzero features of z′ and Z ⊆ 2{0,1}
n

.

The main purpose of the sampling in this method is to determine the value f(hx(z′)) because in
general predictive models cannot work with hidden values. To determine f(hx(z′)), SHAP uses
the distribution set D which we obtain from the training set. For D, SHAP takes the centroids of
clusters obtained by the k-means clustering algorithm on the training set. The number of clusters is
set by the user. Value of f(hx(z′)) is determined by the following sampling:

f(hx(z′)) = E[f(z)|zi = xi ∀i ∈ {j; z′j = 1}] =
1

|D|
∑

d∈D
f(x[xi=di,z′i=0]), (4)

where x[xi=di,z′i=0] denotes instance x with features that are 0 in z′ being set to the feature values
from d.

A.3 IME

The explanation of x with the method IME are feature contributions φi, i = 1, 2, ..., n. Štrumbelj &
Kononenko (2013) shoved that Shapley values are the only solution that takes into account contri-
butions of interactions for every subset of features in a fair way. The i-th feature contribution can be
calculated with the following expresiion:

φi(x) =
1

n

∑

π∈Sn

∑

w∈X
p(w) · (f(w[wi=xi,i∈Prei(π)∪{i}])− f(w[wi=xi,i∈Prei(π)])), (5)

13

ICT-29-2018 D1.9: Final interpretability and visualisation technology

57 of 82

where Sn denotes a group of permutations of n elements, X denotes the training set instances,
Prei(π) represents the set of indices that precedes i in the permutation π, i.e. Prei(π) =
{j;π(j) < π(i)}). Let p(w) denote the probability of the instance w in X and let w[formula]

denote the instance w with some of its features values changed according to the formula. To
calculate φi(x), we have to go through |X | · n! iterations, which can be slow. Therefore, the
method IME uses the following sampling. The sampling population of i-th feature is Vπ,w =
(f(w[wi=xi,i∈Prei(π)∪{i}]) − f(w[wi=xi,i∈Prei(π)])) for every combination of the permutation π
and instance w. IME draws mi samples V1, ..., Vmi at random with repetition. The estimate of
φi(x) is defined with the equation:

φ̂i =
1

mi

mi∑

i=1

Vi. (6)

Contrary to SHAP, IME does not use approximation with linear models, which compute all features’
contributions at once but has to compute the Shapley values by averaging over a large enough sample
for each feature separately. This makes the method slower but also potentially more robust as the
method does not assume the shape of the dependency in the space of normalized features.

B DEMONSTRATION OF BETTER SAMPLING IN SHAP

The graphs in Figure 3 show the PCA based 2D space of the evaluation part of the COMPAS dataset
(see Section 4 for the dataset description). The left-hand side shows the SHAP-generated sampled
instances using the k-means algorithm (14 clusters determined by the silhouette score (Rousseeuw
(1987)). The sample produced with the MCD-VAE generator in gSHAP is shown on the right-hand
side. This sample is much more similar to the original distribution compared to the SHAP sampling.

Figure 3: Visual comparison of original and sampled distributions for the COMPASS dataset. The
SHAP k-means based generator (left) produces instances less similar to the original data, compared
to the MCD-VAE generator (right).

C IMPROVED IME CONVERGENCE RATE WITH THE TREEENSEMBLE
GENERATOR

Preliminary, we tested how better generators affect the convergence rate of the IME explanation
method. The preliminary results in Table 2 show a significant reduction in the number of needed
samples and a slight increase in the error compared to the original perturbation sampling. Note
that the error measure deployed is biased in favor of the perturbation sampling, which was used
to determine the gold standard. This was determined with the sampling population’s variance, as
described in Štrumbelj & Kononenko (2010).

D TRAINING DISCRIMINATOR FUNCTION OF THE ATTACKER

Details of training attacker’s decision models d (see Figure 1b) is described in Algorithms 1, 2, and
3. We used a slightly different algorithm for each of the three explanation methods, LIME, SHAP,

14

ICT-29-2018 D1.9: Final interpretability and visualisation technology

58 of 82

COMPAS dataset
Error # samples

Classifier Perturb. TEnsFillIn Perturb. TEnsFillIn Reduction % CA %
Naive Bayes 0.0076 0.0217 18571 11278 39 83
Linear SVM 0.0033 0.0080 8244 4423 46 84

Random forest 0.0049 0.0221 45372 26960 41 80
Neural network 0.0057 0.0130 16157 8841 45 84

German dataset
Error # samples

Classifier Perturb. TEnsFillIn Perturb. TEnsFillIn Reduction % CA %
Naive Bayes 0.0076 0.0201 56052 39257 30 77
Linear SVM 0.0005 0.0013 3877 2157 44 69

Random forest 0.0046 0.0141 92478 66639 28 74
Neural network 0 0 0 26 / 69

CC dataset
Error # samples

Classifier Perturb. TEnsFillIn Perturb. TEnsFillIn Reduction % CA %
Naive Bayes 0.0028 0.0046 32910 20117 39 70
Linear SVM 0.0009 0.0048 73324 39098 47 62

Random forest 0.0032 0.0045 109958 58852 46 79
Neural network 0.0012 0.0061 144183 70020 51 72

Table 2: Comparison of original perturbation sampling and the TreeEnsemble generator with data
fill-in inside the IME method. The results show average scores for the evaluation set. The col-
umn Perturb. presents the perturbation based sampling and TEnsFillIn presents the sampling using
TreeEnsemble generator with missing parts of instances filled in. The Reduction column shows the
reduction in the number of samples using the TEnsFillIn method compared to perturbations. The
CA stands for the classification accuracy of the explained classifier on the evaluation set.

and IME, as each method uses a different sampling. Algorithms first create out-of-distribution in-
stances by method-specific sampling. The training sets for decision models are created by labeling
the created instances with 0; the instances from sample S (to which the attacker has access) from
distribution Xdist are labeled with 1. Finally, the machine learning model dModel is trained on this
training set and returned as d. In our experiments, we used random forest classifier as dModel and
the training part of each evaluation dataset as S.

E HEATMAPS AS TABLES

We present the information contained in Figure 2 in a more detailed tabular form in Table 3.

F COMPARING EXPLANATIONS OF ORIGINAL AND MODIFIED METHODS

We check if improved data generators affect explanations in non-adversary environment. We split
the dataset into training and evaluation set in the ratio 90% : 10%, and trained four classifiers from
Python scikit-learn (Pedregosa et al. (2011)) library: Gaussian naive Bayes, linear SVC (SVM for
classification), random forest, and neural network. We explained the predictions of each classifier
on the evaluation set with every combination of explanation methods and generators used in the
adversarial attack experiments. For instances in the evaluation set, we measured the mean absolute

15

ICT-29-2018 D1.9: Final interpretability and visualisation technology

59 of 82

Algorithm 1: Training of the decision model d, used by the attacker to distinguish between in-
stances from distributionXdist and samples produced by explanation methods LIME or gLIME.
Input: S = {(xi)mi=1}: training set, nSamples: number of generated instances for each instance

xi ∈ D, gen: data generator, dModel: machine learning algorithm
Output: Classifier d that outputs 1 if its input x is from Xdist and 0 otherwise
X ← ∅ // Training set for dModel
gen.fit(S) // Train the data generator on S
for i = 1 to m do

X ← X ∪ (xi, 1) // Add an instance from distribution
G← gen.newdata(nSamples, xi) // Generate nSamples new samples around xi
for j = 1 to nSamples do // Add nSamples out of distribution instances

X ← X ∪ (G[j], 0) // Add j-th instance from set G to X
end

end
d← dModel.fit(X) // Fit model dModel to set X and save it in d
return d

Algorithm 2: Training of the decision model d, used by attacker to distinguish between instances
from distribution Xdist and samples produced by explanation methods SHAP or gSHAP.
Input: S = {(xi)mi=1}: training set, nSamples: number of generated instances for each instance

xi ∈ D, k: size of the generated distribution set, gen: data generator, dModel: machine
learning algorithm

Output: Classifier d that outputs 1 if its input x is from Xdist and 0 otherwise
X ← ∅ // Training set for dModel
gen.fit(S) // Train the data generator on S
if gen == KMeans or gen == rbfDataGen or gen == treeEnsemble then

D ← gen.newdata(k) // Generate the distribution set with KMeans, rbfDataGen or treeEnsemble
end
for i = 1 to nSamples do // Add nSamples out of distribution instances

x← random instance from S
if gen == MCD − V AE or gen == treeEnsembleF ill then

w ← gen.newdata(1, x) // Generate an instance w in the vicinity of x
end
else // KMeans, treeEnsemble or rbfDataGen

w ← take a random instance from D
end
M ← choose a random subset of {1, 2, ..., len(x)} // Choose random features
x[M]← w[M] // Replace the values of chosen features in x with values from w as in SHAP method
X ← X ∪ (x, 0) // Add out of distribution instance

end
for i = 1 to m do // Add instances from distribution

X ← X ∪ (xi, 1)
end
d← dModel.fit(X) // Fit model dModel to set X and save it in d
return d

difference (MAD) of modified explanation methods, defined with the following equation:

MADgen(x) =
1

n

n∑

i=1

|φgeni (x)− φi(x)|, (7)

where φgeni (x) and φi(x) represent the explanations of i-th feature returned by the modified and
original explanation method, respectively (recall that n denotes the number of features in the data
set).

