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1 Introduction

This deliverable reports on the initial results achieved in multilingual keyword extraction and matching
within Task T2.2 of the EMBEDDIA project, which lasts for 2 years, described in the EMBEDDIA De-
scription of Action (DoA) as follows:
We will use monolingual and multilingual methods to extract topical terms and keywords from the text.
We will apply and further develop our statistical approaches (based on heuristics), machine learning
approaches, as well as graph-based approaches. We will test how keyword extraction helps in anchoring
of embeddings and improving cross-lingual word embeddings (see WP1). We will also use cross-
lingual word embeddings to detect keywords and terms to be used in cross-lingual topic modelling.
Structured knowledge resources, including ontologies will be embedded into vector space and used as
a background knowledge to improve the extraction.

Specifically, this deliverable at M12 describes our research on keyword extraction and the closely related
topic of terminology extraction, as well as cross-lingual term alignment, which we plan to adapt for
multilingual keyword matching.

Let us start by defining the terms used in this report.

Keywords are terms (i.e. expressions) that best describe the subject of a document (Beliga et al., 2015)
and a good keyword effectively summarises the content of a document allowing it to be efficiently
retrieved when needed.

Terms are verbal designations of general concepts in a specific subject field (as defined in ISO 1087
standard). In contrast to keywords, which are usually assigned on a single document level, terms
are more frequently used on a document collection level, i.e. domain level. While not all terms
are keywords, there is a strong overlap between the most frequent terms and keywords, therefore
term extraction techniques can be applied successfully to keyword extraction.

Named Entities include person names, locations, organisations etc. (Hoffart et al., 2011). While they
may assume the role of keywords, named entity recognition is a distinct research area and is not
part of this deliverable, but is reported in deliverable D2.2.

Keyword extraction refers to the process of extracting keywords from documents.

Monolingual terminology extraction refers to the process of finding terms within a collection of docu-
ments from a specific subject field.

Bilingual terminology extraction is the process which, given the input of related specialized monolingual
corpora, results in the output of terms aligned between two languages.

Bilingual terminology alignment is the process of aligning terms between two candidate term lists in two
languages.

Term expansion is the process of extending a list of existing terms by novel term candidates.

In a media analysis setting, keywords correspond to tags that are added to articles by news providers
(e.g., EMBEDDIA news media partners). On the other hand, terms can be understood as expressions
characteristic of different news categories (e.g., sports vs. foreign policy). As similar techniques can be
used for both, the field has a strong exploitation potential for applying methods from the media setting
(keywords) to the translation industry and terminography (terms), and vice versa.

In this work, we present the state-of-the art, as well as novel methods for keyword extraction, including
a novel unsupervised graph-based technique, and a novel supervised method based on transformer
neural networks. Selected methods are also applied to the Croatian datasets of news gathered within
EMBEDDIA. In addition, we report our work on term extraction and alignment, where we conducted
a reproducibility study of a bilingual terminology alignment approach (that can be adapted in future to
cross-lingual keyword matching), created bilingual terminology extraction approaches, and tested how
embeddings can be used as a terminology expansion technique.
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The work performed in the scope of task T2.2 resulted in several papers, which are included in the
Appendices of this deliverable:

• Škrlj et al. (2019): “Rank-based Keyword extraction via Unsupervised learning and Meta vertex
aggregation”, presented at Statistical Language and Speech Conference (2019), which introduces
a novel unsupervised keyword extraction technique. (Appendix A)

• Repar, Martinc, & Pollak (2019): “Reproduction, replication, analysis and adaptation of a term align-
ment approach”, published in Language Resources and Evaluation journal, which reimplements
and adapts an approach to link two lists of terms (or keywords) (Appendix B).

• Repar, Podpečan, et al. (2019): “TermEnsembler: An ensemble learning approach to bilingual term
extraction and alignment”, published in the journal Terminology, which proposes a workflow for bi-
lingual terminology extraction, consisting of a statistical method for extracting terms (or keywords)
and a combination of term-alignment techniques (Appendix C).

• Pollak et al. (2019): “Karst Exploration: Extracting Terms and Definitions from Karst Domain Cor-
pus,” presented at eLex 2019 conference, and introducing a domain modelling pipeline, where
term expansion by embedding is the most relevant to EMBEDDIA (Appendix D).

Note that we plan to submit another paper on novel supervised method for keyword extraction TNT-KID,
described in this deliverable, after finalising the experiments.

This deliverable is structured as follows. Section 2 presents the state-of-the-art. It starts by outlining the
related keyword extraction research, evaluation methodology and the datasets used in this work in Sec-
tion 2.1, followed by the related work in terminology extraction and alignment in Section 2.2. Section 3
presents our work in the field of keyword extraction. Section 3.1 presents our attempts to reproduce
the results of the unsupervised state-of-the-art keyword extraction method. Next, we introduce novel
methods for keyword extraction: a graph-based unsupervised method is presented in Section 3.2, while
Section 3.3 reports on our promising supervised approach called TNT-KID; a transformer-based neural
tagger for keyword identification. We compare the results of our and state-of-the-art supervised and
unsupervised approaches in Section 3.4. The final experiments related to keywords consist of testing
selected approaches on Croatian EMBEDDIA datasets in Section 3.5. Section 4 presents our work in
bilingual terminology extraction and alignment. In Section 4.1 we present a study in which we reim-
plemented and adapted an approach to term alignment. Next, Section 4.2 reports on TermEnsembler,
an ensemble learning approach to bilingual term extraction and alignment. Section 4.3 reports on our
experiments with graph-based term alignment using co-frequency information from a bilingual parallel
corpus. Section 4.4 contains a description of a domain modelling experiment, including term extrac-
tion and term expansion. Section 5 contains the links to associated outputs (source code), followed by
the conclusions and presentation of plans for future work. The related published papers are added in
Appendices A–D.

2 Background and related work

This section presents related work in keyword extraction in Section 2.1, followed by the related work in
bilingual terminology extraction and alignment in Section 2.2.

2.1 Related work on keyword extraction

This section first overviews selected methods in keyword extraction (supervised in Section 2.1.1 and
unsupervised in Section 2.1.2). Selected datasets used for state-of-the-art comparisons are reported in
Section 2.1.3. The final section presents the evaluation measures used in keyword extraction tasks in
Section 2.1.4.
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2.1.1 Supervised keyword extraction methods

Traditional supervised approaches to keyword extraction considered the task as a two step process (the
same is true for unsupervised approaches). First, a number of syntactic and lexical features are used
to extract keyword candidates from the text. Secondly, the extracted candidates are ranked according
to different heuristics and the top n candidates are selected as keywords (Yuan et al., 2019). One of
the first supervised approaches to keyword extraction was proposed by Witten et al. (2005), whose
algorithm named KEA uses only term frequency - inverse document frequency (TF-IDF) and the terms
position in the text as features for term identification. These features are fed to the Naive Bayes classifier,
which is used to determine for each phrase in the text if it is a keyword or not. Medelyan et al. (2009)
managed to build on the KEA approach and proposed the Maui algorithm, which also relies on the
Naive Bayes classifier for candidate selection but employs additional semantic features, such as e.g.,
node degree, which quantifies the semantic relatedness of a candidate to other candidates, and Wikipedia-
based keyphraseness, which is the likelihood of a phrase being a link in the Wikipedia corpus.

A more recent supervised approach is a so-called sequence labelling approach to keyword extraction
by Gollapalli et al. (2017), where the idea is to train a keyword tagger using token-based linguistic,
syntactic and structural features. The approach relies on a trained Conditional Random Field (CRF)
tagger and the authors demonstrated that this approach is capable of working on-par with slightly older
state-of-the-art systems that rely on information from Wikipedia and citation networks, even if only within-
document features are used. Another sequence labeling approach proposed by Luan et al. (2017)
builds a sophisticated neural network by combing an input layer comprising a concatenation of a word,
character and part-of-speech embedding, a bidirectional Long Short-Term Memory (LSTM) layer and a
CRF tagging layer. They also propose a new semi-supervised graph based training regime for training
the network.

The newest state-of-the-art approaches to keyword detection consider the problem as a sequence-to-
sequence generation task. The first research leveraging this tactic was proposed by Meng et al. (2017),
employing a generative model for keyword prediction with a recurrent encoder-decoder framework with
an attention mechanism capable of detecting keywords in the input text sequence and also potentially
finding keywords that do not appear in the text. Since finding absent keywords involves a very hard
problem of finding a correct class in a set of usually thousands of unbalanced classes, their model also
employs a copying mechanism (Gu et al., 2016) based on positional information, in order to allow the
model to find important keywords present in the text, which is a much easier problem.

Very recently, the model proposed by Meng et al. (2019) has been somewhat improved by investigating
different ways in which the target keywords can be fed to a classifier during the training phase. While
the original system used a so-called one-to-one approach, where a training example consists of an input
text and a single keyword, the improved model now employs a one-to-seq approach, where an input text
is matched with a concatenated sequence made of all the keywords for a specific text. The study also
shows that the order of the keywords in the text matters. A one-to-seq approach has been even further
improved by Yuan et al. (2019), who incorporated two diversity mechanisms into the model. The mech-
anisms (called semantic coverage and orthogonal regularization) constrain the over-all inner representation
of a generated keyword sequence to be semantically similar to the overall meaning of the source text
and therefore force the model to produce diverse keywords.

The neural sequence-to-sequence models are capable of outperforming all older supervised and unsu-
pervised models by a large margin but do require a very large training corpora with tens of thousands of
documents for successful training. This means that their use is limited only to languages (and genres)
in which large corpora with manually labeled keywords exist. In this deliverable we present our work on
developing a novel neural approach TNT-KID in Section 3.3.
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2.1.2 Unsupervised keyword extraction methods

While the previous section discussed recently emerged methods for keyword extraction that operate in
a supervised learning setting, supervised learning can be data-intensive and time consuming. Unsu-
pervised keyword detectors can tackle these two problems, yet at the cost of reduced overall perform-
ance.

Unsupervised approaches need no training and can be applied directly without relying on a gold stand-
ard document collection. They can be divided into statistical and graph-based methods.

• Statistical methods, such as KP-MINER (El-Beltagy & Rafea, 2009), RAKE (Rose et al., 2010) and
YAKE (Campos et al., 2018a,b), use statistical characteristics of the texts to capture keywords.

• Graph-based methods, such as TextRank (Mihalcea & Tarau, 2004), Single Rank (Wan & Xiao,
2008), TopicRank (Bougouin et al., 2013) and Topical PageRank (Sterckx et al., 2015), build
graphs to rank words based on their position in the graph.

Among the statistical approaches, the state-of-the-art keyword extraction algorithm is YAKE (Campos et
al., 2018a,b), which is also one of the best performing keyword extraction algorithms overall; it defines a
set of five features capturing keyword characteristics which are heuristically combined to assign a single
score to every keyword.

On the other hand, among the graph-based approaches, Topic Rank by Bougouin et al. (2013) can
be considered state-of-the-art; candidate keywords are clustered into topics and used as vertices in
the final graph, used for keyword extraction. Next, a graph-based ranking model is applied to assign a
significance score to each topic and keywords are generated by selecting a candidate from each of the
top-ranked topics. Network-based methodology has also been successfully applied to the task of topic
extraction (Spitz & Gertz, 2018). In this deliverable (see Section 3.2), we describe RaKUn (Škrlj et al.,
2019), a novel unsupervised, language-agnostic graph-based method that explores how vertices can
be aggregated prior to keyword detection.

2.1.3 Selected keyword extraction datasets

In deliverable D2.1, the list of selected datasets was longer, but the subselection below, used in experi-
ments in this deliverable, is chosen in order to allow for comparison with best supervised and unsuper-
vised approaches from related work. The statistics about the datasets used are presented in Table 1.
Evaluation measures discussed in Section 2.1.4 are used for comparing the performance of different
algorithms, where the performance is measured on six distinct datasets:

• KP20k (Meng et al., 2017): This dataset contains titles, abstracts, and keyphrases of 40,000 sci-
entific articles from the field of computer science. Half of these articles (20,000) are used as a test
set and 20,000 are used as train set.

• Inspec (Hulth, 2003): The dataset contains 2,000 abstracts of scientific journal papers in computer
science. Two sets of keywords are assigned to each document, the controlled keywords that
appear in the Inspec thesaurus, and the uncontrolled keywords, which are assigned by the editors.
Only uncontrolled keywords are used in the evaluation, same as by Meng et al. (2017), and the
dataset is split into a 500 test papers and 1500 train papers.

• Krapivin (Krapivin et al., 2009): This dataset contains 2,304 full scientific papers published by ACM
with author-assigned keyphrases. 400 papers from the dataset were used as a test set and the
others are used for training.

• NUS (Nguyen & Kan, 2007): The dataset contains 211 scientific conference papers and contains a
set of keywords assigned by student volunters and a set of author assigned keywords, which are
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both used in evaluation, where 20% of papers were randomly selected for a test set, others were
used for training.

• SemEval (Kim et al., 2010): The dataset used in the SemEval-2010 Task 5, Automatic Keyphrase
Extraction from Scientific Articles, contains 288 articles collected from the ACM Digital Library.
100 articles were used for testing and the rest were used for training.

• DUC (Wan & Xiao, 2008): The dataset consists of 308 English news articles and contains 2,488
hand labeled keyphrases, where 20% of articles were randomly selected for a test set, others
were used for training.

2.1.4 Evaluation measures

In information extraction, there are several evaluation metrics that can be used to measure the per-
formance of models and compare them with the state-of-the-art. The measures include precision@k,
recall@k, F1@k, precision@O, recall@O and F1@O:

Precision@k. In a ranking task, we are interested in precision at rank k. This means that only the
keywords ranked equal to or higher than k are considered and the rest are disregarded. Precision
is the ratio of the number of relevant keywords divided by the number of keywords returned by the
system.

precision =
|relevant keywords@k|
|returned keywords| (1)

Recall@k. Recall@k is the ratio of the number of relevant keywords ranked equal to or higher than k by
the system divided by the number of correct ground truth keywords.

recall =
|relevant keywords@k|
|correct keywords| (2)

Due to the high variance of a number of ground truth keywords, this type of recall becomes prob-
lematic if k is smaller than the number of ground truth keywords, since it becomes impossible for
the system to achieve a perfect recall. (Similar can happen to precision@k, if number of keywords
in a gold standard is lower than k, and returned number of keywords is fixed at k.)

F1@k is a harmonic mean between Precision@k and Recall@k.

F1@k = 2 ∗ P@k ∗ R@k
P@k + R@k

Precision@O. Here, O denotes the number of ground truth keyphrases. This means that only the
keywords ranked higher or equal than O are considered and the rest are disregarded.

precision =
|relevant keywords@O|
|returned keywords| (3)

Table 1: Datasets used for empirical evaluation of keyword extraction algorithms.

Dataset lang No. docs Avg. keywords Avg. doc length % Present keywords
Kp20k en 40000 5.26 156.54 63.3
Inspec en 2000 9.64 124.36 78.5
Krapivin en 2304 5.336 156.87 56.2
NUS en 211 11.66 164.80 51.3
SemEval en 244 15.42 173.77 44.5
DUC en 308 8.064 683.14 96.6
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Recall@O. Recall@O is the ratio of the number of relevant keywords ranked higher or equal than O by
the system divided by the number of correct ground truth keywords. This measure is sometimes
also called R-precision (Zesch & Gurevych, 2009).

recall =
|relevant keywords@O|
|correct keywords| (4)

F1@O. Harmonic mean between Precision@O and Recall@O

F1@O = 2 ∗ P@O ∗ R@O
P@O + R@O

Precision@M. Here, M denotes the number of predicted keyphrases. This means no truncation on the
predicted keywords is conducted.

precision =
|relevant keywords@M|
|returned keywords| (5)

Recall@M. Recall@M is the ratio of the number of relevant keywords returned by the system divided by
the number of correct ground truth keywords.

recall =
|relevant keywords@M|
|correct keywords| (6)

F1@M. Harmonic mean between Precision@M and Recall@M

F1@M = 2 ∗ P@M ∗ R@M
P@M + R@M

Illustrative examples showing how exactly some of these measures are computed are given in Table 2.

Table 2: Example results for evaluation measures used in our approaches to keyword extraction.

Predicted keywords Ground truth p@10 r@10 p@O r@O p@M r@M
k1, k2, k3, k4, k5, k6, k7, k8, k9, k10, k11 k1, k2, k3, k7, k11 4/11 4/5 3/11 3/5 5/11 5/5
k1, k2, k3, k7 k1, k2, k3, k4, k5 3/4 3/5 3/4 3/5 3/4 3/5

In order to compare the results of our approaches to other state-of-the-art approaches, we use the
same evaluation methodology as Yuan et al. (2019), F1@k and F1@O, where k is either 5 or 10. Both
F1@k and F1@O are calculated as a harmonic mean of macro-averaged precision and recall, meaning
that precision and recall scores for each document are averaged and the F1 score is calculated from
these averages. To have comparable results, lowercasing and stemming are performed on both the
gold standard keywords and generated keyphrases during evaluation. Only keywords that appear in a
text (present keywords) were used as a gold standard in order to make the results of the conducted
experiments comparable with the reported results from the related work.

2.2 Related work on terminology extraction and alignment

After presenting related work on keyword extraction, we continue with term extraction methods as term-
and keyword extraction methods are highly overlapping. We start by providing a clarification regarding
the terminology used in this report. Term extraction, also called automatic term extraction (ATE) or auto-
matic term recognition (ATR) “is the automated process of identifying terms in specialised texts, where
terms can be described as the linguistic representations of domain-specific concepts” (Rigouts Terryn et
al., 2019). For term extraction, we can distiguish between monolingual and bilingual term extraction. In
monolingual setting, only corpora in a single language are considered. For bilingual extraction, following
the distinction between two basic approaches made by (Foo, 2012):
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• extract-align where we first extract monolingual candidate terms from both sides of the corpus and
then align the terms, and

• align-extract where we first align single and multi-word units in parallel sentences and then extract
the relevant terminology from a list of candidate term pairs,

we propose the following two definitions:

• Bilingual terminology extraction is the process which, given the input of related specialized mono-
lingual corpora, results in the output of terms aligned between two languages. The process can
either start with extracting monolingual candidate terms and aligning them between two languages
(i.e. extract-align) or with aligning phrases and then extracting terms (i.e. align-extract) or any other
sequence of actions.

• Bilingual terminology alignment is the process of aligning terms between two candidate term lists in
two languages.

Bilingual terminology alignment has a narrower focus than bilingual terminology extraction, but the two
terms are often used interchangeably in various papers.

In this section we present the related work on monolingual and bilingual terminology extraction and
alignment in Sections 2.2.1 and 2.2.2, followed by Section 2.2.3 that presents the analysis of past
papers on bilingual terminology extraction from the point of view of reproducibility and replicability. The
section is based on the published paper with the title: Reproduction, replication, analysis and adaptation
of a term alignment approach by Repar, Martinc, & Pollak (2019).

2.2.1 Monolingual terminology extraction methods

We start with a brief overview of the state-of-the-art monolingual term extraction methods. Term extrac-
tion “is the automated process of identifying terms in specialised texts, where terms can be described as
the linguistic representations of domain-specific concepts” (Rigouts Terryn et al., 2019). In the broadest
sense, there are two different approaches to term extraction: linguistic and statistical.

• The linguistic approach utilizes the distinctive linguistic aspects of terms - most often their syntactic
patterns.

• The statistical approach takes advantage of term frequencies in the corpus.

Most state-of-the-art systems are hybride, using a combination of the two approaches: e.g., Justeson
and Katz (1995) first define part-of-speech patterns of terms and then use simple frequencies to filter
the term candidates.

Many terminology extraction algorithms are based on the concepts of termhood and unithood defined
by Kageura & Umino (1996). Termhood is “the degree to which a stable lexical unit is related to some
domain-specific concepts” and unithood is “the degree of strength or stability of syntagmatic combina-
tions and collocations.” Termhood-based statistical measures function on a presumption that a term’s
relative frequency will be higher in domain-specific corpora than in the general language. Several ap-
proaches utilizing termhood have been developed, including those by Khurshid et al. (2000) and Vintar
(2010). Common statistical measures are used to measure unithood, such as mutual information (Daille
et al., 1994) or t-test (Wermter & Hahn, 2005). Other state-of-the-art models include Termostat (Drouin,
2003) and Termolator (Meyers et al., 2018). In the last few years, word embeddings have become a
very popular natural language processing technique. The turning point was the paper by Mikolov et
al. (2013) describing word2vec, a word embedding toolkit that can create vector space models much
faster than previous attempts. Several attempts have already been made to utilise word embeddings for
terminology extraction (e.g., Amjadian et al., 2016; Wang et al., 2016; Gao & Yuan, 2019).
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2.2.2 Bilingual terminology extraction methods

The primary purpose of bilingual terminology extraction is to build a term bank, i.e. a list of terms in
one language along with their equivalents in the other language. With regard to the input text, we
can distinguish between alignment on the basis of a parallel corpus and alignment on the basis of a
comparable corpus. For the translation industry, bilingual terminology extraction from parallel corpora is
extremely relevant due to the large amounts of sentence-aligned parallel corpora available in the form
of translation memories (in the TMX file format). Consequently, initial attempts at bilingual terminology
extraction involved parallel input data (Kupiec, 1993; Daille et al., 1994; Gaussier, 1998), and the interest
of the community continued until today (Ha et al., 2008; Ideue et al., 2011; Macken et al., 2013; Haque
et al., 2014; Arčan et al., 2014; Baisa et al., 2015). However, most parallel corpora are owned by private
companies1, such as language service providers, who consider them to be their intellectual property and
are reluctant to share them publicly. For this reason (and in particular for language pairs not involving
English) considerable efforts have also been invested into researching bilingual terminology extraction
from comparable corpora (Fung & Yee, 1998; Rapp, 1999; Chiao & Zweigenbaum, 2002; Cao & Li,
2002; Daille & Morin, 2005; Morin et al., 2008; Vintar, 2010; Bouamor et al., 2013; Hazem & Morin,
2016, 2017).

Despite the problem of bilingual term alignment lending itself well to the binary classification task,
there have been relatively few approaches utilizing machine learning. For example, similar to Aker
et al. (2013), Baldwin & Tanaka (2004) generate corpus-based, dictionary-based and translation-based
features and train an SVM classifier to rank the translation candidates. Note that they only focus on
multi-word noun phrases (noun + noun). A similar approach, again focusing on noun phrases, is also
described by Cao & Li (2002). Finally, Nassirudin & Purwarianti (2015) also reimplement Aker et al.
(2013) for the Indonesian-Japanese language pair and further expand it with additional statistical fea-
tures.

2.2.3 Analysis of papers on bilingual terminology extraction from the viewpoint
of reproducibility and replicability

In an ideal reproducibility and replicability scenario, a scientific paper would contain an accurate and
clear description of the datasets used and experiments conducted and the authors would provide a
single link containing all the datasets (versions, subsets etc.) used for the experiments along with the
experiment source code (or alternatively, an online tool to run the experiments). These could then
be used to replicate the experiments and reproduce the results using the descriptions provided in the
paper.

As reported in our paper (Repar, Martinc, & Pollak, 2019), we have analyzed several2 bilingual termino-
logy extraction papers from the past 25 years from the point of view of dataset, code and tool availability.
The summary of results is available in Table 3.

1However, some publicly available parallel corpora do exist. A good overview can be found at the OPUS web portal
(Tiedemann, 2012).

2The selection process was as follows: the starting point were selected seminal papers on the field, as well as two queries in
the ACL Anthology database: "term alignment" and "bilingual terminology extraction". We analysed the papers found by these
two queries as well as any additional papers mentioned in the related works sections of these papers and the main criterion
for including a paper in our analysis was that it primarily deals with bilingual terminology extraction (and not for example latent
semantic analysis, such as Bader & Chew (2008)). However, no strict systematic review with inclusion and exclusion criteria was
made, as such survey would be beyond the needs of this work.
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Table 3: Analysis of bilingual terminology extraction papers from the point of view of reproducibility and replicability.

Paper Dataset Code Tool Citations
Kupiec (1993) Links No No 333
Daille et al. (1994) No No No 268
Fung & Yee (1998) Description No No 427
Gaussier (1998) No No No 84
Rapp (1999) Description No No 552
Chiao & Zweigenbaum (2002) Description No No 135
Cao & Li (2002) Description No No 141
Morin et al. (2007) No No No 113
Daille & Morin (2005) Obsolete No Obsolete 56
Morin et al. (2008) Links No Obsolete 22
Ha et al. (2008) Description No No 4
Lee et al. (2010) Description No No 22
Vintar (2010) No No Obsolete 53
Ideue et al. (2011) No No Yes 1 9
Macken et al. (2013) No No No 48
Bouamor et al. (2013) Description No No 24
Aker et al. (2013) Links No No 36
Arčan et al. (2014) Links No No 18
Haque et al. (2014) Links No No 11
Kontonatsios et al. (2014) Description No No 14
Baisa et al. (2015) No No Yes 5
Hazem & Morin (2016) Links No No 12
Hazem & Morin (2017) Links No No 2
1 A Perl module (Term Extract) was used, however the link leads to a Japanese website.

Dataset availability

In terms of dataset availability, we looked at whether the paper contains some description of how the
datasets were constructed and which could (theoretically) be used to reconstruct the datasets. Note that
under "dataset", we include corpora, gold standard termlists, seed dictionaries and all other linguistic
resources needed to conduct the experiments in the paper. For example, we consider the following
paragraph from Rapp (1999) to be a valid description of a dataset: As the German corpus, we used 135
million words of the newspaper Frankfurter Allgemeine Zeitung (1993 to 1996), and as the English corpus 163
million words of the Guardian (1990 to 1994). On the other hand, this paragraph from Ideue et al. (2011)
is not considered a valid description: We extracted bilingual term candidates from a Japanese-English parallel
corpus consisting of documents related to apparel products. In the former example, dataset reconstruction
would be difficult but not impossible, while in the latter it is impossible. An even better option is to link
to actual datasets or refer to papers where datasets are described and linked, which is why we also
looked for dataset links and/or references in the analyzed papers. Note that there are several examples
where links are provided only for a selection of the datasets used in the experiments e.g., by Morin et
al. (2008).

As evident from Table 3, dataset availability is the least problematic aspect of reproducibility and rep-
licability in terminology (extraction and) alignment papers with approximately two thirds of the analysed
papers (15 out of 23) either containing a description of the resources used for the experiments, providing
links to them or referring to papers where they are described.

We expected the earlier papers to have less information on datasets than latter ones, but this turned
out not to be the case. In fact, the earliest paper analyzed by Kupiec (1993) provides a reference to a
publicly available corpus (Canadian Hansards: Gale & Church, 1993). The first paper to have a separate
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section with data/resource description is (Rapp, 1999) and from this point on, almost all papers have
such a section—usually titled “Data and Resources”, “Resources and Experimental Setup”, “Linguistic
resources” or similar.

However, it is rarely documented what version of the dataset was used and whether an entire dataset
was used or only a part of it (as in random selection, train-test split, etc.). In most cases, little information
is provided on the actual subsets used for the experiments. Another aspect of dataset use is the lan-
guages: when one of the languages involved is English, it is much easier to find datasets than for other
language combinations. Finally, there is also the issue of keeping the links active. For example, many
of the links in (Daille & Morin, 2005) and (Morin et al., 2008) are not active anymore while Bouamor et
al. (2013) state that the corpora and terminology gold standard lists created for the paper will be shared
publicly, but no links are provided.

The most significant problem encountered during our analysis was the fact that terminology alignment
is most often not the sole focus of a paper, such as in the paper by Haque et al. (2014), where the
experiments start with monolingual terminology extraction from two languages and the extracted terms
are then aligned. As terminology extraction and alignment go hand-in-hand, it may often be impossible
to make a clear distinction between the terminology extraction and terminology alignment datasets. This
means that the dataset results in Table 3 are not a true apple-to-apple comparison: one paper might
link to the parallel corpus used to extract terms from, while another to a gold standard termlist. Our
main criterion was whether the dataset description (or link) could be used to replicate the experiments
described in the paper.

An ideal terminology (extraction and) alignment dataset would therefore consist of a bilingual or multi-
lingual (parallel or comparable) corpus along with reference (gold standard) term lists containing terms
that can be found in the corpus. Such corpora are TTC wind energy and TC mobile technology,3 which
contain data for six languages (English, French, German, Spanish, Russian, Latvian, Chinese), or the
Bitter corpus,4 which contains data for the EN-IT language pair. The first was used in (Hazem & Morin,
2016), while the second one by Arčan et al. (2014). Since such datasets are scarce, researchers em-
ploy various methodologies for constructing their own datasets. One method, used by Aker et al. (2013),
is to take one of the available multilingual translation memories containing EU documentation (such as
Europarl (Koehn, 2005) or DGT (Steinberger et al., 2013)) as the corpus and a glossary (e.g., IATE
(Johnson & Macphail, 2000)) or thesaurus (e.g., Eurovoc (Steinberger et al., 2002)) as the terminology
gold standard list. Another strategy, used by Hazem & Morin (2017), is to collect a comparable corpus
manually (i.e. scientific articles in French and English from the Elsevier5 website) and a domain specific
terminological resource (i.e. UMLS6) as a reference termlist. Hazem & Morin (2017) also filter out those
terms from the termlist that do not appear often enough in their corpus. In other cases (e.g., Haque et
al., 2014), the datasets are not available because the papers were written as part of industrial projects
and the datasets are private.

Parallel to our research, Rigouts Terryn et al. (2019) have come to similar conclusions and have started
building a multilingual terminology extraction dataset according to their best practice recommendations.
However, the dataset will be available only at the end of their project.

Code and tool availability

We have discovered that no paper has made experiment code available and only a few provide access
or links to tools where the experiments were conducted. But even when links to tools are provided,
reproducibility and replicability may be hindered: for example, the link provided in (Ideue et al., 2011)
leads to a Japanese website. Another issue is the long-term availability of resources. For example,

3http://www.lina.univ-nantes.fr/?Reference-Term-Lists-of-TTC.html
4https://hlt-mt.fbk.eu/technologies/bittercorpus
5https://www.elsevier.com/
6https://www.nlm.nih.gov/research/umls/
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Daille & Morin (2005) conducted their experiments in ACABIT, an open source terminology extraction
software. However, the link given in the paper does not work anymore. From the analyzed papers, the
only example of bilingual term extraction and alignment tool, which is publicly available, is the Sketch
Engine term extraction module, described by Baisa et al. (2015).

None of the papers analysed in this section fulfill the ideal scenario described at the start of this section
(i.e. a single link with code and all datasets) which severely hinders any replicability attempts as will be
evident from our own experiments described in this paper.

3 Keyword extraction

This section presents our work in the area of keyword extraction. Section 3.1 presents our attempts to re-
produce the results of the unsupervised state-of-the-art keyword extraction method. Next, we introduce
novel methods for keyword extraction: a graph-based unsupervised method is presented in Section 3.2,
while Section 3.3 reports on our promising supervised approach called TNT-KID, a transformer-based
neural tagger for keyword identification. We compare the results of our and state-of-the-art supervised
and unsupervised approaches in Section 3.4. The final experiments related to keyword extraction con-
sist of testing selected approaches on Croatian EMBEDDIA datasets in Section 3.5.

3.1 Attempts in reproducing YAKE results

As YAKE (Campos et al., 2018a,b) reports to have one of the best results for unsupervised keyword
extraction, we attempted to reproduce their published results. We discuss in detail our attempts at
reproducing the results of YAKE.

In our initial experiments, we first attempted to reproduce YAKE’s results by simply installing it via the
pke library7, followed by computation of keyword matches, where the detected keywords as well as the
gold standard ones were first stemmed. From the measures described in Section 2.1.4, f1@10 was re-
ported. The pke implementation’s default settings did not achieve competitive performance (as reported
in https://github.com/LIAAD/yake). We next discuss in detail our attempts and consolidation.

As we were not able to reproduce the results using the package manager version (pke library), we
attempted to reproduce the results using the YAKE’s official repository. We initially consulted (Campos
et al., 2018a) and (Campos et al., 2018b), which was updated with the newest version that reflects the
upcoming January 2020 full paper (Campos et al., 2020). At this point, we still observed discrepancies
across datasets (even though we used the same default setting as reported in the paper), however, the
official, most recent version of YAKE performed notably better than the previously published one in the
pke library.

We considered several possible causes of discrepancies, including higher k (f1@20), f1@M instead
of f1@10, stemming or not, only keywords present in the document considered for the gold standard
etc., however testing each of these hypotheses did not help with reproducing the authors’ published
results.

In the following round of experiments, we consulted the YAKE authors, who offered us their Python script,
which, along with the TREC (Text Retrieval Conference) evaluation scripts supposedly reproduces the
results8. However, even when using this script and the TREC evaluation, the results remained very
similar to the ones obtained in the previous experiments. Our attempt is accessible online9.

7https://github.com/boudinfl/pke
8https://github.com/vitordouzi/ConvertKeyphrase2TREC and https://trec.nist.gov/trec_eval/
9https://github.com/SkBlaz/rakun/tree/master/reproduce_yake

15 of 127

https://github.com/LIAAD/yake)
https://github.com/boudinfl/pke
https://github.com/vitordouzi/ConvertKeyphrase2TREC
https://trec.nist.gov/trec_eval/
https://github.com/SkBlaz/rakun/tree/master/reproduce_yake


ICT-29-2018 D2.3: Initial keyword extraction

At this point, we decided to re-evaluate YAKE, as available on their official GitHub repository against the
state-of-the-art baselines in our evaluation environment, using newly introduced evaluation code as part
of the most recent neural sequence-to-sequence approach (Yuan et al., 2019). The results are reported
in Table 4 in Section 3.4.

3.2 Novel unsupervised approach to keyword extraction: RaKUn

We next summarise our keyword extraction approach RaKUn, published in a conference paper by Škrlj
et al. (2019). RaKUn operates in three main steps:

1. transformation of texts into a graph,

2. graph pruning, and

3. token ranking (keyword detection).

The key novelty of the RaKUn algorithm is the capability to aggregate tokens based on their similarity,
potentially decreasing redundancy of the token space. Further, RaKUn employs load centrality, as a fast
measure of vertex centrality that captures the importance of keywords comprised of a single, two or
three tokens.

3.2.1 Representing text

In this work we consider directed graphs. Let G = (V ,E) represent a graph comprised of a set of vertices
V and a set of edges (E ⊆ V × V ), which are ordered pairs. Further, each edge can have a real-valued
weight assigned. Let D represent a document comprised of tokens {t1, ... , tn}. The order in which tokens
in text appear is known, thus D is a totally ordered set.

A potential way of constructing a graph from a document is by simply observing word co-occurrences.
When two words co-occur, they are used as an edge. However, such approaches do not take into
account the sequential nature of words in a document, meaning that the order is lost. We attempt to
take this aspect into account as follows.

The given corpus is traversed, and for each element ti , its successor ti+1, together with a given element,
forms a directed edge (ti , ti+1) ∈ E . Finally, such edges are weighted according to the number of times
they appear in a given corpus. Thus the graph, constructed after traversing a given corpus, consists of
all local neighborhoods (order one), merged into a single joint structure. Global contextual information
is potentially kept intact (via weights), even though it needs to be detected via network analysis as
proposed next.

3.2.2 Improving graph quality by meta vertex construction

A naïve approach to constructing a graph, as discussed in the previous section, commonly yields noisy
graphs, rendering learning tasks harder. Therefore, we next discuss the selected approaches we employ
in order to reduce both the computational complexity and the spatial complexity of constructing the
graph, as well as increasing its quality (for the given down-stream task).

First, we consider the following heuristics that can reduce the complexity of the graph constructed for
keyword extraction: token length (while traversing document D, only tokens of length µ > µmin are
considered), and lemmatization (tokens can be lemmatized, offering spatial benefits and avoiding re-
dundant vertices in the final graph). The two modifications yield a potentially simpler graph, which is
more suitable and faster for mining.
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Figure 1: Meta vertex construction. Sets of highlighted vertices are merged into a single vertex. The resulting
graph has less vertices, as well as edges.