We experimented on three datasets. The COMPAS dataset is described in Section 4.1. In addition to
that, we used synthetic dataset condInd from Robnik-Šikonja & Kononenko (2008), and Ionosphere

16

ICT-29-2018 D1.9: Final interpretability and visualisation technology

60 of 82

Algorithm 3: Training of the decision model d, used by attacker to distinguish between instances
from distribution Xdist and samples produced by explanation methods IME or gIME.
Input: S = {(xi)mi=1}: training set, nSamples: number of generated instances for each instance

xi ∈ D, gen: data generator, dModel: machine learning algorithm
Output: Classifier d that outputs 1 if its input x is from Xdist and 0 otherwise
X ← ∅ // Training set for dModel
gen.fit(S) // Train the data generator on set S
for i = 1 to m do

X ← X ∪ (xi, 1) // Add an instance from distribution
for j = 1 to nSamples do // Add nSamples out of distribution instances

w ← gen.newdata(1, xi) // Generate an instance w in the vicinity of xi
b1 ← w // First out of distribution instance
b2 ← w // Second out of distribution instance
π ← choose a random permutation from Slen(xi) // i.e. a random permutation of xi’s

features
idx← choose a random number from {1, 2, ..., len(xi)}
M1 ← {k ∈ {1, 2, ..., len(xi)}, π(k) < π(idx)} // Features that precede idx in
permutation π

M2 ←M1 ∪ {idx}
b1 ← xi[M1] // Vector b1 as in IME method (Štrumbelj & Kononenko (2013))
b2 ← xi[M2] // Vector b2 as in IME method (Štrumbelj & Kononenko (2013))
X ← X ∪ {(b1, 0), (b2, 0)} // Add out of distribution instances

end
end
d← dModel.fit(X) // Fit model dModel to set X and save it in d
return d

dataset from UCI repository (Dua & Graff (2019)). Both datasets represent a binary classification
problem. Apart from the target variable, condInd consists of 8 binary features, while Ionosphere
consists of 34 numerical attributes. The condInd datasets contains 2000 instances and Ionosphere
contains 351 instances.

The results are shown in Table 4. The differences between original LIME and gLIME explanations
are considerable (see the top table). This is not surprising since LIME fits local linear models in
its local explanations, which can strongly differ even for small perturbations of the model’s input.
SHAP and IME explanations are very similar (the average MAD is almost negligible). We can
conclude that explanations of gSHAP and gIME are not significantly different from SHAP and IME
in the non-adversary environment.

17

ICT-29-2018 D1.9: Final interpretability and visualisation technology

61 of 82

Table 3: The robustness results for gLIME (top table), gSHAP (middle table), and gIME (bottom
table). The tables show the proportion of evaluation set instances, where the sensitive feature was
recognized as the most important by the used explanation method. Columns represent the generators
used for explanations. The row labels consist of the name of the dataset on which the experiment was
performed and the name of the generator used for training of the adversarial model. Compas2 and
CC2 denote attacks with two independent features. Perturbation represents the original sampling
used in LIME, SHAP, and IME, TEnsFillIn represents a variant of the TreeEnsemble generator
where new instances are generated around the given one, and TreeEns represents the generation
from the whole distribution.

18

ICT-29-2018 D1.9: Final interpretability and visualisation technology

62 of 82

Table 4: The differences in explanations between LIME and gLIME (top table), SHAP and gSHAP
(middle table), and IME and gIME (bottom table). The tables show MAD and the variance of MAD
on evaluation set for every combination of the explanation method and predictive model. Columns
represent MAD and the variance of MAD on used datasets. The row labels consist of the used
classifier and generator.

19

ICT-29-2018 D1.9: Final interpretability and visualisation technology

63 of 82

G ADVERSARIAL CLASSIFIERS WITH DIFFERENT PREDICTION THRESHOLDS

In a realistic scenario, the attacker might be wary of being discovered by the regulator and decide
to employ deception only when it is really certain that the predicted instance is used inside the
explanation method. In these circumstances, the number of times when the sensitive variable is used
inside the model will also depend on how aggressively the biased classifier is used. This reflection
leads to another metric for the defense’s success, which measures the proportion of instances when
the sensitive variable is identified when it is being used, i.e. at different levels of conservatism.

We express different levels of attacker’s conservatism by changing the threshold of the decision
function d. The output of the adversarial model et, which uses threshold t is now defined with the
equation:

et(x) =

{
b(x), dprob(x) ≥ t
ψ(x), dprob(x) < t

, (8)

where dprob(x) denotes the probability that x is from distribution Xdist, returned by decision model
d. Threshold t therefore represents the required certainty of the attacker that given instance is from
Xdist before it deploys the biased classifier. Larger values of t will result in biased classifier being
deployed fewer times but with larger certainty that it has to be used. If we use t = 0.5 in Equation
(8), we get the adversarial model that behaves identically to the one, described with Equation (1) in
Section 2.2.

In this experiment, we used only the COMPAS dataset, which we split into the training and evalua-
tion set in ratio 90% : 10%. We performed the same experiment as in section 4.2, but with different
thresholds for the adversarial models. We used five different thresholds: 0.3, 0.4, 0.5, 0.6 and 0.7.

We first checked how different thresholds affect the deployment of the biased model. For each gen-
erator used in the adversarial model’s training and the certainty threshold used by the adversarial
model, we measured the proportion of instances from the evaluation set, where the biased classifier
was deployed. The results are shown in Table 5. As expected, the percentage of instances where
the biased classifier is deployed decreases with increasing t. The biased classifier is deployed less
frequently when using treeEnsemble and rbfDataGen in its training, which is also expected, as these
two generators give the best results inside the explanation methods. This means that for these gen-
erators, it is more difficult for an attacker to distinguish between the actual instances and generated
instances. The biased classifier is deployed the most often in the case of the LIME adversarial model
and least often in the SHAP adversarial model.

Next, we tested the proportion of instances where the sensitive feature (in case of COMPAS dataset
this is race) was recognized as the most important feature by the explanation method on two different
subsets of instances: instances from the evaluation set on which the biased classifier was deployed
and the whole evaluation set. We measured these numbers for all combinations of thresholds and
explanation methods. The results are shown in Tables 6 (gLIME), 7 (gSHAP) and 8 (gIME) for
gLIME, gSHAP, and gIME, respectively. We can observe the same pattern as in section 4.2: gIME
is still the most robust, and the treeEnsemble generator still gives the best results. The sensitive
attribute is recognized as the most important feature more often when the decision threshold values
are lower, which is expected as in these cases, the adversarial model behaves more aggressively.
Whilst the percentage of the instances on which the racist behavior of the adversarial model is
recognized drops with higher thresholds, it remains high enough to warn the regulator about the
problematic behavior of the prediction model (especially in the case of gSHAP and gIME using
treeEnsemble as data generator). From that, we can conclude that modified explanation methods
remain robust enough, even with more conservative adversaries.

20

ICT-29-2018 D1.9: Final interpretability and visualisation technology

64 of 82

Table 5: Proportions of instances in % of the evaluation set on which the biased classifier was
deployed for adversarial LIME (top table), SHAP (middle table) and IME model (bottom table).
Columns represent different threshold used for deploying the biased classifier. The rows represent
the generator used in training of the adversarial attack. The labels ”One unrelated” and ”Two unre-
lated” represent the attacks with one or two unrelated features.

21

ICT-29-2018 D1.9: Final interpretability and visualisation technology

65 of 82

Table 6: Percentages of instances where the sensitive feature (race) was recognized as the most
important feature with gLIME for adversarial attacks with one (top table) or two unrelated features
(bottom table). The columns labeled Biased pred. represent the results on instances on which the
biased classifier was deployed, while the columns labeled All represent the results on the whole
evaluation sets. The numbers above represent the used threshold. The row labels are in the form
<explainer> <adversarial> where <explainer> denotes the generator used in the explanation
method and <adversarial> denotes the generator used in the training of the adversarial model.

22

ICT-29-2018 D1.9: Final interpretability and visualisation technology

66 of 82

Table 7: Percentage of instances where the sensitive attribute (race) was recognized as the most
important feature with gSHAP for adversarial attacks with one (top table) or two unrelated fea-
tures (bottom table). The columns labeled Biased pred. represent the results on instances on which
the biased classifier was deployed, while columns labeled All represent the results on the whole
evaluation sets. The numbers above represent the used threshold. The row labels are in the form
<explainer> <adversarial> where <explainer> denotes the generator used in the explanation
method and <adversarial> denotes the generator used in the training of the adversarial model.

23

ICT-29-2018 D1.9: Final interpretability and visualisation technology

67 of 82

Table 8: Percentages of instances where the sensitive attribute (race) was recognized as the most
important feature with gIME for adversarial attacks with one (top table) or two unrelated features
(bottom table). The columns labeled Biased pred. represent the results on instances on which the
biased classifier was deployed, while the columns labeled All represent the results on the whole
evaluation sets. The numbers above represent the used threshold. The row labels are in the form
<explainer> <adversarial> where <explainer> denotes the generator used in the explanation
method and <adversarial> denotes the generator used in the training of the adversarial model.