Even if the optional lemmatization step is applied, one can still aim at further reducing the graph com-
plexity by merging similar vertices. This step is called meta vertex construction. The motivation can be
explained by the fact, that even similar lemmas can be mapped to the same keyword (e.g., mech-
anic and mechanical; normal and abnormal). This step also captures spelling errors (similar vertices
that will not be handled by lemmatization), spelling differences (e.g., British vs. American English), non-
standard writing (e.g., in Twitter data), mistakes in lemmatization or unavailable or omitted lemmatization
step.

The meta-vertex construction step works as follows. Let V represent the set of vertices, as defined
above. A meta vertex M is comprised of a set of vertices that are elements of V , i.e. M ⊆ V . Let Mi

denote the i-th meta vertex. We construct a given Mi so that for each u ∈ Mi , u’s initial edges (prior
to merging it into a meta vertex) are rewired to the newly added Mi . Note that such edges connect to
vertices which are not a part of Mi . Thus, both the number of vertices, as well as edges get reduced
substantially. This feature is implemented via the following procedure:

1. Meta vertex candidate identification. Edit distance and word length distance10 are used to determ-
ine whether two words should be merged into a meta vertex (only if length distance threshold is
met, the more expensive edit distance is computed).

2. The meta vertex creation. As common identifiers, we use the stemmed version of the original
vertices and if there is more than one resulting stem, we select the vertex from the identified
candidates that has the highest centrality value in the graph and its stemmed version is introduced
as a novel vertex (meta vertex).

3. The edges of the words entailed in the meta vertex are next rewired to the meta vertex.

4. The two original words are removed from the graph.

5. The procedure is repeated for all candidate pairs.

A schematic representation of meta vertex construction is shown in Figure 1. The yellow and blue
groups of vertices both form a meta vertex, the resulting (right) graph is thus substantially reduced, both
with respect to the number of vertices, as well as the number of edges.

3.2.3 Keyword identification

After previous steps, where a graph is constructed from a given ordered set of tokens and merging of
very similar vertices by meta-vertex construction step, in this smaller, denser graph, load centrality is
computed for each vertex. Note that at this point, should the top k vertices by centrality be considered,
only single term keywords emerge. The method is extended to cover 2- and 3-grams. Having obtained

10The edit distance (Levenshtein) measures the similarity of two character sequences by transforming the first one into the
second one using a dynamic programming paradigm. The word length distance is the difference of lengths between two words.
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a set of (keyword, score) pairs, we finally sort the set according to the scores (descendingly), and take
top k keywords as the result.

In this report, the RaKUn keyword extraction is evaluated against the the most recent version of YAKE
(Campos et al., 2020) (see Section 3.4), which was not available at the time of writing of the original
paper, as well as to the other state-of-the art approaches on multiple datasets.

In future work we will investigate how embeddings-based measures can be used in vertex aggregation
step.

3.3 Novel supervised approach to keyword extraction: TNT-KID

In this section we describe TNT-KID: Transformer-based Neural Tagger for Keyword IDentification.

The unsupervised approaches, such as RaKUn (Škrlj et al., 2019) and YAKE (Campos et al., 2018b),
have many advantages over supervised approaches for keyword extraction (they are language and
genre independent, do not require any training and are computationally undemanding) but also a couple
of crucial deficiencies:

• TF-IDF and graph based features such as PageRank, used by these systems to detect the import-
ance of each word in the document, are based only on simple statistics like word occurrence and
co-occurrence, and are therefore unable to grasp the entire semantic information of the text.

• Since these systems cannot be trained, they can not be adapted to the specifics of the syntax,
semantics, content, genre and keyword tagging regime of a specific text. On the other hand,
supervised approaches have direct access to the gold standard keyword set for each text during
the training phase, enabling more efficient adaptation.

These deficiencies result in a much worse performance when compared to the state-of-the-art super-
vised algorithms (see Table 4). Therefore, besides developing a state-of-the-art unsupervised keyword
extractor RaKUn in the scope of the EMBEDDIA project, we are also currently developing a neural
supervised keyword extractor capable of overcoming the aforementioned deficiencies. In order to suc-
cessfully grasp the semantic information of the text, we propose a transfer learning technique, where
a classifier is first trained as a language model on a large corpus and then fine-tuned on a (usually)
small-sized corpus with manually labeled keywords.

Unlike other proposed neural keyword extractors (Meng et al., 2017, 2019; Yuan et al., 2019), we do not
employ recurrent neural networks but instead opt for a transformer architecture (Vaswani et al., 2017).
Secondly, while these approaches formulate a keyword extraction task as a sequence-to-sequence
generation task, where the classifier is thought to generate an output sequence of tokens step by step
according to the input sequence and the previous generated output tokens, we formulate a keyword ex-
traction task as a sequence labeling task, similar as Gollapalli et al. (2017) and Luan et al. (2017).

The system is currently still in development, but we can already show that our system offers only slightly
worse performance than state-of-the-art sequence-to-sequence systems on test sets containing ab-
stracts of scientific papers with long documents but is on the other hand also capable of drastically
outperforming these systems on corpora with shorter average document length and more keywords per
document, which is of special interest in EMBEDDIA news media applications. We also show that, due
to transfer learning, our system does not require large manually labeled training corpora required by
sequence-to-sequence models, which makes it transferable to low resourced languages where such
datasets are not available.
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3.3.1 Approach

Our approach relies on a transfer learning technique (Howard & Ruder, 2018; Devlin et al., 2018),
where a neural model is first pretrained as a language model on a large corpora. This model is then
fine-tuned for each specific keyword detection task on each specific manually labeled corpus by adding
and training the final keyword labeling layer. With this approach, the syntactic and semantic knowledge
of the pretrained language model is transferred and leveraged in the keyword detection task, allowing
for good performance of the keyword detection model even on small datasets.

The model follows an architectural design of a transformer (Vaswani et al., 2017), more specifically the
GPT-2 language model (Radford et al., 2019) with a couple of significant modifications:

• The standard input embedding layer and softmax function were replaced by adaptive input repres-
entations (Baevski & Auli, 2018) and an adaptive softmax (Grave et al., 2017). These modifications
drastically reduce the memory requirements and time complexity of the original model at the ex-
pense of a marginal drop in performance.

• Absolute positional embeddings used in the original model were replaced by relative positional
embeddings, as in Dai et al. (2019). The main idea is to only encode the relative positional
information in the hidden states instead of the absolute. This approach slightly improves the
performance of the model and also requires a re-parameterization of the attention mechanism.

• Besides the text input, the model takes an additional part-of-speech (POS) tag sequence as an
input. This sequence is first embedded and then added to the word embedding matrix.

During pretraining, the model is trained as a standard language model, where the task can be formally
defined as predicting a probability distribution of words from the fixed size vocabulary V , for word w t+1,
given the historical sequence w1:t = [w1, ...,wt ].

During fine-tuning, the final densely connected layer of the language model is replaced with a new dense
layer of size SL ∗ NC , where SL stands for sequence length (i.e. number of words in the input text) and
NC stands for number of classes. Since each word in the sequence can either be a keyword (or at least
part of the keyphrase) or not, the keyword tagging task can be modeled as a binary classification task,
where the model is trained to predict if a word in the sequence is a keyword or not. Figure 2 shows
an example of how an input text is first transformed into a numerical sequence that is used as an input
of the model, which is then trained to produce a sequence of zeroes and ones, where the positions
of ones indicate the positions of keywords in the input text. Negative Log Loss function between the
correct sequence of zeroes and ones and the predicted sequence is used during training. Since a large
majority of words in the sequence are not keywords, we assign a larger weight to the positive class in
order to prevent the majority negative class to prevail.

In order to produce final set of keywords for each document, tagged words are extracted from the
text and duplicates are removed. Note that a sequence of ones is always interpreted as a multi-word
keyphrase and not a combination of one-worded keywords (e.g., distributed interactions from Figure 2 is
considered as a single multi-word keyphrase and not as two distinct one word keywords). After that, the
following filtering is conducted:

• If a keyphrase is longer than four words, it is discarded.

• Punctuation (with the exception of dashes and apostrophes) is removed from keywords.

• The detected keyphrases are ranked and arranged according to the softmax probability assigned
by the model in a descending order.

• Lowercasing and stemming are performed on both the gold standard keywords and generated
keyphrases during evaluation, as in related work.
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Input text

The advantage of this is to introduce distributed interactions between the UDDI clients .

Input (X)

1    123     12  43   4  8   1011       12027       8300         74    1  7237   412   32                 

Target (Y)

0  0  0  0  0  0  0  1  1 0  0  1 0  0

Figure 2: Encoding of the input text “The advantage of this is to include distributed interactions between the UDDI
clients.” with keywords distributed interactions and UDDI. In the first step, the text is converted into
a numerical sequence, which is used as an input to the model. The model is trained to convert this
numerical sequence into a sequence of zeroes and ones, where the ones indicate the position of a
keyword.

3.3.2 Experimental setting

We conducted experiments on the datasets described in Section 2.1.3. First, we trained a language
model on a concatenation of texts from all the datasets. After that, the trained language model was fine-
tuned for each dataset on a train set and tested on a test set. A validation set (encompassing random
20% of documents from a train set) was used in order to determine the best hyperparameters of the
model. The model was fine-tuned for a maximum of 10 epochs and after each epoch the trained model
was tested on the validation set. The model with the best performance on the validation set (in terms
of Negative Log Loss) was used for keyword detection on the test set. All combinations of the following
hyperparameter values were tested before choosing the best combination, which is written in bold in the
list below:

• Learning rates: 0.0001, 0.00005, 0.00001, 0.00003

• Embedding size: 256, 512

• Number of attention heads: 4, 8, 12

• Sequence size: 128, 256

• Number of attention layers: 4, 8, 12

• Weight for a positive class: 1, 2, 4, 6, 8

The same train-test splits are used as in related work Meng et al. (2017), for a fair comparison of the
models.
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Table 4: Empirical evaluation of state-of-the-art keyword extractors.

Results reported by original authors Implemented or reimplemented by us
TfIdf TextRank KEA Maui CopyRNN CopyRNN-improved CatSeqD YAKE RaKUn TNT-KID

Kp20k
F1@5 0.072 0.181 0.046 0.005 0.328 0.317 0.348 0.134 0.177 0.285
F1@10 0.094 0.151 0.044 0.005 0.255 0.273 0.298 0.136 0.16 0.263
F1@O 0.063 0.184 0.051 0.004 * 0.335 0.357 0.116 0.16 0.275

Inspec
F1@5 0.160 0.286 0.022 0.035 0.292 0.244 0.276 0.202 0.101 0.449
F1@10 0.244 0.339 0.022 0.046 0.336 0.289 0.333 0.222 0.108 0.505
F1@O 0.208 0.335 0.022 0.039 * 0.290 0.331 0.212 0.108 0.491

Krapivin
F1@5 0.067 0.185 0.018 0.005 0.302 0.305 0.325 0.204 0.127 0.271
F1@10 0.093 0.160 0.017 0.007 0.252 0.266 0.285 0.186 0.106 0.259
F1@O 0.068 0.211 0.017 0.006 * 0.325 0.371 0.170 0.106 0.240

NUS
F1@5 0.112 0.230 0.073 0.004 0.342 0.376 0.374 0.130 0.224 0.279
F1@10 0.140 0.216 0.071 0.006 0.317 0.352 0.366 0.186 0.193 0.286
F1@O 0.122 0.238 0.081 0.006 * 0.406 0.406 0.154 0.193 0.271

SemEval
F1@5 0.088 0.217 0.068 0.011 0.291 0.318 0.327 0.151 0.167 0.282
F1@10 0.147 0.226 0.065 0.014 0.296 0.318 0.352 0.212 0.159 0.309
F1@O 0.113 0.229 0.066 0.011 * 0.317 0.357 0.168 0.159 0.278

DUC
F1@5 0.101 * * * * 0.083 * 0.122 0.189 0.302
F1@10 0.120 0.097 * * 0.165 0.107 * 0.148 0.172 0.336
F1@O 0.115 * * * * * * 0.135 0.172 0.336

3.4 Keyword extraction results compared to the state-of-the-art

In Table 4, we present the results achieved by a number of algorithms on the datasets presented in Table
1. Evaluation measures were presented in Section 2.1.4. Only keywords which appear in a text (present
keywords) were used as a gold standard in order to make the results of the conducted experiments
comparable with reported results from the related work. One more issue requiring consideration is the
difference in training regimes. TfIdf, TextRank, YAKE and RaKUn algorithms are unsupervised and do
not require any training, KEA, Maui and TNT-KID were trained on a different train set for each of the
datasets, and CopyRNN, CopyRNN-improved and CatSeqD were all trained on a large Kp20K dataset,
since they require a large train set for competitive performance.

First, we comment on the results comparing RaKUn (Škrlj et al., 2019) to YAKE (Campos et al., 2020) as
reported to be the best performing unsupervised system. The purpose of this comparison is to demon-
strate the objective performance of both the RaKUn algorithm developed in EMBEDDIA, as well as to
re-evaluate YAKE’s performance in an end-to-end manner, using the same evaluation as for the other
approaches. We intentionally report default hyperparameter settings, as both we, the authors of RaKUn,
as well as YAKE’s authors claim that a single hyperparameter set can offer sufficient performance across
multiple datasets.

The empirical evaluation confirms our reproducibility findings that YAKE by default does not perform as
well as claimed, even though we did not test extensive hyperparameter combinations. In fact TextRank
appears to be the best unsupervised algorithm, while RaKUn performs on-par with other state-of-the-art
methods, including YAKE.

Overall, supervised neural network approaches drastically outperform all other approaches. Among
them, our proposed Transformer-based Neural Tagger for Keyword IDentification (TNT-KID) manages to
outperform state-of-the-art approaches on two out of four datasets by a large margin.

TNT-KID manages to outperform the CatSeqD approach by a margin of about 17 percentage points
according to all criteria on the Inspec dataset. On the DUC dataset, it again outperforms the second
best neural approach (CopyRNN) by about 17 percentage points according to the F1@10 score. On
other datasets, it generally achieves about 3-4 percentage points worse results than the best reported
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approach according to the F1@10 measure, with the exception of the NUS dataset, where the differ-
ence is about 8 percentage points. When it comes to the F1@5 and F1@O measures, the differences
between TNT-KID and the best performing system vary more, ranging from about 13 percentage points
difference in F1@O on the NUS dataset, to the about 5 percentage points difference in F1@5 on the
SemEval an Krapivin datasets.

This can mostly be explained by the differences in how the two systems work and the average number of
gold standard keywords per document. On average, the CatSeqD system detects less than 5 keywords
per document, since it was trained on the large Kp20K dataset, where the average document has
just 3.33 (63.3% out of 5.26 keywords per document) keywords that appear in the text. This means
that this system will in most cases maximize precision and neglect recall. On the other hand, our
system is trained to maximize recall and on average predicts about 10 keywords per document, which
off course also hurts precision of the system, especially at smaller k values and at smaller O values
(this happens on datasets with not many keywords present in the documents). For this reason, our
system manages to outperform other state-of-the-art system on Inspec (about 7.5 present keywords per
document) and DUC (about 8 present keywords per document). Inspec is also a dataset with on average
shortest documents (on average 124.36 words long), which might negatively influence the performance
of CopyRNN and CatSeqD, that on average produce about one keyword per 50 words. While we do
not have any reported score for CatSeqD on the DUC dataset, the CopyRNN and CopyRNN-improved
perform very poorly on this dataset and are being outperformed even by the unsupervised RaKUn
algorithm. The reason for this is mostly likely that the DUC dataset contains news articles and both of
these networks were trained on scientific articles.

The difference between TNT-KID and other neural nets in training and prediction regimes implies that
the choice of a network is somewhat dependent on the use-case. If a large training dataset of an
appropriate genre with manually labeled keywords is available and if the system does not need to
predict many keywords, than CatSeqD is most likely the best choice. On the other hand, if only a small
train set is available and it is preferable to predict larger number of keywords, than TNT-KID is most
likely a better choice. We are still working on further improvement of the system on which we will report
in the deliverable due in M24.

3.5 Keyword extraction from the Croatian news dataset of Styria

Styria Media Group is one of the leading media groups in Austria, Croatia, and Slovenia. They publish
magazines, daily and weekly newspapers, operate radio stations, TV station and several book publishing
companies. The group also operates successful news portals, marketplaces, as well as content and
community portals in digital format. Leading portals in the Croatian market in terms of page visits and
business results are 24sata and Večernji list which are both managed by Styria.

Styria test dataset, on which we test two keyword extraction algorithms, contains news articles in Croa-
tian from digital editions of 24sata, Večernji list, and their respective niche portals. Each news article
contains title, text and on average 3.3 corresponding keywords. Statistics for the Styria dataset are
given in Table 5.

Table 5: Statistics of the Styria dataset.

Statistic Value
No. words 40,512,198
No. documents 142,146
Average no. words per document 285
No. keywords 465,671
Average no. keywords per document 3.276
% Present keywords 57.92
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On a given Styria dataset we tested one supervised and one unsupervised approach to keyword ex-
traction. First, we tested the supervised model CopyRNN proposed by Meng et al. (2017), which
employs a generative model for keyword prediction with a copying mechanism based on the posi-
tional information. We chose this model due to its good performance on the English datasets (see
Table 4) and since the code for the model is publicly available on Github (https://github.com/memray/
seq2seq-keyphrase-pytorch). The model was trained on 600,000 Croatian news articles from 24sata and
Večernji list portals. Next, we tested the unsupervised model RaKUn (Škrlj et al., 2019), a language-
agnostic graph-based method that requires no training and was implemented in the scope of the EM-
BEDDIA project.

Based on the evaluation of two tested methods (see Table 6), the CopyRNN model works better then
RaKUn according to all criteria. This coincides with the results on the English data, where the supervised
models also generally work much better than the unsupervised models. We also notice that the differ-
ence in performance between the two models is bigger when we consider only first 5 keywords instead
of 10. This is due to the fact that the RaKUn method always returns 10 keywords, while CopyRNN on
average returns only 8.34 keywords per documents. A large discrepancy in results in favor of CopyRNN
was expected, as CopyRNN is an example of supervised keyword extraction methods that outperform
unsupervised methods such as RaKUn. In future we will test also the TNT-KID approach.

Table 6: Evaluation of CopyRNN and RaKUn models on the Styria dataset.