24

ICT-29-2018 D1.9: Final interpretability and visualisation technology

68 of 82

Semantic Reasoning from Model-Agnostic
Explanations

Timen Stepišnik Perdih
Jožef Stefan Institute
Ljubljana, Slovenia

tstepisnikp@gmail.com

Nada Lavrač
Jožef Stefan Institute
Ljubljana, Slovenia

University of Nova Gorica
Nova Gorica, Slovenia

Blaž Škrlj
Jožef Stefan International Postgraduate School

Jožef Stefan Institute,
Ljubljana, Slovenia

blaz.skrlj@ijs.si

Abstract—With the wide adoption of black-box models,
instance-based post hoc explanation tools, such as LIME and
SHAP became increasingly popular. These tools produce expla-
nations, pinpointing contributions of key features associated with
a given prediction. However, the obtained explanations remain at
the raw feature level and are not necessarily understandable by a
human expert without extensive domain knowledge. We propose
ReEx (Reasoning with Explanations), a method applicable to
explanations generated by arbitrary instance-level explainers,
such as SHAP. By using background knowledge in the form of on-
tologies, ReEx generalizes instance explanations in a least general
generalization-like manner. The resulting symbolic descriptions
are specific for individual classes and offer generalizations based
on the explainer’s output. The derived semantic explanations are
potentially more informative, as they describe the key attributes
in the context of more general background knowledge, e.g., at the
biological process level. We showcase ReEx’s performance on nine
biological data sets, showing that compact, semantic explanations
can be obtained and are more informative than generic ontology
mappings that link terms directly to feature names. ReEx is
offered as a simple-to-use Python library and is compatible with
tools such as SHAP and similar. To our knowledge, this is one
of the first methods that directly couples semantic reasoning
with contemporary model explanation methods. This paper is a
preprint. Full version’s doi is: 10.1109/SAMI50585.2021.9378668

Index Terms—model explanations, reasoning, generalization,
SHAP, machine learning, explainable AI

I. INTRODUCTION

THERE is a growing demand for machine learning ap-
proaches that are not only well-performing but also

trustworthy, transparent and explainable [1]. Methods like
LIME [2] and SHAP [3] have been proposed to extract the
contributions of the most important features to explain a
given model’s prediction, but these features are often still not
fully understandable by the user (e.g., gene symbols). This
paper presents a way of reasoning from model explanations
called ReEx (Reasoning from Explanations), a method that
generalizes these features in the context of a given collection
of background knowledge into explanations comprised of more
understandable (semantic) terms. This paper discusses the
following advances over the state of the art:

1) We propose ReEx, a method capable of linking back-
ground knowledge in the form of ontologies to expla-

Slovenian Research Agency

nations generated by widely accepted approaches such
as SHAP. ReEx performs efficient term generalization
whilst considering an arbitrary number of relations (be-
tween the terms), automatically.

2) The added value of ReEx with respect to its performance
is demonstrated on nine real-life gene expression data
sets linked to Gene Ontology [4], where compact, inter-
pretable explanations consisting of semantic terms are
obtained as a result of generalization from the attributes,
recognized as relevant by SHAP [3].

3) We propose an information-theoretic measure of gen-
eralization derived from the information content of in-
dividual terms (or sets of terms) we refer to as GENQ.
The measure is used to directly assess the generalization
performance and is arguably more suitable for this task
than the commonly employed information content.

4) The proposed solution is presented as a simple-to-
use Python package, useful off-the-shelf alongside the
existing model explainers.

II. RELATED WORK

In this section, we present the related work, ranging from
the notion of model explanation and semantic data mining to
the more recent approaches which attempt to join the two sub-
fields by treating semantic background knowledge as graph-
theoretic objects, directly useful for applications in machine
learning.

General solutions for explanations based on individual in-
stances were proposed more than a decade ago [5], offering
promising solutions to better understand classifiers such as the
support vector machines and similar. Explanation of black-box
models, however, has resurfaced in the recent years, along
with the revival of neural networks and the development of
deep neural networks [6]. Such multi-million parameter neural
networks are able to associate beyond the capabilities of any
other learners when considering inputs such as images, texts
and more recently - graphs [7]. Methods, such as LIME
[2], SHAP [3] and similar [8], [9], were introduced and
have, by offering simple-to-use APIs, become widely used
throughout the industry and science. For example, a recent
review [8] elaborates on the importance of understanding
the causality of the learned representations via explanations.

ar
X

iv
:2

10
6.

15
43

3v
1

 [
cs

.A
I]

 2
9

Ju
n

20
21

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Appendix C: Semantic Reasoning from Model-Agnostic
Explanations

69 of 82

Annotations

Class-based
explanations

An ontology
with multiple relations

Annotated
data frame

Reasoning

Semantic generalizations
of explanations

Obtain
explanations

Fig. 1: Overview of the proposed ReEx. Given a data set where
the attributes map to a domain ontology, ReEx first produces
and aggregates the instance-level explanations. Top attributes
are selected iteratively (vertical lines in the second sub-image
of the three vectors), followed by a reasoning procedure, which
exploits the explicitly given relations (within the ontology) to
generalize the mapped terms into higher-level semantic terms.
Generalizations are obtained for each class (last sub-figure).

It explains the difference between post-hoc systems, which
aim to provide the local explanations for a specific decision,
making it reproducible on demand instead of explaining the
whole systems’ behavior (LIME), and ante-hoc systems, which
are interpretable by design and are considered as the white-
box approaches (linear regression, decision trees, rules). Fur-
ther, the recent work on the use of machine learning (ML)
approaches [10] argues that blindly accepting the outcome of
an ML system is a dangerous practice, which is adopted by
many out of necessity, or by choice. To overcome this a ML
system should provide an explanation of its decision-making
process.

The use of background knowledge for improving the under-
standability of machine learning systems has also been referred
to as semantic data mining [11]. For example, in relational
domains, the CBSSD methodology [12] focuses on data min-
ing tasks that use ontologies as background knowledge when
explaining emergent structures in complex networks. Similarly,
the NetSDM approach [13] explored how redundant ontologies
are for the purposes of inductive rule learning. Furthermore,
promising results were observed when attempting to account
for explicit semantics during image classification [11], and
using inductive logic programming to obtain relational expla-
nations (of image classifications) [14]. The ReEx approach
presented in the following sections attempts to bridge the
gap between the plethora of available relational background
knowledge sources and explainable models, offering a fast
and simple to use method, complementary to the existing
model explainers incapable of exploiting existing background
knowledge.

III. REEX - REASONING FROM MODEL EXPLANATIONS

The following section discusses the proposed ReEx ap-
proach, summarized in Figure 1. The first part of ReEx
concerns with obtaining class-specific aggregates of feature

importances. To achieve this, the following steps are consid-
ered:

Initial feature pruning. We select the top k features
according to the descending order of their mutual information
with the target variable. This myopic measure is selected due
to its computational efficiency [15].

Cross-validation and explanation acquisition. The model
is trained in a 10-fold cross-validation scheme, where for each
of the test instances (one of the folds), the SHAP kernel
explainer [3] is used to obtain a list of Shapley values,
indicating which features were the most relevant for a given
prediction.

Explanation aggregation. The following procedure is con-
sidered for each of the classes; for each feature that appeared
in an explanation at least once, the values across all explained
instances are averaged. When all features are considered, they
are sorted in decreasing order based on the relevance values.
More formally, let pC,+ denote a probability distribution of a
collection of explanation values across the correctly classified
samples of selected class C. Let Xi denote the random variable
representing the explanation for the i-th feature Fi. Let X
denote the vector of all such random variables, having each
entry associated with a given (i-th) feature. ReEx constructs
a set of tuples defined as follows:

REEX-AGG =
⋃

C

(C,EX∼pC,+
[X]),

Here, Xi represents a random variable representing the Shap-
ley value for the i-th feature. A vector of the expected values
is thus considered for each class. The elements of the vector
are the importances associated with a given (i-th) feature.

A more detailed overview of the idea behind SHAP is
discussed next. SHAP [3] is based on the coalitional game
theory, and aims to capture the importance of interactions
between features via Shapley values. When considered in a
feature importance estimation scenario, the contribution of the
i-th instance, denoted with τi is approximated by SHAP with
the following expression:

τi =
∑

S⊆F\{i}

|S|!(|F | − |S| − 1)!

|F |!
︸ ︷︷ ︸

All possible subsets

[
f(xS∪{i})− f(xS)

]

︸ ︷︷ ︸
Difference in predictive performance

where S is a subset of all features F , f is the used predictive
model, and xS is an instance containing only features from
the subset S. Shapley values offer insights into the instance-
level predictions by assigning fair credit to individual features
for participation in interactions. They are commonly used to
understand and debug black-box models [16].

In this work, we use the SHAP kernel approximator, the
recently introduced, model-agnostic method for explaining
model outputs. The used SHAP kernel explainer is considered
an additive feature attribution method. Such methods are

ICT-29-2018 D1.9: Final interpretability and visualisation technology

70 of 82

characterized by having an explanation model g that is a linear
function of binary variables:

g(z′) = φ0 +

|F |∑

i=1

φi · z′i

where z′ ∈ {0, 1}|F |, |F | is the number of input features
and φi ∈ R. This class of models assign an importance φi
to each feature and, summing the effects of all such feature
attributions, approximates the output f(x) of the original
model. Detailed theoretical analysis of how this idea can be
extended to an approximation of outputs via a kernel is given
in [3]. The final result of this step are thus lists of tuples for
each class.

Thresholding - ReEx implements a dynamic threshold for
each class which we lower until at least n number of features
in that class have their assigned SHAP value greater than the
threshold.

Reasoning. After the discussed procedure ReEx obtains a
set of features that were estimated as the most important for
each class. These collections are used as the input to reasoning,
discussed next. Selective staircase is the faster of the two
algorithms proposed as a part of this work. Given the threshold
parameter, the algorithm generalizes a term into its highest
ancestors, whose ratio of terms, connected to the other classes,
is below the user-specified threshold. It searches through
all viable ancestors in iterations, each iteration considering
more general ancestors. Hence, the algorithm is deterministic.
Ancestry is a slower algorithm that considers lowest common
ancestors of a pair of terms. This means that every term that
is the result of a step of generalization is connected to at
least two previously found terms (or starting terms). Found
ancestors are considered based on their ratio of connected
starting terms from other classes and length of the path from
the two generalized terms and their ancestor. The algorithm
is non-deterministic since there is a random element involved
when choosing a pair of terms used for finding their common
ancestor. It operates under the assumption, that generalization
needs to be conducted based on pairs of terms, rendering the
method potentially more robust to noise, however less flexible.

IV. FORMULATION OF GENERALIZATION APPROACHES

In the following sections, we present the proposed im-
plementations of the generalization procedures employed by
ReEx. We begin with the Selective staircase (Section IV-A),
followed by the Ancestry algorithm (Section IV-B).

A. Selective staircase

In a single iteration, we create a set of parents of the terms
in the set for each class based on a given domain ontology.
These are more general, however directly connected to the
terms we currently have in the set. For each element in this
set of parents, we calculate the proportion of starting terms of
other classes that are descendants of this term. From this set,
we remove those of which computed ratio is above the given
threshold. We then add acceptable elements for each class from

the parent set to the term set and remove from the term set
the elements that are children of the newly added ones (we
remove those that were generalized). The step is repeated for
each class until term sets stop changing (generalization stops).

input : starting term sets, background knowledge,
threshold

output: a generalized term set for each class and
depth of generalization for each term

1 while not all converged do
2 for class ∈classes do
3 change←false;
4 parents←getParents(termSets[class]);
5 for parent ∈parents do
6 if intersectionRatio(parent) <=threshold

then
7 termSets[class].add(parent);
8 termSets[class].removeChild(parent);
9 change←true;

10 end
11 end
12 if not change then
13 converged[class]← true;
14 end
15 end
16 end

Algorithm 1: Selective staircase - generalizes every term
into all of its ancestors, then selects those suitable.

B. Ancestry

For each term in the term set of a given class, we select
another term in the same term set and find their lowest common
ancestor. Note that the depth of this generalization step is
considered to be equal to min(distance(first term, ancestor),
distance(second term, ancestor)) – the shortest path to the
ancestor. We calculate the ratio of the starting terms of other
classes that are descendants of this ancestor. If the following
inequality: ratio/(depth · weight) − 1

2 < 0 holds for a given
weight (parameter), the ancestor is added to the generalized
term set of the class. After repeating this step with the whole
term set, we remove the terms that were used in finding an
ancestor that was added to the term set. We iterate this step
for each class until the term sets stop changing (generalization
stops).

C. Measuring success

Information content can be defined for a given term t
as: IC(t) = − log(p(t)), where p(t) represents the prior
probability of a given entity being annotated with the term t.
The information content offers direct insight into how general
or specific a particular term or a set of terms is (e.g., mean IC).
Let O represent the set of all terms in a given ontology and
T the set of considered terms. As the point of this paper is to

ICT-29-2018 D1.9: Final interpretability and visualisation technology

71 of 82

input : starting term sets, background knowledge,
weight

output: a generalized term set for each class and
depth of generalization for each term

1 while not all converged do
2 for class ∈classes do
3 change←false;
4 for term ∈termSets[class] do
5 randomTerm←

selectRandomTerm(termSets[class]);
6 (ancestor, depth)← findAncestor(term,

randomTerm);
7 if intersectionRatio(ancestor)/(depth ∗

weight) <0.5 then
8 termSets[class].add(ancestor);
9 setUsed(term, randomTerm);

10 change←true;
11 end
12 end
13 removeUsed(termSets[class]);
14 if not change then
15 converged[class]← true;
16 end
17 end
18 end

Algorithm 2: Ancestry - generalizes pairs of terms into
their lowest common ancestor, then checks whether the
ancestor is suitable.

assess the generalization, we propose the following measure,
offering direct insight into the generalization quality,

GENQ(T) = 1−
∑

t∈T log(p(t))

|T | · NRO
where NRO = −max(IC(t ∈ O)) ∼ log(1/|O|).

The GENQ(T)’s domain is between zero and one. Intuitively
this score can be understood as one minus the normalized
average information content. The normalization is ontology-
specific, i.e., prior to computing the score, ReEx is capable of
identifying the term with the maximum information content
– such terms are commonly the ones that appear only once
(hence the term log(1/|O|)).

V. A TOY EXAMPLE AND SOME THEORETICAL PROPERTIES

This section presents the main idea of the two algorithms
in the form of a simple toy example when performing gen-
eralization on directed acyclic graphs (the example includes
trees). Our example includes two classes - red and green and
their sets of starting terms as indicated in figure Figure 2.
The set of starting terms for the green class is {4} and for
the red class it is {5, 6, 8}. We run the Selective staircase
on our example with the threshold parameter of 0, meaning
that terms that are the result of the generalization must not
have any starting terms of other classes as their descendants.
In the first iteration, term 4 will get generalized into term 1,

0

1 2 3

4 5 6 7 8

(a) Starting terms

0

1 2 3

4 5 6 7 8

(b) Selective
staircase

0

1 2 3

4 5 6 7 8

(c) Ancestry

Fig. 2: A toy example of the two generalization procedures
considered. The red and green colors represent the terms
belonging to a particular class. They are generalized to the
point no more generalization is possible without the term co-
occurring as a result for both classes.

terms 5 and 6 into term 2 and term 8 into term 3. After the
first iteration sets of terms will therefore be {1} (for the green
class) and {2, 3} (for the red class). In the second iteration,
all terms in term sets have the same parent - 0, but because
0 is connected to starting terms of both classes, it cannot be
added in either term set. Because term sets stay the same in the
second iteration, generalization stops. We run Ancestry on our
example with the weight parameter set to 0.000001, which, for
our example, effectively means, that terms which are the result
of the generalization must not have any starting terms of other
classes as their descendants. Results of generalization may
vary because the algorithm is not deterministic, so we describe
the steps that the algorithm can make. Green class’ term set
holds one term and will not be generalized, since two terms
are necessary to find their lowest common ancestor. If the
algorithm tries to generalize 8 with 5 or 6, their lowest common
ancestor is 0, which has a descendant of another class, but if
it generalizes 5 and 6, the result of the generalization will be
2. If 5 and 6 are not generalized into 2 in the first iteration,
generalization will stop, since it hasn’t made any progress in
the iteration. If they are, however, we proceed to the second
iteration in which 0 is found as the ancestor of 2 and 8, but
is not acceptable, so the generalization stops.

VI. EMPIRICAL EVALUATION

In the following section we discuss the conducted ex-
periments, aimed at clarifying the capabilities of the two
considered generalization schemes across a wide array of real-
life data sets. The data sets considered are described in Table I.
The considered selection includes data sets where the task
is phenotype prediction (e.g., tissue classification). The used
Gene Ontology [4] consists of 44,700 nodes and 91,526 edges.
Considered relations are ”part-of”, ”regulates”, ”negatively-
regulates”, ”positively-regulates” and ”is-a”1.

Finally, the Mapping from genes to corresponding Gene
Ontology terms consists of 19,412 genes mapped on average
to 14.82 GO terms. The task considered in this work is
multiclass classification. The methods used during evaluation
are specified as follows. We employ three different classi-
fiers, namely Gradient Boosting Machines (gradient-boosting),

1All relations are intentionally considered, to explore ReEx’s capability to
operate in automated manner – without human interventinons.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

72 of 82

Random Forest (random-forest) and Support Vector Machine
classifiers (SVM). Each of the classifiers is explained with [3];
the explanations further used as discussed in Section III. For
both considered reasoning algorithms (Ancestry and Selective
staircase), we computed the following grid of configurations
and reported the mean with the standard deviation; subset
sizes were either 100 or 5000 (initial pruning), absolute
Shapley values were considered, threshold parameter, when
using Selective staircase, was either 0,0.2 or 0.4 and weight
parameter, when using Ancestry, was either 0.000001, 0.3, 0.6
or 3. The minimum number of terms was set to 10 (terms
used for reasoning) and the thresholding step size was set
to 0.975. Hence, around 500 different configurations were
computed, when evaluating all the mentioned settings on all
nine data sets. As the purpose of this work is to demonstrate
that simple and efficient generalization is possible, we compare
the algorithms’ performances against the baseline we define as
the naı̈ve, direct mapping of features to the collection of terms
– the mapping defined as part of the Gene Ontology. The
rationale for introducing this baseline is as follows. Should
the GENQ improve upon the naı̈ve generalization (mapping),
it will be higher. On the contrary, GENQ that would be lower
than the generic mapping could indicate the algorithm was in
fact performing specialization. We next present the obtained
results alongside their discussion.