Model precision@5 recall@5 F1@5 precision@10 recall@10 F1@10 precision@O recall@O F1@O
CopyRNN 0.231 0.347 0.28 0.159 0.395 0.23 0.297 0.292 0.29

RaKUn 0.072 0.112 0.09 0.072 0.112 0.09 0.085 0.082 0.08

4 Terminology extraction and alignment

This section presents our work in bilingual terminology extraction and alignment. In Section 4.1 we
present a study in which we reimplemented and adapted an approach to term alignment. Next, Sec-
tion 4.2 reports on TermEnsembler, an ensemble learning approach to bilingual term extraction and
alignment. Section 4.3 reports on our experiments with graph-based term alignment using co-frequency
information from a bilingual parallel corpus.

4.1 Reimplementation and adaptation of bilingual terminology align-
ment approach by Aker et al.

This section summarises the reimplementation study that we published in the journal Language Resources
and Evaluation (Repar, Martinc, & Pollak, 2019), presented in Appendix B.

Our attempts focused on the approach to bilingual term alignment using machine learning by Aker
et al. (2013), who consider term alignment as a bilingual classification task: for each term pair, they
create various features based on word dictionaries (i.e. created with Giza++ from the DGT translation
memory) and word similarities across languages. They evaluated their classifier on a held-out set of
term pairs and additionally by manual evaluation. Their results on the held-out set were excellent, with
100% precision and 66% recall for the English-Slovenian and English-French language pair and 98%
precision and 82% recall for English-Dutch. The method was therefore selected as being reported as
a very strong baseline for aligning lists of terms in many European languages, and could be used for
aligning keywords across news datasets in different languages.

Our reproduction attempt focused on three language pairs: English-Slovenian, English-Dutch and English-
French (in contrast with the original article where they had altogether 20 language pairs) and we were
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unable to reproduce the results following the procedures described in the paper on Eurovoc terms. In
fact, our results have been dramatically different from the original paper with precision being less than
4% and recall close to 90% for all three language pairs under consideration. We then tested several
different strategies for improving the results ranging from Giza++ dictionary cleaning, lemmatization, dif-
ferent ratios of positive and negative examples in the training and test sets, training set filtering based on
feature values and term length, and adding new cognate-based features. The most effective strategies
employed unbalanced training set and training set filtering based on certain feature values which res-
ulted in precision exceeding 90% for all three language combinations. It is possible that in the original
experiments the authors performed a similar training set filtering strategy, because the original paper
mentions that their classifier initially achieved low precision on Lithuanian language training set, which
they were able to improve by manually removing positive term pairs that had the same characteristics as
negative examples from the training set. However, no manual removal is mentioned for Slovenian, Dutch
or French. Further attempts were directed at boosting recall and the performance of cognate-based fea-
tures. By adding additional cognate-based features, we were able to improve recall by around 16% for
Dutch, 8% for French and by around 2% for Slovenian at a cost of a moderate drop in precision.

We also performed manual evaluation similar to the original paper and reached roughly the same results
with our adapted approach. In addition, because we discovered that Eurovoc data is of limited use for
evaluating the performance of cognate-based features, we ran experiments on an English-Slovenian
karstology gold standard term list. With the Cognates approach configuration, we improved recall by 11%
(compared to the Training set filtering 3 configuration) and a qualitative analysis of the results showed that
the new strategies for boosting the performance of cognate-based features do indeed result in more
cognate term pairs being properly aligned. For more details see Appendix B.

4.2 TermEnsembler: An ensemble learning approach to bilingual
term extraction and alignment

We developed an ensemble learning approach to bilingual term extraction and alignment, called Ter-
mEnsembler (Repar, Podpečan, et al., 2019), described in the paper attached in Appendix C. The
system uses a version of the monolingual term extraction approach developed by Pollak et al. (2012),
adapted with nested term filtering and near duplicate recognition, to extract terms from English and Slov-
enian, and then implements seven (existing and novel) approaches to term alignment to align the terms
between the two languages (while some of the methods are designed for parallel corpora, other perform
also on comparable corpora). The results of the seven methods are then merged together using an
evolutionary algorithm in a novel ensemble learning approach. Evaluation of the system showed results
with more than 96% of the top 400 term pair alignments produced by the system evaluated as correct
by a human evaluator. Even if some of the methods presented imply the use of parallel corpora, which
are currently not foreseen in the scope of EMBEDDIA, the methods for alignment from parallel corpora
are good baselines for evaluating the cross-lingual embedding techniques that are being developed in
WP1.

4.3 Experiment in building a graph-based term alignment approach

We experimented with graph-based approaches for cross-lingual term alignment using co-frequency
information from a bilingual parallel corpus. Starting with a list of English and Slovenian terms along
with information on individual frequency and co-frequency, we wanted to align the terms in the two lists
across two languages. In the first step, we constructed a bipartite network consisting of Slovenian words
in one partition and English words in the other partition. The only connections in the network were those
linking Slovenian words to co-aligned (i.e. appearing in the aligned sentence pair) English words. The
strength of the connection was the number of times the two words appeared in aligned sentences. In the
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second step, we ran the Personalized PageRank (PPR, Bahmani et al., 2010) algorithm for each word
in the network, producing one feature vector for each word. In the third step, the constructed vectors
were used to discover the k nearest words. This was done in one of two ways:

• Using a direct approach, we interpret the PPR vectors as measures of similarity. For each word w,
its PageRank vector represents its similarity to other words. Thus, to return k nearest words, we
must find the k words for which the corresponding value of w’s PageRank has the highest value

• Indirectly, the PPR vectors can be seen as feature vectors representing the words. To return the k
nearest words, we therefore find the k words that have the most similar PPR vectors according to
some distance metric. In our case, we used the standard Euclidean metric.

However, initial results were not promising and we are now exploring alternative avenues.

4.4 Embedding-based terminology expansion experiments

We developed an approach to extracting domain knowledge from specialized corpora (Pollak et al.,
2019), see Appendix D for more details. The technologies related to EMBEDDIA include improving
existing statistical terminology extraction, and especially the methodology for terminology expansion
with the help of word embeddings, which could be used also for querying archives of news corpora (for
expanding manually defined keywords). Before further describing the term expansion experiment, let
us recall the definition of term expansion from Section 1: “Term expansion is the process of extending a
list of existing terms by novel term candidates.”

The extraction of specialized knowledge was conducted on a corpus of karstology, i.e. an interdiscip-
linary domain at the intersection of geology, hydrology, and speleology. The domain is of high interest,
as karst is possibly the most prominent geographical feature of Slovenia (with karst formations being
some of popular tourist and natural attractions in Slovenia). It is also an interesting example of how
terminology is dynamically evolving in a cross-linguistic context. The literature published in English con-
tains many local Slovenian scientific terms and toponyms for typical geomorphological karst structures,
which makes it appropriate for research and identification of cognates, as well as homonym terms, with
possible differences in meaning across cultures.

The corpus of karstology consists of Slovene, Croatian and English texts. We focus on the Slovene and
English parts of the TermFrame corpus (v1.0). The English subcorpus contains about 1.6M words and
the Slovene one cca. 1M words (see Table 7 for details).

Table 7: Statistics for English and Slovenian subcorpora.

English Slovene
Vocabulary size 64,079 73,813
Documents 24 60
Sentences 103,322 57,575
Words 1,673,132 1,041,475
Tokens 1,972,320 1,231,039
Type-to-token ratio 0.032 0.060

In addition, we are using a short gold standard list of Karst domain terms, called QUIKK termbase11.
The QUIKK term base consists of terms in four languages, but for the purposes of our experiments, the
Slovene and English term lists are used, containing 57 and 185 terms, respectively.

Word embeddings capture certain degree of semantics, as words that are similar or semantically related
are closer together in the vector space. Previous research conducted by Diaz et al. (2016) showed that
embeddings can be successfully used for expanding queries on topic specific texts. In this research, we

11http://islovar.ff.uni-lj.si/karst
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test if word embeddings can be used for a similar task of extending the gold standard term lists to find
more domain terms. According to the research conducted by Diaz et al. (2016), embeddings trained
only on small topic specific corpora outperform non-topic specific general embeddings trained on very
large general corpora for the task of query expansion due to strong language use variation in specialized
corpora. Therefore, we use the same approach for extending the term list and train custom embeddings
on the specialized corpus instead of using pretrained embeddings.

In our experiments, we trained FastText embeddings (Bojanowski et al., 2017) on the Slovenian and
English karst subcorpora and use them to find twenty closest words (according to cosine distance
between embeddings) for the first fifty terms in the QUIKK term base12. These related words are sorted
according to their proximity to the term and the first, second, tenth and twentieth ranked words are
used in manual evaluation. Embeddings for multi-word terms are generated by averaging the word
embeddings for each word in the term.13

The method was tested on 47 English and 50 Slovene source terms (i.e. the terms from the gold stand-
ard list), for which out of 20 most related words (according to the cosine distance between the source
term and the related word), four per each source term were selected for evaluation (first, second, tenth
and twentieth ranked words), resulting in 200 term-word pairs for English and 188 for Slovene.14 Ex-
amples of ranked related words for five English and five Slovene terms are presented in Table 8.

Table 8: Examples of ranked related words for five English (upper five examples) and five Slovene (lower five
examples) terms.

Term R1 R2 R10 R20
sinkhole shakehole suburban sinkpoint dump
aggressive water aggressively aggressiveness qc coldwater
epikarst zone epikarstic subcutaneous cutaneous epiphreatic
caprock sinkhole sinkpoint overbank suburb evacuation
seacave seacoast sealevel vrulja caveand
udornica udornina zapornica koliševka kamojstrnik
agresivna voda sposoben mehurček skoznjo preniči
epikras epikraški prenikujoč epr vadozen
vrtača vrtačast mikrovrtača globel neizravnan
rečna jama reža narečen mohoričev vodokazen

Two human evaluators evaluated the related words according to two criteria:

• Is the word a term

• Semantic similarity to the term

The first criterion is measured on a scale with three nominal classes (term, karst term, not term), while the
second criterion uses a numerical scale from zero to ten, following the evaluation procedure of Finkel-
stein et al. (2002), where zero suggests no semantic similarity and ten suggests very close semantic
relation (fractional scores were also allowed). The inter-annotator agreement between two evaluators
(according to the Cohen’s kappa coefficient) is 0.689 for the first criterion and 0.513 for the second
criterion for English and 0.594 for the first criterion and 0.389 for the second criterion for the Slovene
evaluation.

Table 9 presents embeddings-based term extension results. Out of 200 English term-word pairs, 112

12To be exact, 50 English terms, and 47 Slovene terms, since only 47 Slovenian terms from the QUIKK term base appear in the
Slovenian corpus.

13There are several possible multi-word term aggregation approaches, such as summation of component word vectors, aver-
aging of component word vectors, creating multi-word term vectors, etc. As comparing different techniques is beyond the scope
of this study, we decided for the simple averaging technique, as previous research on this topic conducted on the medical domain
(Henry et al., 2018) found no statistically significant difference between any multi-word term aggregation method.

14In this section, we intentionally name related words as words and not as terms, to contrast them to the gold standard list of
terms to which they are compared. As shown in the evaluation, they can be in next step evaluated as terms or not.
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Table 9: English and Slovenian embeddings evaluation. Avg. sem. score stands for the average of manually
prescribed semantic similarity scores for each term-word pair, Avg. cos. dist stands for the average cosine
distance, Pearson corr. is a Pearson correlation coefficient between the semantic similarity score and
cosine distance values and Spearman corr. is a Spearman correlation coefficient between the semantic
similarity score and cosine distance values.

English Slovene
All words 200 188
Avg. sem. score 3.325 3.859
Avg. cos. dist. 0.747 0.760
Pearson corr. 0.181 0.231
Spearman corr. 0.136 0.194

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 50 50 50 50 47 47 47 47
Avg. sem. score 4.040 3.540 3.110 2.610 4.872 4.468 3.032 3.064
Terms 112 69
Avg. sem. score 4.710 5.536
Avg. cos. dist. 0.757 0.771
Pearson corr. 0.176 -0.018
Spearman corr. 0.160 -0.016

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 32 30 29 21 17 22 15 15
Karst terms 52 36
Avg. sem. score 5.702 6.722
Avg. cos. dist. 0.761 0.780
Pearson corr. 0.151 -0.152
Spearman corr. 0.070 -0.067

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 16 14 15 7 12 12 5 7
Not Terms 88 119
Avg. sem. score 1.563 2.887
Avg. cos. dist. 0.734 0.753
Pearson corr. -0.010 0.341
Spearman corr. -0.110 0.208

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 18 20 21 29 30 25 32 32

were manually labeled as term-term pairs by at least one evaluator which suggests that, at least for
English, embeddings can be used for extending the term list. Out of these 112 related terms, 52 were
labeled as karst specific terms by at least one evaluator. For Slovenian, the results are worse, since
out of 188 term-word pairs only 69 were labeled as term-term pairs and out of these only 36 are karst
specific.

Out of 112 English term-term pairs, 62 were ranked first and second and 50 were ranked tenth and
twentieth according to the cosine distance. Out of 69 Slovenian term-term pairs, 39 were ranked first
or second and 30 were ranked as tenth or twentieth. This suggests that words that have most similar
embeddings to terms according to the cosine distance (rank 1 and rank 2) are also more likely to be
terms themselves than words that have less similar embeddings (rank 10 and rank 20). Similar applies
to karst specific term-term pairs, where for English 30 were ranked first or second and 22 were ranked
tenth or twentieth. For Slovenian, 24 out of 36 were ranked first or second and 12 were ranked tenth or
twentieth.

When it comes to semantic similarity, unsurprisingly better ranked related words were manually evalu-
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ated as semantically more similar. For example, the first ranked (most similar to terms according to the
cosine distance) English related words got an average semantic similarity score15 of 4.040 out of ten
and first ranked Slovenian related words got an average semantic similarity score of 4.468. These are
larger averages than semantic similarity score averages of 2.610 and 3.064 for English and Slovenian
related words ranked as twentieth. Another interesting observation is the fact that the average semantic
similarity score is the largest for English karst specific term-term pairs (5.702) and much lower if all the
term-word pairs are considered (3.325). If we consider all term-term pairs, the average semantic simil-
arity score is 4.710. Same applies for Slovenian term-word pairs, with semantic similarity score average
rising from 3.859, when all term-words pairs are considered, to 5.536, when only term-term pairs are
considered, and up to 6.722, when only karst specific term-term pairs are considered.

We also measure correlation between cosine distances and the semantic similarity scores for term-word
pairs using Pearson and Spearman correlation coeficients. The correlation is generally low, the highest
correlation being measured for Slovenian Karst specific term-term pairs where the Pearson correlation
reached the value of 0.341 and Spearman the value of 0.208. There was no correlation measured
on Slovene term-term pairs and surprisingly, a small negative Pearson correlation was measured on
Slovenian karst specific term-term pairs and a small negative Spearman correlation was measured on
English pairs which were labeled as terms. For more details see Appendix D.

5 Associated outputs

The work described in this deliverable has resulted in the following resources:

Description URL Availability
Code for RaKUn https://github.com/EMBEDDIA/RaKUn Public (GPL3)

Code for Term Alignment https://github.com/EMBEDDIA/4real2018 Public (GPL3)
Code for TNT-KID https://github.com/EMBEDDIA/TNT_KID To become public∗

∗Will become public (licence TBD) after research publication.

Parts of this work are also described in detail in the following publications, which are attached to this
deliverable as appendices:

Citation Status Appendix
Škrlj, B., Repar, A., Pollak, S. (2019). RaKUn: Rank-based keyword
extraction via unsupervised learning and meta vertex aggregation. In
Proceedings of the international conference on statistical language and
speech processing SLSP 2019 (pp. 311–323). Springer.

Published Appendix A

Repar, A., Martinc, M., Pollak, S. (2019, Nov). Reproduction, replica-
tion, analysis and adaptation of a term alignment approach. Language
Resources and Evaluation. doi: 10.1007/s10579-019-09477-1. Published Appendix B

Repar, A., Podpečan, V., Vavpetič, A., Lavrač, N., Pollak, S. (2019).
TermEnsembler: An ensemble learning approach to bilingual term
extraction and alignment. Terminology. International Journal of Theor-
etical and Applied Issues in Specialized Communication 25 (1), 93–120.

Published Appendix C

Pollak, S., Repar, A., Martinc, M., Podpečan, V. (2019). Karst explor-
ation: Extracting terms and definitions from Karst domain corpus. In
Electronic lexicography in the 21st century: Proceedings of eLex 2019
conference.

Published Appendix D

15Semantic similarity score for each related word is calculated as an average between the two semantic similarity scores given
by two evaluators.
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6 Conclusions and further work

In this report we presented the work performed during the first year in the scope of the Task 2.2. The
main contributions are a novel unsupervised graph-based keyword extraction technique RaKUn, and
especially TNT-KID, a completely novel neural tag detector developed in-house that we plan to publish
in near future. We have described our attempts at reproducing the YAKE’s results, and reported on
an extensive empirical evaluation of YAKE along with RaKUn and other keyword detectors that for the
first time offer insight into the difference between neural and non-neural approaches at such scale. In
addition, several contributions to the field of terminology extraction and alignment have been proposed,
such as a reimplementation study of a term alignment approach that can be used for keyword matching
in a multilingual setting, as well as term expansion techniques. We have already started testing the
approaches on the EMBEDDIA datasets, but will extend the work by testing TNT-KID on the Styria
dataset, as well as an Estonian dataset. For Finnish partner STT, the work will be adapted in future, as
they use the standardized IPTC keyword-tagging16. Being neural network based, especially TNT-KID
offers a plethora of options for extension to a cross-lingual setting, and we plan to investigate these in
future work.

16IPTC (International Press Telecommunications Council) develops and promotes technical standards to improve the man-
agement and exchange of information between content providers, intermediaries and consumers. Its members include news
agencies, publishers and industry vendors. STT uses the system and every news article should have at least one (but preferably
more) of the IPTC-keywords included.
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Abstract. Keyword extraction is used for summarizing the content of
a document and supports efficient document retrieval, and is as such an
indispensable part of modern text-based systems. We explore how load
centrality, a graph-theoretic measure applied to graphs derived from a
given text can be used to efficiently identify and rank keywords. In-
troducing meta vertices (aggregates of existing vertices) and systematic
redundancy filters, the proposed method performs on par with state-
of-the-art for the keyword extraction task on 14 diverse datasets. The
proposed method is unsupervised, interpretable and can also be used for
document visualization.