VII. RESULTS – REASONING BEHAVIOR

The following section includes the main results, obtained
as the aggregate across the parameter space discussed in
the previous section. The main results are summarized in
Figure 3. It can be seen that the Ancestry method con-
sistently generalizes terms into terms with a higher GenQ
rating, while the Selective staircase’s performance is less
consistent 3a. Both methods notably decrease the number
of resulting terms 3b. Parameters ”threshold” and ”weight”
serve as the strictness of no cross-section between classes for
Selective staircase and Ancestry respectively; smaller value
meaning a more constrained generalization. Therefore the
depth of generalization increases with increasing ”threshold”
and ”weight” parameters, as seen in 3c and 3e. From graph
3d we can see, that a less constrained generalization with the
Selective staircase can decrease generalization performance,
even though we achieve a higher generalization depth. Gen-

TABLE I: Statistical Properties of the Considered Data Sets.

Dataset Instances Features Classes

DLBCL B [17] 180 661 3
DLBCL A [17] 141 661 3
Breast A [17] 98 1213 3
Breast B [17] 49 1213 4
DLBCL D [17] 129 3795 4
DLBCL C [17] 58 3795 4
Multi A [17] 103 5565 4
Multi B [17] 32 5565 4
TCGA [18] 801 20531 5

selective-staircase Direct mapping ancestry
Reasoner

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
en

Q

Generalized explanations of:

random-forest

gradient-boosting

svm

(a) Generalization performance
w.r.t. different learners.

selective-staircase direct mapping ancestry
Reasoner

0

20

40

60

80

100

120

N
um

b
er

of
te

rm
s

(b) Number of terms in the
final generalization.

0.0 0.2 0.4
Threshold (Selective staircase)

0.0

0.5

1.0

1.5

2.0

G
en

er
al

iz
at

io
n

de
pt

h
(c) Generalization depth w.r.t.
threshold parameter - Selective
staircase algorithm.

0.0 direct mapping 0.2 0.4
Threshold (Selective staircase)

0.0

0.1

0.2

0.3

0.4

G
e
n
Q

(d) Generalization performance
w.r.t. threshold parameter - Se-
lective staircase algorithm.

1e-06 0.3 0.6 3.0
Weight (Ancestry)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

G
en

er
al

iz
at

io
n

de
pt

h

(e) Generalization depth w.r.t.
weight parameter - Ancestry
algorithm.

0.000001 0.3 0.6 3.0 direct mapping
Weight (Ancestry)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

G
e
n
Q

(f) Generalization performance
w.r.t. weight parameter - An-
cestry algorithm.

Fig. 3: Summary of the results across multiple hyperparameter
settings.

eralization performance of the Ancestry algorithm increases
with a less constrained generalization, however 3f. That could
be due to Ancestry’s generalization already being constrained
with searching for ancestors of pairs of terms. The code to
reproduce the experiments is available to the reader2.

VIII. RESULTS – EXAMPLES OF SEMANTIC EXPLANATIONS

Most general terms associated with classes are listed as
follows3 (Figure 4).

The terms comprising an explanation are human-
understandable and as such offer direct insight into the
biological processes governing the space of instances
belonging to a given class. A single process can be attributed
to more than one class, depending on how constrained the
generalization has been. The two key aspects of the obtained
logical explanations are: First, the logical statements for
individual classes (conjuncts of semantic terms) are notably
different – indicating different biological processes underlying

2The official URL is: https://github.com/OpaqueRelease/ReEx
3The star-marked entries’ full names are DNA-binding transcription activa-

tor activity, RNA polymerase II-specific and detection of chemical stimulus
involved in sensory perception of smell, respectively.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

73 of 82

Subtype 1 : −protein homodimerization activity
∧ protein heterodimerization activity
∧ ubiquitin protein ligase binding
∧magnesium ion binding
∧ calmodulin binding

Subtype 2 : −ATP binding
∧ protein homodimerization activity
∧ neutrophil degranulation
∧ DNA-binding transcription activator activity∗

∧ sensory perception of smell∗

Fig. 4: Example of generalized explanations for the Breast A
[17] data set (classes are different subtypes).

the successful classification into a given class. And second,
the explanations are directly understandable and can be
verified by a domain expert within seconds. On the contrary,
should raw feature names be used (gene names in this case),
if the domain expert does not know all the names, as well as
the associated processes by heart, the expert is expected to
perform time-demanding manual literature search.

IX. CONCLUSIONS

In this work, we proposed ReEx, one of the first ap-
proaches capable of semantic generalization of model expla-
nations obtained by contemporary tools such as SHAP. The
work evaluates two different reasoning paradigms (Selective
staircase and Ancestry), showing both schemes out-perform
generic generalization commonly employed by e.g., statistical
enrichment analysis approaches. Further, we demonstrate how
ReEx can produce logical explanations comprised of semantic
term conjuncts, specific for individual classes – these types
of explanations offer direct insight into the e.g., biological
background relevant to classifying a given instance into a
particular class. Understanding how biological context can be
exploited for obtaining more interpretable explanations could
also be extended to contemporary knowledge graphs, where
the data is semi-automatically curated. Here, the amount of
noise is potentially larger than when considering e.g., the
Gene Ontology (this work), which we believe is an issue
to be addressed in future work. The proposed work was
implemented in the form of a simple-to-use Python library,
compatible with existing machine learning pipelines. Albeit
being one of the first studies to explore the potentials of se-
mantic generalization of black-box model explanations, ReEx
could be further analyzed and improved.

X. ACKNOWLEDGEMENTS

The work of the last author was funded via a young
researcher grant (ARRS). The work of other authors was
supported by the Slovenian Research Agency (ARRS) core
research programs P2-0103 and P6-0411, and research projects
J7-7303, L7-8269, and N2-0078 (financed under the ERC

Complementary Scheme). The work was also supported by
European Union’s Horizon 2020 research and innovation
programme under grant agreement No 825153, project EM-
BEDDIA (Cross-Lingual Embeddings for Less-Represented
Languages in European News Media).

REFERENCES

[1] A. Holzinger, C. Biemann, C. S. Pattichis, and D. B. Kell, “What
do we need to build explainable AI systems for the medical
domain?” CoRR, vol. abs/1712.09923, 2017. [Online]. Available:
http://arxiv.org/abs/1712.09923

[2] M. T. Ribeiro, S. Singh, and C. Guestrin, ““Why should i trust you?”
Explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2016, pp. 1135–1144.

[3] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting
model predictions,” in Advances in Neural Information Processing
Systems 30, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds. Curran Associates,
Inc., 2017, pp. 4765–4774. [Online]. Available: http://papers.nips.cc/
paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf

[4] G. O. Consortium, “The gene ontology resource: 20 years and still going
strong,” Nucleic Acids Research, vol. 47, no. D1, pp. D330–D338, 2019.

[5] M. Robnik-Šikonja and I. Kononenko, “Explaining classifications for
individual instances,” IEEE Transactions on Knowledge and Data En-
gineering, vol. 20, no. 5, pp. 589–600, 2008.

[6] I. Goodfellow, Y. Bengio, and A. Courville, Deep learning. MIT Press,
2016.

[7] C. Yang, Z. Liu, D. Zhao, M. Sun, and E. Chang, “Network representa-
tion learning with rich text information,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, 2015.

[8] O. Biran and C. Cotton, “Explanation and justification in machine
learning: A survey,” in IJCAI-17 workshop on explainable AI (XAI),
vol. 8, 2017.

[9] E. Štrumbelj and I. Kononenko, “Explaining prediction models and
individual predictions with feature contributions,” Knowledge and In-
formation Systems, vol. 41, no. 3, pp. 647–665, Dec 2014.

[10] D. Doran, S. Schulz, and T. R. Besold, “What does explainable AI
really mean? A new conceptualization of perspectives,” CoRR, vol.
abs/1710.00794, 2017. [Online]. Available: http://arxiv.org/abs/1710.
00794

[11] D. Dou, H. Wang, and H. Liu, “Semantic data mining: A survey
of ontology-based approaches,” in Proceedings of the 2015 IEEE 9th
international conference on semantic computing (IEEE ICSC 2015).
IEEE, 2015, pp. 244–251.

[12] B. Škrlj, J. Kralj, and N. Lavrač, “CBSSD: Community-based semantic
subgroup discovery,” Journal of Intelligent Information Systems, Jan
2019. [Online]. Available: https://doi.org/10.1007/s10844-019-00545-0

[13] J. Kralj, M. Robnik-Sikonja, and N. Lavrac, “Netsdm: Semantic
data mining with network analysis,” Journal of Machine Learning
Research, vol. 20, no. 32, pp. 1–50, 2019. [Online]. Available:
http://jmlr.org/papers/v20/17-066.html

[14] J. Rabold, M. Siebers, and U. Schmid, “Explaining black-box classifiers
with ilp – empowering lime with aleph to approximate non-linear deci-
sions with relational rules,” in Inductive Logic Programming, F. Riguzzi,
E. Bellodi, and R. Zese, Eds. Cham: Springer International Publishing,
2018, pp. 105–117.

[15] B. C. Ross, “Mutual information between discrete and continuous data
sets,” PLOS ONE, vol. 9, no. 2, pp. 1–5, 02 2014. [Online]. Available:
https://doi.org/10.1371/journal.pone.0087357

[16] S. Ghosal, D. Blystone, A. K. Singh, B. Ganapathysubramanian,
A. Singh, and S. Sarkar, “An explainable deep machine vision framework
for plant stress phenotyping,” Proceedings of the National Academy of
Sciences, vol. 115, no. 18, pp. 4613–4618, 2018.