Keywords: keyword extraction · graph applications · vertex ranking· load cen-
trality · information retrieval

1 Introduction and related work

Keywords are terms (i.e. expressions) that best describe the subject of a docu-
ment [2]. A good keyword effectively summarizes the content of the document
and allows it to be efficiently retrieved when needed. Traditionally, keyword
assignment was a manual task, but with the emergence of large amounts of tex-
tual data, automatic keyword extraction methods have become indispensable.
Despite a considerable effort from the research community, state-of-the-art key-
word extraction algorithms leave much to be desired and their performance is
still lower than on many other core NLP tasks [13]. The first keyword extraction
methods mostly followed a supervised approach [14,24,31]: they first extract key-
word features and then train a classifier on a gold standard dataset. For example,
KEA [31], a state of the art supervised keyword extraction algorithm is based
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on the Naive Bayes machine learning algorithm. While these methods offer quite
good performance, they rely on an annotated gold standard dataset and require
a (relatively) long training process. In contrast, unsupervised approaches need
no training and can be applied directly without relying on a gold standard doc-
ument collection. They can be further divided into statistical and graph-based
methods. The former, such as YAKE [7,6], KP-MINER [10] and RAKE [25], use
statistical characteristics of the texts to capture keywords, while the latter, such
as Topic Rank [3], TextRank [22], Topical PageRank [29] and Single Rank [30],
build graphs to rank words based on their position in the graph. Among statisti-
cal approaches, the state-of-the-art keyword extraction algorithm is YAKE [7,6],
which is also one of the best performing keyword extraction algorithms over-
all; it defines a set of five features capturing keyword characteristics which are
heuristically combined to assign a single score to every keyword. On the other
hand, among graph-based approaches, Topic Rank [3] can be considered state-
of-the-art; candidate keywords are clustered into topics and used as vertices in
the final graph, used for keyword extraction. Next, a graph-based ranking model
is applied to assign a significance score to each topic and keywords are gener-
ated by selecting a candidate from each of the top-ranked topics. Network-based
methodology has also been successfully applied to the task of topic extraction
[28].

The method that we propose in this paper, RaKUn, is a graph-based key-
word extraction method. We exploit some of the ideas from the area of graph
aggregation-based learning, where, for example, graph convolutional neural net-
works and similar approaches were shown to yield high quality vertex represen-
tations by aggregating their neighborhoods’ feature space [5]. This work imple-
ments some of the similar ideas (albeit not in a neural network setting), where
redundant information is aggregated into meta vertices in a similar manner.
Similar efforts were shown as useful for hierarchical subnetwork aggregation in
sensor networks [8] and in biological use cases of simulation of large proteins [9].

The main contributions of this paper are as follows. The notion of load cen-
trality was to our knowledge not yet sufficiently exploited for keyword extraction.
We show that this fast measure offers competitive performance to other widely
used centralities, such as for example the PageRank centrality (used in [22]). To
our knowledge, this work is the first to introduce the notion of meta vertices with
the aim of aggregating similar vertices, following similar ideas to the statistical
method YAKE [7], which is considered a state-of-the-art for the keyword extrac-
tion. Next, as part of the proposed RaKUn algorithm we extend the extraction
from unigrams also to bigram and threegram keywords based on load central-
ity scores computed for considered tokens. Last but not least, we demonstrate
how arbitrary textual corpora can be transformed into weighted graphs whilst
maintaining global sequential information, offering the opportunity to exploit
potential context not naturally present in statistical methods.

The paper is structured as follows. We first present the text to graph trans-
formation approach (Section 2), followed by the introduction of the RaKUn key-
word extractor (Section 3). We continue with qualitative evaluation (Section 4)
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and quantitative evaluation (Section 5), before concluding the paper in Section
6.

2 Transforming texts to graphs

We first discuss how the texts are transformed to graphs, on which RaKUn
operates. Next, we formally state the problem of keyword extraction and discuss
its relation to graph centrality metrics.

2.1 Representing text

In this work we consider directed graphs. Let G = (V,E) represent a graph
comprised of a set of vertices V and a set of edges (E ⊆ V ×V ), which are ordered
pairs. Further, each edge can have a real-valued weight assigned. Let D represent
a document comprised of tokens {t1, . . . , tn}. The order in which tokens in text
appear is known, thus D is a totally ordered set. A potential way of constructing
a graph from a document is by simply observing word co-occurrences. When
two words co-occur, they are used as an edge. However, such approaches do not
take into account the sequence nature of the words, meaning that the order is
lost. We attempt to take this aspect into account as follows. The given corpus
is traversed, and for each element ti, its successor ti+1, together with a given
element, forms a directed edge (ti, ti+1) ∈ E. Finally, such edges are weighted
according to the number of times they appear in a given corpus. Thus the graph,
constructed after traversing a given corpus, consists of all local neighborhoods
(order one), merged into a single joint structure. Global contextual information
is potentially kept intact (via weights), even though it needs to be detected via
network analysis as proposed next.

2.2 Improving graph quality by meta vertex construction

A näıve approach to constructing a graph, as discussed in the previous section,
commonly yields noisy graphs, rendering learning tasks harder. Therefore, we
next discuss the selected approaches we employ in order to reduce both the
computational complexity and the spatial complexity of constructing the graph,
as well as increasing its quality (for the given down-stream task).

First, we consider the following heuristics which reduce the complexity of the
graph that we construct for keyword extraction: Considered token length (while
traversing the document D, only tokens of length µ > µmin are considered), and
next, lemmatization (tokens can be lemmatized, offering spatial benefits and
avoiding redundant vertices in the final graph). The two modifications yield a
potentially “simpler” graph, which is more suitable and faster for mining.

Even if the optional lemmatization step is applied, one can still aim at fur-
ther reducing the graph complexity by merging similar vertices. This step is
called meta vertex construction. The motivation can be explained by the fact,
that even similar lemmas can be mapped to the same keyword (e.g., mechanic
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and mechanical; normal and abnormal). This step also captures spelling errors
(similar vertices that will not be handled by lemmatization), spelling differences
(e.g., British vs. American English), non-standard writing (e.g., in Twitter data),
mistakes in lemmatization or unavailable or omitted lemmatization step.

Fig. 1: Meta vertex construction. Sets of highlighted vertices are merged into a
single vertex. The resulting graph has less vertices, as well as edges.

The meta-vertex construction step works as follows. Let V represent the set
of vertices, as defined above. A meta vertex M is comprised of a set of vertices
that are elements of V , i.e. M ⊆ V . Let Mi denote the i-th meta vertex. We
construct a given Mi so that for each u ∈Mi, u’s initial edges (prior to merging
it into a meta vertex) are rewired to the newly added Mi. Note that such edges
connect to vertices which are not a part of Mi. Thus, both the number of vertices,
as well as edges get reduced substantially. This feature is implemented via the
following procedure:

1. Meta vertex candidate identification. Edit distance and word lengths dis-
tance are used to determine whether two words should be merged into a
meta vertex (only if length distance threshold is met, the more expensive
edit distance is computed).

2. The meta vertex creation. As common identifiers, we use the stemmed ver-
sion of the original vertices and if there is more than one resulting stem,
we select the vertex from the identified candidates that has the highest cen-
trality value in the graph and its stemmed version is introduced as a novel
vertex (meta vertex).

3. The edges of the words entailed in the meta vertex are next rewired to the
meta vertex.

4. The two original words are removed from the graph.

5. The procedure is repeated for all candidate pairs.

A schematic representation of meta vertex construction is shown in Figure 1.
The yellow and blue groups of vertices both form a meta vertex, the resulting
(right) graph is thus substantially reduced, both with respect to the number of
vertices, as well as the number of edges.
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3 Keyword identification

Up to this point, we discussed how the graph used for keyword extraction is
constructed. In this work, we exploit the notion of load centrality, a fast measure
for estimating the importance of vertices in graphs. This metric can be defined
as follows.

Load centrality The load centrality of a vertex falls under the family of cen-
tralities which are defined based on the number of shortest paths that pass

through a given vertex v, i.e. c(v) =
∑
t∈V

∑
s∈V

σ(s,t|v)
σ(s,t) ; t 6= s, where σ(s, t|v)

represents the number of shortest paths that pass from vertex s to vertex t via
v and σ(s, t) the number of all shortest paths between s and t (see [4,11]). The
considered load centrality measure is subtly different from the better known be-
tweenness centrality; specifically, it is assumed that each vertex sends a package
to each other vertex to which it is connected, with routing based on a prior-
ity system: given an input of flow x arriving at vertex v with destination v’, v
divides x equally among all neighbors of minimum shortest path to the target.
The total flow passing through a given v via this process is defined as v’s load.
Load centrality thus maps from the set of vertices V to real values. For detailed
description and computational complexity analysis, see [4]. Intuitively, vertices
of the graph with the highest load centrality represent key vertices in a given
network. In this work, we assume such vertices are good descriptors of the in-
put document (i.e. keywords). Thus, ranking the vertices yields a priority list of
(potential) keywords.

Formulating the RaKUn algorithm We next discuss how the considered
centrality is used as part of the whole keyword extraction algorithm RaKUn,
summarized in Algorithm 1. The algorithm consists of three main steps de-
scribed next. First, a graph is constructed from a given ordered set of tokens
(e.g., a document) (lines 1 to 8). The resulting graph is commonly very sparse,
as most of the words rarely co-occur. The result of this step is a smaller, denser
graph, where both the number of vertices, as well as edges is lower. Once con-
structed, load centrality (line 10) is computed for each vertex. Note that at this
point, should the top k vertices by centrality be considered, only single term
keywords emerge. As it can be seen from line 11, to extend the selection to 2-
and 3-grams, the following procedure is proposed:

2-gram keywords. Keywords comprised of two terms are constructed as fol-
lows. First, pairs of first order keywords (all tokens) are counted. If the sup-
port (= number of occurrences) is higher than f (line 11 in Algorithm 1), the
token pair is considered as potential 2-gram keyword. The load centralities
of the two tokens are averaged, i.e. cv = c1+c2

2 , and the obtained keywords
are considered for final selection along with the computed ranks.

3-gram keywords. For construction of 3-gram keywords, we follow a similar
idea to that of bigrams. The obtained 2-gram keywords (previous step) are
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Algorithm 1: RaKUn algorithm.

Data: Document D, consisting of n tokens t1, . . . , tn
Parameters : General: number of keywords k, minimal token length µ; Meta

vertex parameters: edit distance threshold α, word length
difference threshold l, Multi-word keywords parameters: path
length p, 2-gram frequency threshold f

Result: A set of keywords K
1 corpusGraph← EmptyGraph; . Initialization.

2 for ti ∈ D do
3 edge ← (ti, ti+1);
4 if edge not in corpusGraph and len(ti) ≥ µ then
5 add edge to corpusGraph ; . Graph construction.

6 end
7 updateEdgeWeight(corpusGraph, edge) ; . Weight update.

8 end
9 corpusGraph ← generateMetaVertices(corpusGraph, α, l);

10 tokenRanks ← loadCentrality(corpusGraph) ; . Initial token ranks.

11 scoredKeywords ← generateKeywords(p, f , tokenRanks) ; . Keyword search.

12 K = scoredKeywords[:k];
13 return K

further explored as follows. For each candidate 2-gram keyword, we consider
two extension scenarios: Extending the 2-gram from the left side. Here, the
in-neighborhood of the left token is considered as a potential extension to
a given keyword. Ranks of such candidates are computed by averaging the
centrality scores in the same manner as done for the 2-gram case. Extending
the 2-gram from the right side. The difference with the previous point is that
all outgoing connections of the rightmost vertex are considered as potential
extensions. The candidate keywords are ranked, as before, by averaging the
load centralities, i.e. cv = 1

3

∑3
i=1 ci.

Having obtained a set of (keyword, score) pairs, we finally sort the set ac-
cording to the scores (descendingly), and take top k keywords as the result. We
next discuss the evaluation the proposed algorithm.

4 Qualitative evaluation

RaKUn can be used also for visualization of keywords in a given document or
document corpus. A visualization of extracted keywords is applied to an example
from wiki20 [21] (for dataset description see Section 5.1), where we visualize both
the global corpus graph, as well as a local (document) view where keywords are
emphasized, see Figures 2 and 3, respectively. It can be observed that the global
graph’s topology is far from uniform — even though we did not perform any
tests of scale-freeness, we believe the constructed graphs are subject to distinct
topologies, where keywords play prominent roles.
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Fig. 2: Keyword visualization. Red dots represent keywords, other dots represent
the remainder of the corpus graph.

5 Quantitative evaluation

This section discusses the experimental setting used to validate the proposed
RaKUn approach against state-of-the-art baselines. We first describe the datasets,
and continue with the presentation of the experimental setting and results.

5.1 Datasets

For RaKUn evaluation, we used 14 gold standard datasets from the list of [7,6],
from which we selected datasets in English. Detailed dataset descriptions and
statistics can be found in Table 1, while full statistics and files for download
can be found online4. Most datasets are from the domain of computer science
or contain multiple domains. They are very diverse in terms of the number
of documents—ranging from wiki20 with 20 documents to Inspec with 2,000
documents, in terms of the average number of gold standard keywords per
document—from 5.07 in kdd to 48.92 in 500N-KPCrowd-v1.1—and in terms
of the average length of the documents—from 75.97 in kdd to SemEval2017
with 8332.34.

5.2 Experimental setting

We adopted the same evaluation procedure as used for the series of results re-
cently introduced by YAKE authors [6]5. Five fold cross validation was used to
determine the overall performance, for which we measured Precision, Recall and

4 https://github.com/LIAAD/KeywordExtractor-Datasets
5 We attempted to reproduce YAKE evaluation procedure based on their experimen-

tal setup description and also thank the authors for additional explanation regard-
ing the evaluation. For comparison of results we refer to their online repository
https://github.com/LIAAD/yake [7]
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Fig. 3: Keyword visualization. A close-up view shows some examples of keywords
and their location in the corpus graph. The keywords are mostly located in the
central part of the graph.

F1 score, with the latter being reported in Table 2.6 Keywords were stemmed
prior to evaluation.7 As the number of keywords in the gold standard document
is not equal to the number of extracted keywords (in our experiments k=10), in
the recall we divide the correctly extracted keywords by the number of keywords
parameter k, if in the gold standard number of keywords is higher than k.

Selecting default configuration. First, we used a dedicated run for deter-
mining the default parameters. The cross validation was performed as follows.
For each train-test dataset split, we kept the documents in the test fold intact,
whilst performing a grid search on the train part to find the best parametriza-
tion. Finally, the selected configuration was used to extract keywords on the
unseen test set. For each train-test split, we thus obtained the number of true
and false positives, as well as true and false negatives, which were summed up
and, after all folds were considered, used to obtain final F1 scores, which served
for default parameter selection. The grid search was conducted over the follow-
ing parameter range Num keywords: 10, Num tokens (the number of tokens a
keyword can consist of): Count threshold (minimum support used to determine
potential bigram candidates): Word length difference threshold (maximum dif-
ference in word length used to determine whether a given pair of words shall be
aggregated): [0, 2, 4], Edit length difference (maximum edit distance allowed to
consider a given pair of words for aggregation): [2, 3], Lemmatization: [yes, no].

Even if one can use the described grid-search fine-tunning procedure to select
the best setting for individual datasets, we observed that in nearly all the cases
the best settings were the same. We therefore selected it as the default, which

6 The complete results and the code are available at https://github.com/SkBlaz/

rakun
7 This being a standard procedure, as suggested by the authors of YAKE.
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Table 1: Selection of keyword extraction datasets in English language

Dataset Desc. No. docs Avg. keywords Avg. doc length

500N-KPCrowd-v1.1 [18] Broadcast news transcriptions 500 48.92 408.33
Inspec [15] Scientific journal papers from Computer Science collected

between 1998 and 2002
2000 14.62 128.20

Nguyen2007 [23] Scientific conference papers 209 11.33 5201.09
PubMed Full-text papers collected from PubMed Central 500 15.24 3992.78
Schutz2008[26] Full-text papers collected from PubMed Central 1231 44.69 3901.31
SemEval2010 [17] Scientific papers from the ACM Digital Library 243 16.47 8332.34
SemEval2017 [1] 500 paragraphs selected from 500 ScienceDirect journal

articles, evenly distributed among the domains of Com-
puter Science, Material Sciences and Physics

500 18.19 178.22

citeulike180 [19] Full-text papers from the CiteULike.org 180 18.42 4796.08
fao30 [20] Agricultural documents from two datasets based on Food

and Agriculture Organization (FAO) of the UN
30 33.23 4777.70

fao780 [20] Agricultural documents from two datasets based on Food
and Agriculture Organization (FAO) of the UN

779 8.97 4971.79

kdd [12] Abstracts from the ACM Conference on Knowledge Dis-
covery and Data Mining (KDD) during 2004-2014

755 5.07 75.97

theses100 Full master and Ph.D. theses from the University of
Waikato

100 7.67 4728.86

wiki20 [21] Computer science technical research reports 20 36.50 6177.65
www [12] Abstracts of WWW conference papers from 2004-2014 1330 5.80 84.08

can be used also on new unlabeled data. The default parameter setting was as
follows. The number of tokens was set to 1, Count threshold was thus not needed
(only unigrams), for meta vertex construction Word length difference threshold
was set to 3 and Edit distance to 2. Words were initially lemmatized. Next, we
report the results using these selected parameters (same across all datasets), by
which we also test the general usefulness of the approach.

5.3 Results

The results are presented in Table 2, where we report on F1 with the default
parameter setting of RaKUn, together with the results from related work, as
reported in the github table of the YAKE [7]8. We first observe that on the
selection of datasets, the proposed RaKUn outperforms (on average) any other
graph-based method. We also see that it performs better on a subset of datasets
(discussed next), yet not overalls. Such results demonstrate that the proposed
method finds keywords differently, indicating load centrality, combined with
meta vertices, represents a promising research venue. RaKUn performs well on
citeulike180 and similar single-keyword datasets, which is why the default con-
figuration (which returns unigrams only) was able to perform well.

Similarly, four of the five well-performing datasets (Schutz2008, fao30, ci-
teulike180, wiki20 ) include long documents (more than 3,900 words), with the
exception being 500N-KPCrowd-v1.1. For details, see Table 1. We observe that
the proposed RaKUn outperforms the majority of other competitive graph-based
methods. For example, the most similar variants Topical PageRank and Tex-
tRank do not perform as well on the majority of the considered datasets.