[17] Y. Hoshida, J.-P. Brunet, P. Tamayo, T. R. Golub, and J. P. Mesirov,
“Subclass mapping: Identifying common subtypes in independent
disease data sets,” PLOS ONE, vol. 2, no. 11, pp. 1–8, 11 2007.
[Online]. Available: https://doi.org/10.1371/journal.pone.0001195

[18] J. N. Weinstein, E. A. Collisson, G. B. Mills, K. R. M. Shaw, B. A.
Ozenberger, K. Ellrott, I. Shmulevich, C. Sander, J. M. Stuart, C. G.
A. R. Network et al., “The cancer genome atlas pan-cancer analysis
project,” Nature Genetics, vol. 45, no. 10, p. 1113, 2013.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

74 of 82

Exploring Neural Language Models via Analysis
of Local and Global Self-Attention Spaces

Blaž Škrlj
Jožef Stefan International

Postgraduate School
Jožef Stefan Institute, Slovenia
blaz.skrlj@ijs.si

Shane Sheehan
University of Edinburgh,

United Kingdom

Nika Eržen
Jožef Stefan Institute, Slovenia

Marko Robnik-Šikonja
University of Ljubljana, Slovenia

Saturnino Luz
University of Edinburgh,

United Kingdom

Senja Pollak
Jožef Stefan Institute, Slovenia

Abstract

Large pretrained language models using the
transformer neural network architecture are be-
coming a dominant methodology for many nat-
ural language processing tasks, such as ques-
tion answering, text classification, word sense
disambiguation, text completion and machine
translation. Commonly comprising hundreds
of millions of parameters, these models of-
fer state-of-the-art performance, but at the ex-
pense of interpretability. The attention mech-
anism is the main component of transformer
networks. We present AttViz, a method for ex-
ploration of self-attention in transformer net-
works, which can help in explanation and de-
bugging of the trained models by showing as-
sociations between text tokens in an input se-
quence. We show that existing deep learn-
ing pipelines can be explored with AttViz,
which offers novel visualizations of the atten-
tion heads and their aggregations. We im-
plemented the proposed methods in an online
toolkit and an offline library. Using exam-
ples from news analysis, we demonstrate how
AttViz can be used to inspect and potentially
better understand what a model has learned.

1 Introduction

Currently the most successful machine learning ap-
proaches for text-related tasks predominantly use
large language models. They are implemented with
transformer neural network architecture (Vaswani
et al., 2017), extensively pretrained on large text
corpora to capture context-dependent meanings of
individual tokens (Devlin et al., 2019; Liu et al.,
2019; Yang et al., 2019). Even though training of
such neural networks with hundreds of millions of

Labeled
documents

Neural
language
model

Online interactive exploration
Offline statistical analysis

Figure 1: An overview of AttViz suite. The system
consists of two main functional modules supporting on-
line and offline visualizations. The online visualiza-
tion (http://attviz.ijs.si; first part of the pa-
per) offers direct exploration of token attention across
the space of input documents; its purpose is anomaly
detection and general inspection of the attention space
(of trained models). The offline part of AttViz (second
part of the paper) is a Python library that offers com-
putationally more demanding statistical analyses, rang-
ing from visualization of key tokens for each attention
head, comparison of the attention head properties via
FUJI integrals, and inspection of the attention distribu-
tion per-token basis.

parameters is long and expensive (Radford et al.,
2019), many pre-trained models have been made
freely available. This has created an opportunity
to explore how, and why these models perform
well on many tasks. One of the main problems
with neural network models is their lack of inter-
pretability. Even though the models learn the given
task well, understanding the reasons behind the
predictions, and assessing whether the model is

ICT-29-2018 D1.9: Final interpretability and visualisation technology

Appendix D: Exploring Neural Language Models via
Analysis of Local and Global Self-Attention Spaces

75 of 82

susceptible to undue biases or spurious correlations
is a non-trivial task.

Approaches to understanding black-box (non-
interpretable) models include post-hoc perturbation
methods, such as IME (Štrumbelj and Kononenko,
2010) and SHAP (Lundberg and Lee, 2017). These
methods explain a given decision by assigning a
credit to inputs (i.e. attributes or tokens) that con-
tributed to it. These methods are not internal to
the model itself and are not well adapted to the
sequential nature of text-based inputs. Another
way of extracting token relevance is the attention
mechanism (Bahdanau et al., 2015; Luong et al.,
2015) that learns token pair-value mappings, poten-
tially encoding relations between token pairs. The
attention of a token with respect to itself (called
self-attention due its position on diagonal of the to-
ken attention matrix) offers certain insight into the
importance of the token. Typically, a trained trans-
former network contains several attention heads,
each bringing a different focus to the final decision
of the network. Exploration of attention can be
analytically and numerically cumbersome task, re-
sulting in development of several approaches aimed
at attention visualization collection.

As neural networks require numerical input,
words are first transformed into a high dimensional
numeric vector space, in a process called embed-
ding that aims to preserve similarities and rela-
tions between words. Visualizations of embedding
spaces is becoming ubiquitous in contemporary nat-
ural language processing. For example, Google’s
online Embedding Projector1 offers numerous visu-
alizations for technically non-savvy users, by pro-
jecting word vectors to low dimensional (human-
understandable) spaces. While visualization of em-
bedding spaces is already accessible, visualization
of internal workings of complex transformer neural
networks (e.g.,their self-attention mechanism) is a
challenging task. The works of (Liu et al., 2018)
and (Yanagimto et al., 2018) attempt to unveil the
workings of black-box attention layers and offer
an interface for human researches to learn and in-
spect their models. Liu et al. (2018) visualize the
attention space by coloring it, and Yanagimto et al.
(2018) visualize the self-attention with examples
from a sentiment analysis.

In this work, we present AttViz, an online sys-
tem that focuses exclusively on self-attention and
introduces two novel ways of visualizing this prop-

1https://projector.tensorflow.org/

erty. The tool serves as an additional tool in the
toolbox of a language model researcher, offering
exploration of the learned models with minimal
effort. AttViz can interactively aggregate the atten-
tion vectors and offers simultaneous exploration of
the output probability space, as well as the attention
space. A schematic overview of the proposed work
is shown in Figure 1, and the main contributions
are summarised as follows:

1. We present and describe AttViz, an interactive,
online toolkit for visualization of the attention
space of trained transformer neural language
models.

2. We demonstrate the capabilities of AttViz
on three problems: news classification, hate
speech detection, and insults detection.

3. AttViz includes a stand-alone python library
for offline analysis of the attention space, with
the key focus on the relations between the
attention heads.

The remainder of the paper is structured as fol-
lows. In Section 2, we discuss works related to
the proposed AttViz approach. In Section 3, we
present the key ideas and technical implementation
of the online part of the AttViz system, including
a use case on news classification. In Section 4,
we discuss the capabilities of the AttViz library,
available in an offline mode, and showcase its use
on additional two datasets. In Section 5 we dis-
cuss capabilities and limitations of AttViz, present
conclusions, and propose ideas for future work.

2 Background and related work on
attention visualization

Neural language models are becoming the prevail-
ing methodology for solving various text-related
tasks, from entity recognition to classification.
Visualization of the attention mechanism that is
the key component of such models has recently
emerged as an active research area due to an in-
creased popularity of attention based methods in
natural language processing. Recent deep neu-
ral network language models such as BERT (De-
vlin et al., 2019), XLNet (Yang et al., 2019), and
RoBERTa (Liu et al., 2019) consist of multiple
attention heads—separate weight spaces each as-
sociated with the input sequence in a unique way.
These transformer language models consist of mul-
tiple attention matrices, all contributing to the fi-
nal prediction. Visualising the attention weights

ICT-29-2018 D1.9: Final interpretability and visualisation technology

76 of 82

from each of the attention matrices is an important
component in understanding and interpreting these
models.

The attention mechanism, which originated in
the neural machine translation, lends itself natu-
rally to visualisation. Bahdanau et al. (2015) used
heat maps to display the attention weights between
input and output text. This visualisation technique
was first applied in machine translation but found
its use in many other tasks. Rush et al. (2015) visu-
alized an input sentence and the output abstractive
summary, while Rocktäschel et al. (2016) showed
an association between an input document and a
textual entailment hypothesis on the output. In
these heat map visualisations, a matrix is used to
represent the token-token pairs and color intensity
illustrates attention weights. This provides a sum-
mary of the attention patterns describing how they
map the input to the output. For classification tasks,
a similar visualisation approach can be used to
display the attention weights between the classi-
fied document and the predicted label (Yang et al.,
2016; Tsaptsinos, 2017). Here, the visualisation of
attention often displays the input document with
the attention weights superimposed onto individual
words. The superimposed attention weights are
represented similarly to heat map visualisations,
using the color saturation to encode attention value.
The neat-vision tool2 encodes attention weights as-
sociated with input text in this manner. Similarly,
the Text Attention Heatmap Visualization (TAHV3)
which is included in the NCRF++ toolkit (Yang and
Zhang, 2018) can be used to generate weighted se-
quences which are visualised using superimposed
attention scores.

The purpose of the proposed AttViz is to un-
veil the attention layer space to human explorers
in an intuitive manner. The tool emphasizes self-
attention, that is, the diagonal of the token-token
attention matrix which possibly corresponds to the
relevance of individual tokens. Using different
encoding techniques, attention weights across the
layers and attention heads can be explored dynam-
ically to investigate the interactions between the
model and the input data. The AttViz tool differs
from other tools in that if focuses on self-attention,
thus allowing visualization of (attention-annotated)
input token sequences to be carried out directly.