8 https://github.com/LIAAD/yake/blob/master/docs/YAKEvsBaselines.jpg (ac-
cessed on: June 11, 2019)
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Table 2: Performance comparison with state-of-the-art approaches.

Dataset RaKUn YAKE Single
Rank

KEA KP-
MINER

Text
Rank

Topic
Rank

Topical
PageR-
ank

500N-KPCrowd-v1.1 0.167 0.173 0.157 0.159 0.093 0.111 0.172 0.158
Inspec 0.076 0.316 0.378 0.150 0.047 0.098 0.289 0.361
Nguyen2007 0.096 0.256 0.158 0.221 0.314 0.167 0.173 0.148
PubMed 0.095 0.106 0.039 0.216 0.114 0.071 0.085 0.052
Schutz2008 0.221 0.196 0.086 0.182 0.230 0.118 0.258 0.123
SemEval2010 0.152 0.211 0.129 0.215 0.261 0.149 0.195 0.125
SemEval2017 0.162 0.329 0.449 0.201 0.071 0.125 0.332 0.443
citeulike180 0.240 0.256 0.066 0.317 0.240 0.112 0.156 0.072
fao30 0.165 0.184 0.066 0.139 0.183 0.077 0.154 0.107
fao780 0.112 0.187 0.085 0.114 0.174 0.083 0.137 0.108
kdd 0.092 0.156 0.085 0.063 0.036 0.050 0.055 0.089
theses100 0.069 0.111 0.060 0.104 0.158 0.058 0.114 0.083
wiki20 0.093 0.162 0.038 0.134 0.156 0.074 0.106 0.059
www 0.082 0.172 0.097 0.072 0.037 0.059 0.067 0.101

#Top 3 5 11 3 5 9 0 5 4

6 Conclusions and further work

In this work we proposed RaKUn, a novel unsupervised keyword extraction
algorithm which exploits the efficient computation of load centrality, combined
with the introduction of meta vertices, which notably reduce corpus graph sizes.
The method is fast, and performs well compared to state-of-the-art such as
YAKE and graph-based keyword extractors. In further work, we will test the
method on other languages. We also believe additional semantic background
knowledge information could be used to prune the graph’s structure even further,
and potentially introduce keywords that are inherently not even present in the
text (cf.[27]). The proposed method does not attempt to exploit meso-scale graph
structure, such as convex skeletons or communities, which are known to play
prominent roles in real-world networks and could allow for vertex aggregation
based on additional graph properties. We believe the proposed method could
also be extended using the Ricci-Oliver [16] flows on weighted graphs.
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Abstract In this paper, we look at the issue of reproducibility and replicability in

bilingual terminology alignment (BTA). We propose a set of best practices for

reproducibility and replicability of NLP papers and analyze several influential BTA

papers from this perspective. Next, we present our attempts at replication and

reproduction, where we focus on a bilingual terminology alignment approach

described by Aker et al. (Extracting bilingual terminologies from comparable cor-

pora. In: Proceedings of the 51st annual meeting of the association for

computational linguistics, vol. 1 402–411, 2013) who treat bilingual term alignment

as a binary classification problem and train an SVM classifier on various dictionary

and cognate-based features. Despite closely following the original paper with only

minor deviations—in areas where the original description is not clear enough—we

obtained significantly worse results than the authors of the original paper. We then

analyze the reasons for the discrepancy and describe our attempts at adaptation of

the approach to improve the results. Only after several adaptations, we achieve

results which are close to the results published in the original paper. Finally, we

perform the experiments to verify the replicability and reproducibility of our own

code. We publish our code and datasets online to assure the reproducibility of the

results of our experiments and implement the selected BTA models in an online

& Andraž Repar
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platform making them easily reusable even by the technically less-skilled

researchers.

Keywords Bilingual term alignment � Reproducibility � Machine learning �
Cognates

1 Introduction

The issue of reproducibility has been on the radar of researchers at least for the past

25 years, particularly in the life science research (e.g. Yentis et al. 1993; Prinz et al.

2011; Camerer et al. 2016). More recently, many other disciplines have started to

acknowledge the crisis of reproducibility, among them also human language

technology research (Pedersen 2008; Kano et al. 2009; Fokkens et al. 2013; Branco

et al. 2017; Wieling et al. 2018). However, the basic terminology has remained

confusing with different authors using different terms for the same concepts which

is why Cohen et al. (2018) describe the three dimensions of reproducibility in

natural language processing (NLP) and provide a set of definitions for the various

concepts used when discussing reproducibility in NLP. They first differentiate

between the concepts of replicability (or repeatability), which they define as the
ability to repeat the experiment described in a study, and reproducibility, which
describes the outcome—whether the replicability efforts lead to the same
conclusions. Then they further break down reproducibility into reproducibility of

a conclusion (defined as an explicit statement in the paper arrived at on the basis of

the results of the experiments), reproducibility of a finding (a relationship between

the values for some reported figure of merit) and reproducibility of a value (actual

measured or calculated numbers).

In this paper we extend our reproducibility study (Repar et al. 2018), presented at

the Workshop on Research Results Reproducibility and Resources Citation (4REAL

Workshop, Branco et al. (2018)) organized within the scope of the 11th Language

Resources and Evaluation Conference (LREC 2018). Our original motivation came

from our interest and need for a terminology alignment tool, and the paper by Aker

et al. (2013) titled ‘‘Extracting Bilingual Terminology from Parallel Corpora’’

seemed a perfect candidate for reproduction with nearly perfect results, coverage of

the Slovenian-English pair (which were the languages of our interest) and what

seemed like a well described and simple to replicate method. The authors treat

aligning terms in two languages as a binary classification problem. They use an

SVM binary classifier (Joachims 2002) and training data terms taken from the

Eurovoc thesaurus (Steinberger et al. 2002) and construct two types of features:

dictionary-based (using word alignment dictionaries created with Giza?? (Och and

Ney 2003)) and cognate-based (effectively utilizing the similarity of terms across

languages). Given that the results looked very promising—precision on the held-out

set was 1 or close to 1 for many language pairs, we thought we could use the

approach in our work and we set out to replicate it. We expected a straightforward

process, but it turned out to be anything but: the results of our experiments were

very vastly different from the original paper. For example, while the original paper

A. Repar et al.
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reports an extremely high precision (1 or close to 1) for the language pairs we have

focused on, our experiments showed a precision below 0.05. Based on the

reproducibility dimensions mentioned above, in our original reproducibility

experiment from Repar et al. (2018) we were not able to reproduce any of the

three dimensions: the values and findings in our experiments were vastly different,

and—had we stopped at this point—we would have concluded that the proposed

machine learning approach is not suitable for bilingual terminology alignment. Only

after a great deal of tweaking and optimization have we managed to get to a

respectable precision level (similar to the results in the original paper).

In the present paper, we aim to explore the issue of reproducibility and

replicability in the field of terminology alignment further. To do so, we extend the

work in Repar et al. (2018) with the following:

– an overview of bilingual terminology extraction and alignment approaches in

terms of replicability and reproducibility.

– extending the original reproducibility experiment to two additional languages,

resulting in Slovenian, French and Dutch as target languages from three

different language families.

– providing very detailed description of feature construction.

– additional filtering and refinement of the cognate-based features.

– a reproducibility experiment with source code from Repar et al. (2018).

– implementation of our code into an online data mining platform ClowdFlows.

– a discussion on good practices for reproducibility and replicability in NLP.

This paper is organized as follows: After the introduction in Sect. 1, we present the

related work and the analysis of bilingual terminology alignment papers from the

point of view of replicability and reproducibility (Sect. 2). Section 3 contains the

main replicability and reproducibility experiments, and is followed by Sect. 4,

which describes our attempts at improving the results of the replicated approach,

while Sect. 5 contains the results of manual evaluation. Section 6 describes the

reproducibility experiment using our code from Repar et al. (2018) and Sect. 7 the

implementation of the system in the ClowdFlows platform, for making it accessible

to a wider community. Section 8 contains the conclusions and presents ideas for

future work. The code and datasets of our experiments are published online, to

enable future reproducibility and replicability.1

2 Overview of bilingual terminology extraction and alignment
approaches

In this section we first look at the related work on bilingual terminology extraction

and alignment and then analyze several related papers from the viewpoint of

replicability and reproducibility.

1 http://source.ijs.si/mmartinc/4real2018.
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2.1 Related work

We start by providing a clarification regarding the terminology used in this paper.

Following the distinction between two basic approaches made by Foo (2012):

– extract-align where we first extract monolingual candidate terms from both

sides of the corpus and then align the terms, and

– align-extract where we first align single and multi-word units in parallel

sentences and then extract the relevant terminology from a list of candidate term

pairs.

we propose the following two definitions:

– Bilingual terminology extraction is the process which, given the input of related

specialized monolingual corpora, results in the output of terms aligned between

two languages. The process can either start with extracting monolingual

candidate terms and aligning them between two languages (i.e. extract-align) or

with aligning phrases and then extracting terms (i.e. align-extract) or any other

sequence of actions.

– Bilingual terminology alignment is the process of aligning terms between two

candidate term lists in two languages.

Bilingual terminology alignment has a narrower focus than bilingual terminology

extraction, but the two terms are often used interchangeably in various papers. For

example, the title of the paper we were trying to replicate ‘‘Extracting bilingual

terminologies from comparable corpora’’ is somewhat misleading in this regard,

since the paper primarily deals with bilingual terminology alignment, while they

utilize monolingual terminology extraction (specifically the approach by Pinnis

et al. (2012) without any modifications) only in the manual evaluation experiments.

The primary purpose of bilingual terminology extraction is to build a term

bank—i.e. a list of terms in one language along with their equivalents in the other

language. With regard to the input text, we can distinguish between alignment on

the basis of a parallel corpus and alignment on the basis of a comparable corpus. For

the translation industry, bilingual terminology extraction from parallel corpora is

extremely relevant due to the large amounts of sentence-aligned parallel corpora

available in the form of translation memories (in the TMX file format).

Consequently, initial attempts at bilingual terminology extraction involved parallel

input data (Kupiec 1993; Daille et al. 1994; Gaussier 1998), and the interest of the

community continued until today (Ha et al. 2008; Ideue et al. 2011; Macken et al.

2013; Haque et al. 2014; Arčan et al. 2014; Baisa et al. 2015). However, most

parallel corpora are owned by private companies,2 such as language service

providers, who consider them to be their intellectual property and are reluctant to

share them publicly. For this reason (and in particular for language pairs not

2 However, some publicly available parallel corpora do exist. A good overview can be found at the OPUS

web portal (Tiedemann 2012).
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involving English) considerable efforts have also been invested into researching

bilingual terminology extraction from comparable corpora (Fung and Yee 1998;

Rapp 1999; Chiao and Zweigenbaum 2002; Cao and Li 2002; Daille and Morin

2005; Morin et al. 2008; Vintar 2010; Bouamor et al. 2013; Hazem and Morin

2016, 2017).

Despite the problem of bilingual term alignment lending itself well to the binary

classification task, there have been relatively few approaches utilizing machine

learning. For example, similar to Aker et al. (2013), Baldwin and Tanaka (2004)

generate corpus-based, dictionary-based and translation-based features and train an

SVM classifier to rank the translation candidates. Note that they only focus on

multi-word noun phrases (noun ? noun). A similar approach, again focusing on

noun phrases, is also described by Cao and Li (2002). Finally, Nassirudin and

Purwarianti (2015) also reimplement Aker et al. (2013) for the Indonesian-Japanese

language pair and further expand it with additional statistical features. In the best

scenario, their accuracy, precision and recall all exceed 90% but the results are not

directly comparable since Nassirudin and Purwarianti (2015) use tenfold cross-

validation while Aker et al. (2013) use a held-out test set. In addition, Nassirudin

and Purwarianti (2015) have a balanced test set while Aker et al. (2013) use a very

unbalanced one (ratio of positive vs. negative examples 1:2000).

2.2 Analysis of past papers on bilingual terminology extraction from the
viewpoint of reproducibility and replicability

In an ideal reproducibility and replicability scenario, a scientific paper would

contain an accurate and clear description of the datasets used and experiments

conducted and the authors would provide a single link containing all the datasets

(versions, subsets etc.) used for the experiments along with the experiment source

code (or alternatively, an online tool to run the experiments). These could then be

used to replicate the experiments and reproduce the results using the descriptions

provided in the paper.

We have analyzed several3 bilingual terminology extraction papers from the past

25 years from the point of view of dataset, code and tool availability. The summary

of results is available in Table 1.

2.2.1 Dataset availability

In terms of dataset availability, we looked at whether the paper contains some

description of how the datasets were constructed and which could (theoretically) be

used to reconstruct the datasets. Note that under ‘‘dataset’’, we include corpora, gold

3 The selection process was as follows: the starting point were selected seminal papers on the field, as

well as two queries in the ACL Anthology database: ‘‘term alignment’’ and ‘‘bilingual terminology

extraction’’. We analyzed the papers found by these two queries as well as additional papers mentioned in

the related works sections of these papers and the main criterion for including a paper in our analysis was

that it primarily deals with bilingual terminology extraction (and not for example latent semantic analysis,

such as Bader and Chew (2008)). However, no strict systematic review with inclusion and exclusion

criteria was made, as such a survey would be beyond the needs of this paper.
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standard termlists, seed dictionaries and all other linguistic resources needed to

conduct the experiments in the paper. For example, we consider the following

paragraph from Rapp (1999) to be a valid description of a dataset: As the German
corpus, we used 135 million words of the newspaper Frankfurter Allgemeine
Zeitung (1993 to 1996), and as the English corpus 163 million words of the
Guardian (1990 to 1994). On the other hand, this paragraph from Ideue et al. (2011)

is not considered a valid description: We extracted bilingual term candidates from a
Japanese-English parallel corpus consisting of documents related to apparel
products. In the former example, dataset reconstruction would be difficult but not

impossible, while in the latter it is impossible. An even better option is to link to

actual datasets or refer to papers where datasets are described and linked, which is

why we also looked for dataset links and/or references in the analyzed papers. Note

that there are several examples where links are provided only for a selection of the

datasets used in the experiments (e.g., Morin et al. (2008)).

Table 1 An analysis of bilingual terminology extraction papers from the point of view of reproducibility

and replicability

Paper Dataset Code Tool Google Scholar

citations as of September 2019

Kupiec (1993) Links No No 333

Daille et al. (1994) No No No 268

Fung and Yee (1998) Description No No 427

Gaussier (1998) No No No 84

Rapp (1999) Description No No 552

Chiao and Zweigenbaum (2002) Description No No 135

Cao and Li (2002) Description No No 141

Morin et al. (2007) No No No 113

Daille and Morin (2005) Obsolete No Obsolete 56

Morin et al. (2008) Links No Obsolete 22

Ha et al. (2008) Description No No 4

Lee et al. (2010) Description No No 22

Vintar (2010) No No Obsolete 53

Ideue et al. (2011) No No Yes a 9

Macken et al. (2013) No No No 48

Bouamor et al. (2013) Description No No 24

Aker et al. (2013) Links No No 36

Arčan et al. (2014) Links No No 18

Haque et al. (2014) Links No No 11

Kontonatsios et al. (2014) Description No No 14

Baisa et al. (2015) No No Yes 5

Hazem and Morin (2016) Links No No 12

Hazem and Morin (2017) Links No No 2

aA Perl module (Term Extract) was used, however the link leads to a Japanese website
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As evident from Table 1, dataset availability is the least problematic aspect of

reproducibility and replicability in terminology (extraction and) alignment papers

with approximately two thirds of the analyzed papers (15 out of 23) either

containing a description of the resources used for the experiments, providing links

to them or refering to papers where they are described.

We expected the earlier papers to have less information on datasets than latter

ones, but this turned out not to be the case. In fact, the earliest paper analyzed—

Kupiec (1993)—provides a reference to a publicly available corpus (Canadian

Hansards (Gale and Church 1993)). The first paper to have a separate section with

data/resource description is Rapp (1999) and from this point on, almost all papers

have such a section—usually titled ‘‘Data and Resources’’, ‘‘Resources and

Experimental Setup’’, ‘‘Linguistic resources’’ or similar.

However, it is rarely documented what version of the dataset was used and

whether an entire dataset was used or only a part of it (as in random selection, train-

test split, etc.). In most cases, little information is provided on the actual subsets

used for the experiments. Another aspect of dataset use is the languages: when one

of the languages involved is English, it is much easier to find datasets than for other

language combinations. Finally, there is also the issue of keeping the links active.

For example, many of the links in Daille and Morin (2005) and Morin et al. (2008)

are not active anymore while Bouamor et al. (2013) state that the corpora and

terminology gold standard lists created for the paper will be shared publicly, but no

links are provided.

The most significant problem encountered during our analysis was the fact that

terminology alignment is most often not the sole focus of a paper, such as in Haque

et al. (2014), where the experiments start with monolingual terminology extraction

from two languages and the extracted terms are then aligned. As terminology

extraction and alignment go hand-in-hand, it may often be impossible to make a

clear distinction between the terminology extraction and terminology alignment

datasets. This means that the dataset results in Table 1 are not a true apple-to-apple

comparison: one paper might link to the parallel corpus used to extract terms from,

while another to a gold standard termlist. Our main criterion was whether the dataset

description (or link) could be used to replicate the experiments described in the

paper.

An ideal terminology (extraction and) alignment dataset would therefore consist

of a bilingual or multilingual (parallel or comparable) corpus along with reference

(gold standard) term lists containing terms that can be found in the corpus. Such

corpora are TTC wind energy and TC mobile technology4, which contain data for

six languages (English, French, German, Spanish, Russian, Latvian, Chinese), or the

Bitter corpus5, which contains data for the EN-IT language pair. The first was used

in Hazem and Morin (2016), while the second one by Arčan et al. (2014). Since

such datasets are scarce, researchers employ various methodologies for constructing

their own datasets. One method, used by Aker et al. (2013), is to take one of the

available multilingual translation memories containing EU documentation (such as

4 http://www.lina.univ-nantes.fr/?Reference-Term-Lists-of-TTC.html.
5 https://hlt-mt.fbk.eu/technologies/bittercorpus.
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Europarl (Koehn 2005) or DGT (Steinberger et al. 2013)) as the corpus and a

glossary (e.g., IATE (Johnson and Macphail 2000)) or thesaurus (e.g., Eurovoc

(Steinberger et al. 2002)) as the terminology gold standard list. Another strategy,

used by Hazem and Morin (2017), is to collect a comparable corpus manually (i.e.

scientific articles in French and English from the Elsevier6 website) and a domain

specific terminological resource (i.e. UMLS7) as a reference termlist. Hazem and

Morin (2017) also filter out those terms from the termlist that do not appear often

enough in their corpus. In other cases (e.g., Haque et al. (2014)), the datasets are not

available because the papers were written as part of industrial projects and the

datasets are private.