2https://github.com/cbaziotis/
neat-vision

3https://github.com/jiesutd/
Text-Attention-Heatmap-Visualization

3 AttViz: An online toolkit for
visualization of self-attention

AttViz is an online visualization tool that can vi-
sualize neural language models from the PyTorch-
transformers library4—one of the most widely used
resources for natural language modeling. The
idea behind AttViz is that it is simple to use and
lightweight, therefore it does not offer computation-
ally expensive (online) neural model training, but
facilitates the exploration of trained models. Along
with AttViz, we provide a set of Python scripts that
take as an input a trained neural language model
and output a JSON file to be used by the AttViz
visualisation tool. A common pipeline for using
AttViz is outlined in Figure 1. First, a transformer-
based trained neural network model is chosen to
obtain predictions on a desired set of instances
(documents or some other texts). The predictions
are converted into the JSON format suitable for
use with the AttViz tool, along with the attention
space of the language model. The JSON file is
loaded into the AttViz tool (on the user’s machine,
i.e. on the client side), where its visualization and
exploration is possible. In Sections 3.1 and 3.3, we
present the proposed self-attention visualizations,
followed by an example of their use on the news
classification task in Section 3.4.

3.1 Visualization of self-attention heads

We discuss the proposed visualization schemes that
emphasize different aspects of self-attention. Fol-
lowing the first row that represents the input text,
consequent rows correspond to attention values that
represent the importance of a given token with re-
spect to a given attention head. As discussed in the
empirical part of the paper (Section 3.4), the ratio-
nale for this display is that typically only a certain
number of attention heads are activated (colored
fields). Thus, the visualization has to entail both
the whole attention space, as well as emphasize in-
dividual heads (and tokens). The initial AttViz
view offers sequence-level visualization, where
each (byte-pair encoded) token is equipped with a
self-attention value based on a given attention head
(see Figure 4; central text space). The same docu-
ment can also be viewed in the “aggregation” mode
(Figure 2), where the attention sequence is shown
across the token space. The user can interactively
explore how the self-attention varies for individ-

4https://github.com/huggingface/
transformers

ICT-29-2018 D1.9: Final interpretability and visualisation technology

77 of 82

ual input tokens, by changing the scale, as well
as the type of the aggregation. The visualization
can emphasize various aspects of the self-attention
space.

The third proposed visualization (Figure 3) is the
overall distribution of attention values across the
whole token space. For each consequent token, the
attention values are plotted separately, resembling
a time series. This visualization offers an insight
into self-attention peaks, i.e. parts of the attention
space around certain tokens that potentially impact
the performance and decision making process of
a given neural network. This view can emphasize
different aggregations of the attention vector space
for a single token (e.g., mean, entropy, and max-
imum). The visualization, apart from the mean
self-attention (per token), offers the information
on maximum and minimum attention values (red
dots), as well as the remainder of the self-attention
values (gray dots). In this way, a user can explore
both the self-attention peaks, as well as the overall
spread.

3.2 Comparison with state-of-the-art

In the following section, we discuss similarities
and differences between AttViz and other state-of-
the-art visualization approaches. Comparisons are
summarized in Table 1.

Novel functionality introduced by AttViz include
the capability to aggregate the attention vectors
with four different aggregation schemes, offering
insights both into the average attention but also its
dispersion around a given token. The neat-vision
project5 is the closest to AttViz in terms of func-
tionality. However, a few differences should be
noted. First, neat-vision is not directly bound to the
PyTorch transformers library, requiring additional
pre-processing on the user-side. Second, switching
between the sequence and aggregate view is faster
and more emphasized in AttViz, as it offers a more
general overview of the attention space.

3.3 Aggregation of self-attention

The self-attention is captured in the matrix A ∈
Rh×t, where h is the number of attention vectors
and t the number of tokens. Aggregation operators
are applied the second dimension of the attention
matrix A (index j). We denote with Pij the proba-
bility of observing Aij in the j-th column. The mj

5Available at https://github.com/cbaziotis/
neat-vision

corresponds to the number of unique values in that
column. The proposed schemes are summarized
in Table 2. The attention aggregates are visualized
as part of the the aggregate view (see Figure 4).
For example, the mean attention is plotted as a line
along with the attention space for each token, de-
picting the dispersion around certain parts of the
input text.

Figure 2: Visualization of aggregations. The document
was classified as a politics-related topic; the aggre-
gations emphasize tokens such as “development”,“uk”
and “poorer”. The user can highlight desired head infor-
mation – in this example the maximum attention (pur-
ple) is highlighted.

Figure 3: The interactive series view. The user can, by
hoovering over the desired part of the sequence, inspect
the attention values and their aggregations. The text
above the visualization is highlighted automatically.

3.4 Example: News visualization
In this section, we present a step-by-step use of the
AttViz system along with potential insights a user
can obtain.

The examples are based on the BBC news data
set6 (Greene and Cunningham, 2006) that contains
2,225 news articles on five different topics (busi-
ness, entertainment, politics, sport, tech). The doc-
uments from the dataset were split into short seg-
ments. The splits allow easier training (manage-

6https://github.com/suraj-deshmukh/
BBC-Dataset-News-Classification/blob/
master/dataset/dataset.csv

ICT-29-2018 D1.9: Final interpretability and visualisation technology

78 of 82

Approach AttViz (this work) BertViz (Vig, 2019) neat-vision NCRF++ (Yang and Zhang, 2018)
Visualization types sequence, aggregates head, model, neuron sequence sequence

Open source 3 3 3 3

Language Python + Node.js Python Python + Node.js Python
Accessibility Online Jupyter notebooks Online script-based

Sequence view 3 3 3 3

Interactive 3 3 3 7

Aggregated view 3 7 7 7

Target probabilities 3 7 3 7

Compatible with PyTorch Transformers? (Wolf et al., 2020) 3 3 7 7

token-to-token attention 7 3 7 3

Table 1: Comparison of different aspects of the attention visualization approaches.

Table 2: Aggregation schemes used in AttViz. The A
represents a real valued (attention) matrix.

Aggregate name Definition
Mean(j) (mean) 1

h

∑
iAij

Entropy(j) (ent) − 1
mj

∑h
i=0Aij logAij

Standard deviation(j) (std)
√

1
h−1

∑
i(Aij −Aij)2

Elementwise Max(j) (max) max
i

(Aij)

Elementwise Min(j) (min) min
i
(Aij)

Figure 4: Visualization of all attention heads. The sixth
heads’s self attention is used to highlight the text. The
document was classified as a business-related, which
can be linked to high self attention at the “trillion” and
“uk” tokens. Compared to the first two examples (Fig-
ures 2 and 3), the network is less certain – in this ex-
ample, the business (orange) and politics (red) classes
were predicted with similar probabilities (orange and
red parts of the bar above visualized text).

able sequence lengths), as well as easier inspec-
tion of the models. We split the dataset into 60%
of the documents that were used to fine-tune the
BERT-base (Devlin et al., 2019) model, 20% for
validation and 20% for testing. The Nvidia Tesla
V100 GPU processor was used for these experi-
ments. The resulting model classified the whole
documents into five categories with 96% accuracy,
which is comparable with the state-of-the-art per-
formance (Trieu et al., 2017). For prediction and
visualisation, we used only short segments. The
fine-tuning of the BERT model follows examples

given in the PyTorch-Transformers library (Wolf
et al., 2020). The best-performing hyper parame-
ter combination used 3 epochs with the sequence
length of 512 (other hyper parameters were left at
their default values). While we have used BERT,
similar explorations could be made for more recent
larger models such as XLNet (Yang et al., 2019)
that might could produce better classification accu-
racy.

The user interface of AttViz is displayed in Fig-
ures 2, 3, and 4. In the first example (Figure 3),
the user can observe the main view that consists of
two parts. The leftmost part shows (by id) individ-
ual self-attention vectors, along with visualization,
aggregation and file selection options. The file
selection indexes all examples contained in the in-
put (JSON) file. Attention vectors can be colored
with custom colors, as shown in the central (token-
value view). The user can observe that, for exam-
ple, the violet attention head (no. 5) is active, and
emphasizes tokens such as “development”, which
indicates a politics-related topic (as correctly clas-
sified). Here, the token (byte-pair encoded) space
is shown along with self-attention values for each
token. The attention vectors are shown below the
token space and aligned for direct inspection (and
correspondence).

In Figure 4, the user can observe the same text
segment as an attention series spanning the input to-
ken space. Again, note that tokens, such as “trillion”
and “uk” correspond to high values in a subset of
the attention heads, indicating their potential impor-
tance for the obtained classification. However, we
observed that only a few attention heads activate
with respect to individual tokens, indicating that
other attention heads are not focusing on the to-
kens themselves, but possibly on relations between
them. This is possible, and the attention matrices
contain such information (Vig, 2019). However,
as mentioned earlier, the study of token relations
is not the focus of this work. As self-attention in-

ICT-29-2018 D1.9: Final interpretability and visualisation technology

79 of 82

formation can be mapped across token sequences,
emphasizing tokens that are of relevance to the clas-
sification task at hand, we see AttViz as being the
most useful when exploring models used for text
classification tasks, such as hate speech detection
and sentiment analysis, where individual tokens
contain the key information for classification.