2.2.2 Code and tool availability

We have discovered that no paper has made experiment code available and only a

few provide access or links to tools where the experiments were conducted. But

even when links to tools are provided, reproducibility and replicability may be

hindered: for example, the link provided in Ideue et al. (2011) leads to a Japanese

website. Another issue is the long-term availability of resources. For example,

Daille and Morin (2005) conducted their experiments in ACABIT, an open source

terminology extraction software. However, the link given in the paper does not work

anymore. From the analyzed papers, the only example of bilingual term extraction

and alignment tool, which is publicly available, is the Sketch Engine term extraction

module, described by Baisa et al. (2015).

None of the papers analyzed in this section fulfill the ideal scenario described at

the start of this section (i.e. a single link with code and all datasets) which severly

hinders any replicability attempts as will be evident from our own experiments

described in this paper.

3 Replicating a machine learning approach to bilingual term alignment
and reproducing its results

This section describes our efforts in replicating a machine learning approach to

bilingual term alignment described in Aker et al. (2013),by which we extend our

initial experiments and analysis (Repar et al. 2018). Section 3.1 describes the

original approach and Sect. 3.2 contains an overview of our attempts to replicate it.

3.1 Description of the original approach

The original approach designed by Aker et al. (2013) was developed to align

terminology from comparable (or parallel) corpora using machine-learning

techniques. They use terms from the Eurovoc (Steinberger et al. 2002) thesaurus

and train an SVM binary classifier (Joachims 2002) (with a linear kernel and the

6 https://www.elsevier.com/.
7 https://www.nlm.nih.gov/research/umls/.
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trade-off between training error and margin parameter c = 10). The task of bilingual

alignment is treated as a binary classification—each term from the source language

S is paired with each term from the target language T and the classifier then decides

whether the aligned pair is correct or incorrect. They then extract features

(dictionary and cognate-based) to be used by the classifier. They run their

experiments on the 21 official EU languages covered by Eurovoc with English

always being the source language (20 language pairs altogether). They evaluate the

performance on a held-out term pair list from Eurovoc using recall, precision and F-

measure for all 20 languages. Next, they propose an experimental setting for a

simulation of a real-world scenario where they collect English-German comparable

corpora of two domains (IT, automotive) from Wikipedia, perform monolingual

term extraction using the system by Pinnis et al. (2012) followed by the bilingual

alignment procedure described above and manually evaluate the results (using two

evaluators). They report excellent performance on the held-out term list with many

language pairs reaching 100% precision and the lowest recall being 65%. For

Slovenian, which is of our main interest, as well as for the additional target

languages that we selected, namely French and Dutch, the reported results were

excellent with perfect or nearly perfect precision and good recall for all three

language pairs. The reported results of the manual evaluation phase were also good,

with two evaluators agreeing that at least 81% of the extracted term pairs in the IT

domain and at least 60% of the extracted term pairs in the automotive domain can be

considered exact translations.

3.1.1 Features

Aker et al. (2013) use two types of features that express correspondences between

the words (composing a term) in the target and source language (for a detailed

description see Table 2:

– 7 dictionary-based (using Giza??) features which take advantage of dictionar-

ies created from large parallel corpora of which 6 are direction-dependent

(source-to-target or target-to-source) and 1 direction-independent—resulting in

altogether 13 features, and

– 5 cognate-based (on the basis of Gaizauskas et al. (2012)) which utilize string-

based word similarity between languages.

To match words with morphological differences, they do not perform direct string

matching but utilize Levenshtein Distance. Two words were considered equal if the

Levenshtein Distance (Levenshtein 1966) was equal or higher than 0.95. For closed-

compounding languages, they check whether the compound source term has an

initial prefix that matches the translation of the first target word, provided that

translation is at least 5 characters long.
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Additional features are also constructed by:

– Using language pair specific transliteration rules to create additional cognate-

based features. The purpose of this task was to try to match the cognate terms

while taking into account the differences in writing systems between two

languages: e.g. Greek and English. Transliteration rules were created for both

directions (source-to-target and target-to-source) separately and cognate-based

features were constructed for both directions - resulting in additional 10

cognate-based features with transliteration rules.

– Combining the dictionary and cognate-based features in a set of combined

features where the term pair alignment is correct if either the dictionary or the

cognate-based method returns a positive result. This process resulted in

additional 10 combined features.8

At the end of the feature construction phase, there were 38 features: 13 dictionary-

based, 5 cognate-based, 10 cognate-based features with transliteration rules and 10

combined features.

3.1.2 Data source and experiments

Using Giza??, Aker et al. (2013) create source-to-target and target-to-source word

alignment dictionaries based on the DGT translation memory (Steinberger et al.

2013). The resulting dictionary entries consist of the source word s, its translation t
and the number indicating the probability that t is an actual translation of s. To
improve the performance of the dictionary-based features, the following entries

were removed from the dictionaries:

– entries where probability is lower then 0.05.

– entries where the source word was less than 4 characters and the target word

more than 5 characters long and vice versa in order to avoid translations of stop

word to content words.)

The next step is the creation of term pairs from the Eurovoc (Steinberger et al.

2002) thesaurus, which at the time consisted of 6797 terms. Each non-English

language was paired with English. The test set consisted of 600 positive (correct)

term pairs—taken randomly out of the total 6797 Eurovoc term pairs—and around

1.3 million negative pairs which were created by pairing each source term with 200

distinct incorrect random target terms. Aker et al. (2013) argue that this was done to

simulate real-world conditions where the classifier would be faced with a larger

number of negative pairs and a comparably small number of positive ones. The 600

positive term pairs were further divided into 200 pairs where both (i.e. source and

target) terms were single words, 200 pairs with a single word only on one side and

8 For combined features, a word is considered as covered if it can be found in the corresponding set of

Giza?? translations or if one of the cognate-based measures (Longest Common Subsequence, Longest

Common Substring, Levenshtein Distance, Needleman-Wunsch Distance, Dice) is 0.70 or higher (set

experimentally by Aker et al. (2013)).
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200 pairs with multiple-word terms on both sides. The remaining positive term pairs

(approximately 6200) were used as training data along with additional 6200

negative pairs. These were constructed by taking the source side terms and pairing

each source term with one target term (other than the correct one). Using this

approach, Aker et al. (2013) achieve excellent results with 100% precision and 66%

recall for Slovenian and French and 98% precision and 82% recall for Dutch.

3.2 Replication of the approach

The first step in our approach was to replicate the algorithm described by Aker et al.

(2013). The initial premise is the same: given two lists of terms from the same

domain in two different languages, we would like to align the terms in the two lists

to get one bilingual glossary to be used in a variety of settings (computer-assisted

translation, machine translation, ontology creation etc.). We followed the approach

described above faithfully except in the following aspects9:

– Instead of the entire set of Eurovoc languages, we have initially focused only on

the English-Slovenian language pair (Repar et al. 2018). In the current paper, we

add two additional language pairs (English-French, English-Dutch) to see whether

our findings can be generalised across different languages. We selected languages

from different language families, as the importance of cognates is dependent on

the similarity between languages (for example, Dutch and English (being both

Germanic languages) presumably have a higher number of cognates).

– We use newer datasets. The Eurovoc thesaurus version that we used contained

7,083 terms for Slovenian10 and 7,181 terms for French11 and Dutch.12

Similarly, the DGT translation memory contains additional content not yet

present in 2013.13 For English-Slovenian, we at first used the entire DGT corpus

up to and including the DGT-TM-release 2017 for deriving GIZA alignments.

Later we also experimented with precomputed dictionaries by Aker et al.

(2014). When performing the experiments on the other languages pairs, we did

not create our own GIZA alignment, but only used the precomputed ones by

Aker et al. (2014).

– Since no particular cleaning of training data (e.g., manual removal of specific

entries) is described in the paper for the languages of our interest, we do not

perform any.

We think that regardless of these differences, the experiments should yield similar

results.

9 Note that our original replication paper Repar et al. (2018) wrongly states that we did not utilize the

compounding solution implemented by Aker et al. (2013) for addressing compouding issues in languages

such as German. In fact, we did implement it and used it in all experiments.
10 http://source.ijs.si/mmartinc/4real2018/blob/master/term_list_sl.csv.
11 http://source.ijs.si/mmartinc/4real2018/blob/master/term_list_fr.csv.
12 http://source.ijs.si/mmartinc/4real2018/blob/master/term_list_nl.csv.
13 The versions of the resources used in Aker et al. (2013) were not documented or made available.
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3.2.1 Problems with replicating the approach

While the general approach is clearly laid out in the article, there are several spots

where further clarification would be welcome:

– There is no sufficient information about the Giza?? settings or whether the

input corpora have been lemmatized. In order to improve term matching, we

experimented with and without lemmatization of the Giza?? input corpora.

– There is no information about the specific character mappings rules other than a

general principle of one character in the source being mapped to one or more

character in the target. Since the authors cover 20 languages, it is understandable

that they cannot include the actual mapping rules in the article. Therefore, we

have created our own mapping rules for English-Slovenian and English-French

according to the instructions in the original paper:

– Mapping the English term to the Slovenian writing system (the character

before the colon is replaced by the sequence of characters after the colon):

x:ks, y:j, w:v, q:k.
– Mapping the Slovenian term to the English writing system: č:ch, š:sh, ž:zh.
– Mapping the French term to the English writing system: we deleted all

accents e.g., é:e, ê:e.

– Mapping the Dutch term to the English writing system: we deleted all

accents and replace the digraph ij with two separate letters ij.

– Instead of the unclear Needleman–Wunsch distance formula from Aker et al.

(2013) LCST
min½lenðsourceÞþlenðtargetÞ� (which implies that we should take the minimum

value of the sum of the length of the target and source term) we opted for
LCST

min½lenðsourceÞ;lenðtargetÞ� as in Nassirudin and Purwarianti (2015).

– We were not completely certain how to treat examples such as ‘‘passport—potni

list’’, where a single-word source term is translated by a multi-word target term

and both combinations (passport—potni and passport—list) can be found in the

Giza?? dictionary. In this case, our implementation returns values of 1 for both

isFirstWordTranslated and isLastWordTranslated features despite the fact that

the source term only has one word.

– There was a slight ambiguity on how to calculate cognate-based features: on the

level of words or on the level of entire terms. We opted for the second, since the

names of the cognate-based features did not imply that cognates are calculated

on the word level (as was the case with the dictionary-based features) and since

there was no mention in the original paper on how to combine cognate-based

scores for specific word pairs in the multi-word term pairs in order to get a final

cognate score for the whole term pair.

– In the original article, the isFirstWordCovered feature is described as ‘‘a binary

feature indicating whether the first word in the source term has a translation (i.e.

has a translation entry in the dictionary regardless of the score) or transliteration

(i.e. if one of the cognate metric scores is above 0.7) in the target term.’’ While
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the dictionary-based part is clear, for calculating the cognate-based feature

values (e.g., of the first word in the source term), the values of the cognate

metric scores concern the entire target term. As we did not find this fully

intuitive, and we believe other interpretations are possible, we experimented

with these settings in the adaptation of the approach (see Sect. 4.8).

To avoid ambiguities, we provide a separate document with examples of

constructed features, together with the code (http://source.ijs.si/mmartinc/

4real2018/blob/master/feature_examples.docx).

3.2.2 Results

The evaluation on the test set created as described in the original paper by Aker

et al. (2013) shows that compared to the results reported by the authors (see line 1 in

Tables 3, 4 and 5), our results are significantly worse. Despite all our efforts to

follow the original approach, we were unable to match the results achieved in the

original paper when running the algorithm without any changes to the original

approach. When trying to follow the original paper’s methodology, precision is only

3.59% and recall is 88% for the English-Slovenian language pair. The results for the

other two language pairs are comparable (see line 2 in Tables 3, 4 Table 5 for

details).

In Sect. 4, we provide the results of detailed analysis and additional experiments

that we performed in order to reach results comparable to the original approach.

3.2.3 Attempts at establishing contact with the authors

When replicating an existing paper, especially when the code is not made available,

contacting the authors for clarification (or for providing/running the code) is the

most obvious step when encountering the problems or ambiguities. However, due to

busy schedules of researchers, change of professional paths or other similar reasons,

getting detailed help might be impossible.

This is true for our case as well. Initially, we were hopeful of getting useful

feedback, as the authors already provided the software to other researchers in the

past (see Arčan et al. (2014)). However, despite a friendly response, we have been

able to get only a limited number of answers and many questions remained

unanswered, and the auhors have not been able to share their code. We have first

contacted the original authors of the paper when we were running the experiments

reported in Repar et al. (2018) and did receive some answers confirming our

assumptions (e.g. regarding mapping terms to the different writing systems and that

the test set data was selected individually for each language pair), but several other

issues remained unaddressed (in particular, what was the exact train and test data

selection strategy for the EN-SL language pair). Further inquiries proved

unsuccessful due to time constraints on the part of the original authors. As we

expanded the paper with additional languages and experiments, we again contacted

the main author, provided him the code and the paper and asked for help in
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identification of any possible mistakes leading to the results, however, we were

ultimately not able to get any information which would explain the differences.

We think the original paper is generally well-written and that the main reason for

occasional lack of clarity is its scope: as the authors deal with more than 20

language pairs, it would be impossible to provide specific information regarding all

of them. Providing more examples would be useful, but still the code and the exact

dataset are in our opinion the only way to be able to fully replicate the experiments.

Table 3 Results on the English–Slovenian term pair

No. Config EN-SL Training set size Pos/neg ratio Precision Recall F-score

1 Reported by Aker et al. (2013) 12,400 1:1 1 0.6600 0.7900

2 Replicated approach 12,966 1:1 0.0359 0.8800 0.0689

3 Giza?? terms only 8306 1:1 0.0645 0.9150 0.1205

4 Giza?? cleaning 12,966 1:1 0.0384 0.7789 0.0731

4a Lemmatization 12,966 1:1 0.0373 0.8150 0.0713

5 Training set 1:200 1,303,083 1:200 0.4299 0.7617 0.5496

6 Training set filtering 1 6426 1:1 0.5969 0.64167 0.6185

7 Training set filtering 2 35,343 1:10 0.9042 0.5350 0.6723

8 Training set filtering 3 645,813 1:200 0.9342 0.4966 0.6485

9 Term length filtering 6426 1:1 0.8144 0.4900 0.6119

10 Cognates approach 672,345 1:200 0.8732 0.5167 0.6492

No. 1 presents the results reported by the authors, No. 2 our replication of the approach and No. 3–10 our

modifications of the first replicated approach with the aim of improving the results

Table 4 Results on the English–French language pair

No. Config EN-FR Training set size Pos/neg ratio Precision Recall F-score

1 Reported by Aker et al. (2013) 12,400 1:1 1 0.6600 0.7900

2 Replicated approach 13,160 1:1 0.0323 0.8483 0.0622

3 Giza?? terms only 8892 1:1 0.0437 0.8433 0.0830

4 Giza?? cleaning 13,160 1:1 0.0317 0.7917 0.0610

5 Training set 1:200 1,322,580 1:200 0.5273 0.6767 0.5927

6 Training set filtering 1 2650 1:1 0.4623 0.5517 0.5030

7 Training set filtering 2 14,575 1:10 0.9422 0.3533 0.5139

8 Training set filtering 3 266,325 1:200 0.9791 0.3117 0.4728

9 Term length filtering 2650 1:1 0.6791 0.3950 0.4995

10 Cognates approach 311,952 1:200 0.8603 0.3900 0.5367

No. 1 presents the results reported by the authors, No. 2 our replication of the approach and No. 3–10 our

modifications of the first replicated approach with the aim of improving the results
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4 Analysis and adaptation: experiments for improving the replicated
approach

The results in our replicated experiments differ dramatically from the results

obtained by Aker et al. (2013). Their approach yields excellent results with perfect

or almost perfect precision and respectable recall for all three languages under our

consideration.

For the EN-SL language pair, the reported results have the precision of 100% and

the recall of 66%, meaning that with 600 positive term pairs in the test set, their

classifier returns only around 400 positive term pairs. In contrast, in our replication

attempts the classifier returned a lot of falsely classified positive term pairs. In

addition to 526 true positive examples (out of a total of 600), the classifier also

returns 14,194 misclassified examples—incorrect term pairs wrongly classified as

correct. Similar statistics can be observed for the other two language pairs.

These results are clearly not useful for our goals which is to use the methods to

continuously populate a termbase with as little manual intervention as possible. In

this section we present the analysis of ambiguities in the description of the approach

and the issues spotted when inspecting the results of the replicated approach, and

propose several methods aiming at improving the results. To do so, we have

performed experiments with regard to the following aspects:

– Giza?? terms only: using only those terms that can be found in the Giza??

training corpora (i.e. DGT).

– Giza?? cleaning.

– Lemmatization.

– Changing the ratio of positive/negative examples in the training set.

– Training set filtering.

Table 5 Results on the English–Dutch language pair

No. Config EN-NL Training set size Pos/neg ratio Precision Recall F-score

1 Reported by Aker et al. (2013) 12,400 1:1 0.9800 0.8200 0.8000

2 Replicated approach 13,160 1:1 0.0227 0.8850 0.0442

3 Giza?? terms only 7310 1:1 0.0636 0.9317 0.1191

4 Giza?? cleaning 13,160 1:1 0.0340 0.8500 0.0654

5 Training set 1:200 1,322,580 1:200 0.5053 0.6300 0.5608

6 Training set filtering 1 4250 1:1 0.5122 0.4917 0.5017

7 Training set filtering 2 23,375 1:10 0.6842 0.4333 0.5306

8 Training set filtering 3 427,125 1:200 0.9356 0.3633 0.5234

9 Term length filtering 4250 1:1 0.7621 0.3683 0.4966

10 Cognates approach 468,933 1:200 0.9101 0.5233 0.6646

No. 1 presents the results reported by the authors, No. 2 our replication of the approach and No. 3–10 our

modifications of the first replicated approach with the aim of improving the results
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The experiments have been initially presented for Slovenian in our short paper in

the 4REAL workshop (Repar et al. 2018). Here, we provide additional analysis and

extend the experiments to the other two languages under consideration. The results

are reported in Sect. 4.1 to 4.5.