The example above shows how different atten-
tion heads detect different aspects of the sentence,
even at the single token (self-attention) level. The
user can observe that the next most probable cate-
gory for this topic was politics (red color), which
is indeed a more sensible classification than, for
instance, sports. The example shows how inter-
pretation of the attention can be coupled with the
model’s output for increased interpretability.

4 AttViz library: statistical analysis of
the attention space

In Section 3 we presented how the online version
of AttViz can be used for direct analysis of model
output (in the JSON format). Albeit suitable for
quick inspections, the online system has its limi-
tations such as poor support for computationally
more intensive types of analysis (in terms of wait-
ing times), and the lack of customized visualization
tools accessible in the Python ecosystem. To ad-
dress these aspects, we developed AttViz library
that offers more detailed analysis of a given neural
language model’s properties. The library operates
on the same JSON structures as the online version
and is compatible with the initial user input. We
demonstrate the analytical capabilities of our visu-
alization tools on three datasets. The BBC news
classification was already presented in Section 3.4.

4.1 Dissecting the token space

The first offline functionality is a barplot visualiza-
tion that offers insight into relevant aspects of the
attention distribution at token level. Whilst under-
standing the attention peaks is relevant for direct in-
spections (Section 3), the attention space of a given
token can be contextualized on the dataset level as
well. The AttViz library offers fast visualization
of the mean and spread of attention distributions,
simultaneously showing the attention peaks for in-
dividual tokens. We visualized the distribution for
three classification datasets (Figure 5): BBC news

(5a), insults7 (5b), and hate speech comments (5c)8.

(a) Top 35 tokens in the BBC
dataset.

(b) Top 35 tokens in the in-
sults dataset.

(c) Top 35 tokens in the hate
speech dataset.

Figure 5: Visualization of the 35 most attended-to to-
kens for the three inspected data sets. Interestingly,
the attention peaks of tokens (maximum, in the back-
ground) all take high values, albeit lower-ranked tokens
are on average characterized by lower mean attention
values.

The proposed visualizations present top k tokens
according to their mean attention throughout the
whole dataset. It is interesting to observe, that the
insults and hate speech data sets are not completely
characterized by swear words or similar single-
token-like features. This potentially indicates that
the attention tries to detect interactions between the
byte-pair encoded tokens, even for data sets where
the attention could be focused on single tokens. It
is interesting to observe that the terms with the
highest attention are not necessarily keywords or
other tokens carrying large semantic meaning. Sim-
ilarly, the high maxima indicate that the emphasis
of the tokens is very contextual, and potentially not
as informative for global aggregation.

7https://www.kaggle.com/c/detecting-insults-in-social-
commentary/overview

8https://github.com/aitor-garcia-p/hate-speech-dataset

ICT-29-2018 D1.9: Final interpretability and visualisation technology

80 of 82

4.2 Visualization of attention head focus

(a) Insults. (b) Hatespeech.

(c) BBC news.

Figure 6: The distribution of tokens over individual at-
tention heads for the three datasets summarised with
word clouds.

Contemporary neural language model architec-
tures comprise multiple attention heads. These sep-
arate weight spaces capture distinct aspects of the
considered learning task. Even though the weight
spaces are easily accessible, it is not trivial to con-
vert the large amount of information into a quick-
to-inspect visualization. With the proposed visu-
alization, shown in Figure 6, we leverage word
clouds (Kaser and Lemire, 2007) to reveal human-
understandable patterns captured by separate atten-
tion heads and display this information in a com-
pact way.

5 Discussion and conclusions

As AttViz is an online and offline toolkit for at-
tention exploration, we discuss possible concerns
regarding its use, namely: privacy, memory and
performance overheads, and coverage. Privacy is a
potential concern for most web-based systems. As
currently AttViz does not employ any anonymiza-
tion strategy, private processing of the input data
is not guaranteed. While we intend to address this
issue in furture work, a private installation of the
tool can be done to get around this current limita-
tion. AttViz uses the users’ computing capabilities,
which means that large data sets may cause mem-
ory overheads when a large number of instances
is loaded (typically several million). Such situa-

tions are difficult to address with AttViz and similar
web-based tool, but users can filter instances before
using them in AttViz and explore a subset of the
data (e.g., only (in)correctly predicted instances, or
certain time slot of instances). Finally, AttViz is
focused on the exploration of self-attention. This is
not the only important aspect of a transformer neu-
ral network, but it is the one, where visualisation
techniques have not yet been sufficiently explored.
Similarly to the work of (Liu et al., 2018), we plan
to further explore potentially interesting relations
emerging from the attention matrices.

6 Availability

The software is available at https://github.com/
SkBlaz/attviz.

Acknowledgements

We acknowledge European Union’s Horizon
2020 research and innovation programme under
grant agreement No 825153, project EMBEDDIA
(Cross-Lingual Embeddings). The first author was
also funded by Slovenian Research Agency as a
young researcher.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Derek Greene and Padraig Cunningham. 2006. Practi-
cal solutions to the problem of diagonal dominance
in kernel document clustering. In Machine Learn-
ing, Proceedings of the Twenty-Third International
Conference (ICML 2006), Pittsburgh, Pennsylvania,
USA, June 25-29, 2006, volume 148 of ACM Inter-
national Conference Proceeding Series, pages 377–
384. ACM.

Owen Kaser and Daniel Lemire. 2007. Tag-cloud
drawing: Algorithms for cloud visualization. In Pro-
cedings of WWW Workshop on Tagging and Meta-
data for Social Information Organization.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

81 of 82

Shusen Liu, Tao Li, Zhimin Li, Vivek Srikumar, Vale-
rio Pascucci, and Peer-Timo Bremer. 2018. Visual
interrogation of attention-based models for natural
language inference and machine comprehension. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 36–41, Brussels, Belgium.
Association for Computational Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Scott M. Lundberg and Su-In Lee. 2017. A unified
approach to interpreting model predictions. In Ad-
vances in Neural Information Processing Systems
30: Annual Conference on Neural Information Pro-
cessing Systems 2017, December 4-9, 2017, Long
Beach, CA, USA, pages 4765–4774.

Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015. Effective approaches to attention-based
neural machine translation. In Proceedings of the
2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8).

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomás Kociský, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In 4th International Conference on Learning Repre-
sentations, ICLR 2016, San Juan, Puerto Rico, May
2-4, 2016, Conference Track Proceedings.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 379–389, Lisbon, Portugal.
Association for Computational Linguistics.

Lap Q. Trieu, Huy Q. Tran, and Minh-Triet Tran.
2017. News classification from social media using
twitter-based doc2vec model and automatic query
expansion. In Proceedings of the Eighth Interna-
tional Symposium on Information and Communica-
tion Technology, SoICT 2017, pages 460–467.

Alexandros Tsaptsinos. 2017. Lyrics-based music
genre classification using a hierarchical attention net-
work. CoRR, abs/1707.04678.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems 30: Annual Conference on Neural

Information Processing Systems 2017, December 4-
9, 2017, Long Beach, CA, USA, pages 5998–6008.

Jesse Vig. 2019. Visualizing attention in transformer-
based language representation models. CoRR,
abs/1904.02679.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

H. Yanagimto, K. Hashimoto, and M. Okada. 2018.
Attention visualization of gated convolutional neu-
ral networks with self attention in sentiment analy-
sis. In 2018 International Conference on Machine
Learning and Data Engineering (iCMLDE), pages
77–82.

Jie Yang and Yue Zhang. 2018. NCRF++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of ACL 2018, System Demonstrations, pages
74–79, Melbourne, Australia. Association for Com-
putational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in neural in-
formation processing systems, pages 5754–5764.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He,
Alex Smola, and Eduard Hovy. 2016. Hierarchical
attention networks for document classification. In
Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 1480–1489, San Diego, California. Associa-
tion for Computational Linguistics.

Erik Štrumbelj and Igor Kononenko. 2010. An ef-
ficient explanation of individual classifications us-
ing game theory. Journal of Machine Learning Re-
search, 11:1–18.

ICT-29-2018 D1.9: Final interpretability and visualisation technology

82 of 82

	Introduction
	Interpretability and visualization of machine learning models
	Contributions and structure of the deliverable

	Background and related work
	Deep neural networks for text classification
	Explanation methods for text classification
	Explanation visualisations for text classification

	Explanation methods adapted for text classification
	TransSHAP: The SHAP method adapted for BERT
	Robustness of explanations and malicious attacks
	ReEx: Semantic Reasoning from Model-Agnostic Explanations

	Contributions to visualization techniques for text classification
	TransSHAP: Visualization of a prediction explanation for the BERT model
	Visual variable analysis of SHAP visualisations for text
	SHAP visualisation tasks
	Data abstraction for SHAP text visualisation
	Visual encoding applicability to text explanations
	Suggested Encoding designs and improvements

	AttViz library: statistical analysis of the attention space
	Dissecting the token space
	Visualization of attention head focus

	Conclusions
	Associated outputs
	References
	Appendix A: BERT meets Shapley: Extending SHAP Explanations to Transformer-based Classifiers
	Appendix B: Better Sampling in Explanation Methods can Prevent Dieselgate-Like Deception
	Appendix C: Semantic Reasoning from Model-Agnostic Explanations.
	Appendix D: Exploring Neural Language Models via Analysis of Local and Global Self-Attention Spaces