In the 4REAL paper, precision was already relatively high (see for example line 8

in Table 3), which is why our additional experiments focused on improving recall.

We implemented several additional approaches as reported in Sect. 4.6 to 4.8:

– Removing the Needleman–Wunsch Distance feature.

– Term length filtering.

– Adding new cognate-based features.

4.1 Giza11 terms only

We thought that one of the reasons for low results can be that not all EUROVOC

terms actually appear in the Giza?? training data (i.e. DGT translation memory).

The terms that do not appear in the Giza?? training data could have dictionary-

based features similar to the generated negative examples, which could affect the

precision of a classifier that was trained on those terms. We found that only 4,153

out of 7,083 Slovenian terms of the entire EUROVOC thesaurus do in fact appear in

a DGT translation memory. Using only these terms in the classifier training set did

provide modest improvements of precision, recall and F-score across all three

languages. For details, see line 3 in Tables 3, 4 and 5.

4.2 Giza11 cleaning

The output of the Giza?? tool contained a lot of noise and we thought it could

perhaps have a detrimental effect on the results. There is no mention of any

sophisticated Giza?? dictionary cleaning in the original paper beyond removing all

entries where probability is lower then 0.05 and entries where the source word is

less than 4 characters and the target word more than 5 characters in length and vice

versa (introduced to avoid stopword-content word pairs). For clean Giza??

dictionaries, we used the resources described in Aker et al. (2014), available via the

META-SHARE repository14 (Piperidis et al. 2014), specifically, the transliteration-

based approach which yielded the best results according to the cited paper.

For Slovenian and Dutch, precision and F-score improved marginally at a cost of

a lower recall, while for French, precision, recall and F-score all decreased. For

details, see line 4 in Tables 3, 4 and 5.

4.3 Lemmatization

The original paper does not mention lemmatization which is why we assumed that

all input data (Giza?? dictionaries, EUROVOC thesaurus) is not lemmatized. They

14 http://metashare.tilde.com, last accessed: February 14, 2019.
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state that to capture words with morphological differences, they don’t perform

direct string matching but utilize Levenshtein Distance and two words are

considered equal if the Levenshtein Distance (Levenshtein 1966) is equal or higher

than 0.95. This led us to believe that no lemmatization was used. Nevertheless, we

thought lemmatizing the input data could potentially improve the results which is

why we adapted the algorithm to perform lemmatization (using Lemmagen (Juršič

et al. 2010)) of the Giza?? input data and the EUROVOC terms. We have also

removed the Levenshtein distance string matching and replaced it with direct string

matching (i.e. word A is equal to word B, if word A is exactly the same as B), which

drastically improved the execution time of the software.

We considered lemmatization as a factor that could explain the difference in

results obtained by us and Aker et al. (2013), but our experiments on lemmatized

and unlemmatized clean Giza?? dictionaries show that lemmatization does not

have a significant impact on the results. Compared to the configuration with

unlemmatized clean Giza?? dictionaries, in the configuration with lemmatized

Giza?? dictionaries precision was slightly lower (by 0.1%), recall was a bit higher

(by around 4%) and F-score was lower by 0.2%. For details, see Table 3, line 4a. As

lemmatization significantly slows down the experimentation, we tested the results

first on Slovenian, where the influence of the lemmatization should be the largest as

it is a morphologically-rich language. As lemmatization did not improve the results,

we did not repeat the experiments for French and Dutch.

4.4 Changing the ratio of positive/negative examples in the training set

In the original paper, the training set is balanced (i.e. the ratio of positive vs.

negative examples is 1) but the test set is not (the ratio is around 1:2000). Since our

classifier had low precision and relatively high recall, we figured that an unbalanced

training set with much more negative than positive examples could improve the

former. To test this, we experimented with training the classifier on unbalanced train

sets with different ratios between positive and negative examples. The general

tendency we noticed during experimentation is that a very unbalanced train set

(ratio of 1:200 between positive and negative examples15) greatly improves the

precision of the classifier at a cost of somewhat lower recall, when compared to

balanced train set or less unbalanced train set (e.g., ratio of 1:10 between positive

and negative examples). For details, see line 5 in Tables 3, 4 and 5.

4.5 Training set filtering

The original paper mentions that their classifier initially achieved low precision on

Lithuanian language training set, which they were able to improve by manually

removing 467 positive term pairs that had the same characteristics as negative

examples from the training set. No manual removal is mentioned for Slovenian,

French and Dutch.

15 1:200 imbalance ratio was the largest imbalance we tried, since the testing results indicated that no

further gains could be achieved by further increasing the imbalance.
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We have performed an error analysis and found that many incorrectly classified

term pairs are cases of partial translation where one unit in a multi-word term has a

correct Giza?? dictionary translation in the corresponding term in the other

language. Some EN-SL examples can be seen in Table 6, and similar errors were

observed for for the other two language pairs.

Based on this problem of partial translations, leading to false positive examples,

we focused on the features that would eliminate these partial translations from the

training set. After a systematic experimentation, we noticed that we can drastically

improve precision if we only keep positive term pairs with the following feature

values in the training set:

– isfirstwordTranslated = True.

– islasttwordTranslated = True.

– percentageOfCoverage [ 0:66.
– isfirstwordTranslated-reversed = True.

– islasttwordTranslated-reversed = True.

– percentageOfCoverage-reversed [ 0:66.

Using this approach, we managed to greatly increase precision at a cost of

significant drop in recall values for all three languages. For details see line 6

(Training set filtering 1) in Tables 3, 4 and 5. When combining this approach with

an unbalanced dataset described in the previous section, we managed to improve

precision even further, but again at a cost of lower recall. For details, see lines 7 and

8 (Training set filtering 2 and 3) in Tables 3, 4 and 5.

4.6 Cognate feature analysis and removing the Needleman–Wunsch
Distance feature

We performed an analysis of the results on the English–Slovenian language pair

achieved with the best configuration for precision (line 8—Training set filtering 3 in

Table 3) in our experiments (Repar et al. 2018) and discovered that cognate term

pairs were not being considered by the classifier. In a way, this was expected since

in the previous step we have filtered the training set based on mostly dictionary-

based features.

When analyzing the performance of the cognate-based features, we found that

four (Longest Common Subsequence Ratio (LCSSR) Longest Common Substring

Ratio (LCSTR), Dice Similarity (Dice), Normalized Levenshtein Distance (nLD))

out of five perform as expected with cognate term pairs having high values, but

Needleman-Wunsch Distance (NWD) did not. As already mentioned in the

beginning, the formula provided by the authors for computing NWD feature

possibly contained an error, therefore we opted for the implementation as mentioned

in Nassirudin and Purwarianti (2015). Table 7 shows the behaviour of the five

cognate-based features. When we are dealing with actual cognates, all five features

have high values, but when the two terms in questions are not cognates, only NWD

stays high.
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For this reason, we ran our experiments without the NWD feature, but the results

did not improve since the SVM classifier is known to be capable of handling noisy

features.

4.7 Term length filtering

Based on error analysis, one of the major issues confusing the classifier were

training examples with differing word lengths. E.g., the source term in the

example would have one word, but the target term would have two. An analysis of

the terms in Eurovoc for the three language pairs in question showed that 26% of

the EN-SL term pairs, 34% of the EN-FR term pairs and 48% of the EN-NL term

pairs have different word lengths of the source and target terms (the reason for the

high ratio in EN-NL is the use of compounds in Dutch). This turned out to be one

of the characteristics leading to low classification performance: for Slovenian with

the replicated configuration (line 2 in Table 3) the classifier returned a total of

14,721 positively classified examples. 14,193 out of these were false positives—

incorrectly aligned term pairs. A further 13376 out of these had different lengths

of the source and target terms. A visual inspection of feature values indicated that

there is often no clear difference between positive and negative term pairs (see

Table 8).

Table 6 Examples of negative term pairs misclassified as positive

EN SL Giza??

Agrarian reform Kmetijski odpadki Agrarian, kmetijske, 0.29737

Brussels region Območje proste trgovine Region, območje, 0.0970153

Energy transport Nacionalni prevoz Transport, prevoz, 0.442456

Fishery product Tekstilni izdelek Product, izdelek, 0.306948

Column 1 contains the English term, column 2 contains the Slovenian term and column 3 contains the

Giza?? dictionary entry (from the non-clean version, see Sect. 4.2) responsible for positive dictionary-

based features

Table 7 Cognate-based features values (showing issues with NWD)

EN SL LCSSR LCSTR Dice nLD NWD

hospitalisation hospitalizacija 0.73 0.60 0.60 0.73 0.6

monopsony monopson 0.89 0.89 0.94 0.89 1.00

fish predstavniška demokracija 0.12 0.12 0.20 0.12 0.75

Yemen osna obremenitev 0.25 0.25 0.38 0.25 0.80

The first two term pairs are actual cognates with all five cognate-based features having high values. The

last two pairs are not cognates and show the issues with the Needleman-Wunsch Distance (NWD), which

is the only measure that keeps a high value. Note that due to character mapping rules (see Section 3.2.1.),

the word ‘‘predstavniška’’ was transformed into ‘‘predstavnishka’’
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Since this was an issue, we experimented with additional term length filtering.

We took the positively classified examples from the training set filtering 1 approach

as described in Sect. 4.5 (see line 6 in the tables) and added an additional filter: if

the two terms do not have the same number of words, we change the prediction

from positive to negative. Using this additional filter, we achieved good precision

for Slovenian (81%), and respectable for French (68%) and Dutch (76%). On the

other hand, recall values were badly affected, since one third of positive term pairs

in the constructed test set are terms of different word length (meaning that highest

possible theoretical recall with this approach is 66%). Recall was again best for

Slovenian with a value close to 50% and a bit worse for French and Dutch with a

value at around 40% and 37% respectively. Consequently, F-scores were the highest

for Slovenian and lower for Dutch and French. For details, see line 9 in Tables 3, 4

and 5.

From the original paper it is clear, that authors were aware of the possible

complexity of terms of unequal length, as they consider terms of different lengths in

the test set construction. So, we exclude the possibility that authors did not have

such examples in the test set.

4.8 Cognate-based feature approach

The analysis showed that all Training set filtering approaches tend to overestimate

the importance of Giza?? features and underestimate cognate-based features. This

results in a low recall for correct cognate term pairs, which are rarely classified as

positive, if their Giza?? based feature values do not show similarity with Giza??

based feature values for non-cognate correct term pairs. For example, Giza??

dictionary does not contain a Slovenian translation pacifizem for the English term

pacifism, which means that the values of features isFirstWordTranslated,
isLastWordTranslated, isFirstWordTranslated-reversed and isLastWordTrans-
lated-reversed are False and the values for features percentageOfCoverage and

percentageOfCoverage-reversed are zero, therefore the classifier would have a

strong inclination to classify this correct term pair as incorrect, even though cognate

based feature values clearly indicate that these two terms are cognates.

In order to improve the detection of cognate terms, we first propose two new

cognate based features:

– isFirstWordCognate: a binary feature which returns True if the longest common

consecutive string (LCST) of the first words in the source and target terms

divided by the length of the longest of the two words is greater than or equal to a

threshold value of 0.7 and both words are longer than 3 characters. For example,

the value of the feature for the English-Slovenian term pair Klaipeda county -
Klaipedsko okrožje would be True because the LCST for the first words in both

terms is Klaiped, which has a length of 7. The length of the longest of the two

first words in the terms (Klaipedsko) is 10 and 7 divided by 10 is 0.7, which is

equal to the threshold value.

– isLastWordCognate: a binary feature which returns True if the longest common

consecutive string (LCST) of the last words in the source and target terms
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divided by the length of longest of the two words is greater than or equal to a

threshold value of 0.7 and both words are longer than 3 characters. For example,

the value of the feature for the English-Slovenian term pair Latin America -
Latinska Amerika would be True because the LCST for the last words in both

terms is Ameri, which has a length of 5. The length of the longest of the two last

words in the terms is 7 and 7 divided by 5 is 0.714, which is greater than the

threshold value.

As having the same number of words in the source and target term could play a role

in classification, we also add three new features responsible for encoding term

length information:

– sourceTargetLengthMatch: a binary feature that returns True if the number of

words in source and target terms match.

– sourceTermLength: returns the number of words in the source term.

– targetTermLength: returns the number of words in the target term.

Analysis of the filtered training set showed that it contained a small number of

positive cognate based term pair examples, therefore the first step was to include

more of them into the dataset. We build three separate datasets, each of them filtered

according to the following feature values:

– isFirstWordCognate = True and isLastWordCognate = True.

– isFirstWordTranslated = True and isLastWordCognate = True.

– isFirstWordCognate = True and isLastWordTranslated = True.

The terms from these three datasets are added to the original filtered train set (we

make sure that each positive term pair is represented in the new dataset only once by

removing all the duplicates). The new dataset contains two distinct groups of terms,

one with favorable Giza?? based features (and unfavorable cognate based features)

and one with favorable cognate based features (and in some cases unfavorable

Giza?? based features). Since this new dataset structure represents a classic

‘‘exclusive or’’ (XOR) problem which a linear classifier is unable to solve, we also

replace the linear kernel of our SVM classifier with the Gaussian one.

Using this approach, precision was close to 90% (Slovenian, French) or just over

90% (Dutch), recall was just over 50% for Slovenian, around 52% for Dutch and

close to 40% for French. For details, see line 10 in Tables 3, 4 and 5.

4.9 Best results

Overall, the setting with the best precision is Train set filtering 3. Compared to the

replicated approach (line 2 in Tables 3, 4 and 5), it has an unbalanced dataset of

1:200 (see Section 4.4) and employs the term filtering strategy described in Sect.

4.5. However, for a small gain in recall at the price of a slight decrease in precision,

a good alternative is the Cognates approach (line 10 in Tables 3, 4 and 5), which is
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based on the Train set filtering 3 approach and additionally includes the cognate

detection strategies described in Sect. 4.8.

5 Manual evaluation

The first part of this section contains the manual evaluation replicated from Aker

et al. (2013), already reported in Repar et al. (2018), while the second part is novel

and contains an evaluation using a new dataset and has a specific focus on cognate

term pairs.

5.1 Replicating the manual evaluation experiments from the original paper

Similar to the original paper, we also performed manual evaluation. We selected a

random subset of term pairs classified as positive by the classifier (using the

Training set filtering 3 configuration (line 8 in Table 3) that yielded the best

precision). While the authors of the original approach extract monolingual terms

using the term extraction and tagging tool TWSC (Pinnis et al. 2012), we use a

workflow for monolingual term extraction by Pollak et al. (2012). Both use a similar

approach - terms are first extracted using morphosyntactic patterns and then filtered

using statistical measures: TWSC uses pointwise mutual information and TF*IDF,

while Pollak et al. (2012) is based on an approach by Vintar (2010) and compares

the relative frequencies of words composing a term in the domain-specific (i.e. the

one we are extracting terminology from) corpus and a general language corpus.

In contrast to the original paper where they extracted terms from domain-specific

Wikipedia articles (for the English-German language pair), we are using two

translation memories—one containing finance-related content, the other containing

IT content. Another difference is that extraction in the original paper was done on

comparable corpora, but we extracted terms from parallel corpora - which is why we

expected our results to be better. Each source term is paired with each target term

(just as in the original paper - if both term lists contained 100 terms, we would have

10,000 term pairs) and extract the features for each term pair. The term pairs were

then presented to the classifier that labeled them as correct or incorrect term

translations. Afterwards, we took a random subset of 200 term pairs classified as

correct and showed them to an experienced translator16 fluent in both languages

who evaluated them according to the criteria set out in the original paper:

– 1—Equivalence: The terms are exact translations/transliterations of each other

(e.g., type—tip).
– 2—Inclusion: Not an exact translation/transliteration, but an exact transla-

tion/transliteration of one term is entirely contained within the term in the other

language (e.g., end date—datum).

– 3—Overlap: Not category 1 or 2, but the terms share at least one

translated/transliterated word (e.g., user id—uporabniško ime).

16 The original paper used two annotators, hence two lines for each domain in Table 4.
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– 4—Unrelated: No word in either term is a translation/transliteration of a word

in the other (e.g., level—uporabnik17).

The results of the manual evaluation can be found in Table 9. Manual evaluation

showed that 72% of positive term pairs in the Finance domain, and 79% of positive

term pairs in the IT domain were correctly classified by the classifier. The

differences between the Finance and IT datasets can be partially explained by the

Finance dataset containing more MWE terms than the IT dataset (84 vs. 51 for SL

and 78 vs. 49 for EN). On the one hand, this means that the chances of aligning a

single word term in one language with a multi word term in another language is

greater, hence the greater number of partial translations in Finance (category 2 -

Inclusion), while on the other, single word terms means less characters for the

algorithm to work with, hence the greater number of outright mistakes in IT
(category 4 - Unrelated). Compared to the original paper, we believe these results

are comparable when taking into account the different monolingual extraction

procedures , the different language pairs and the human factor related to different

annotators.

5.2 Evaluation on a Karst terminology gold-standard

As mentioned in Sect. 4, the best configuration in terms of precision used in Repar

et al. (2018) (line 8 in Tables 3, 4 and 5) overestimates dictionary-based and

underestimates cognate-based features. To alleviate this, we added additional

features and filtering strategies to our approach to try to improve cognate term pair

alignment (see lines 9 and 10 in the results tables). However, evaluating its

performance on EUROVOC is difficult as many terms have favorable dictionary-

based features due to the fact that both the Giza?? dictionary and EUROVOC are

made from the same content (i.e. EU documentation). For the evaluation in this

section, we therefore selected a domain, with a content type which is unlikely to be

found in DGT (Steinberger et al. 2013), i.e. karstology, which is the science in the

field of geomorphology, specializing in the study of karst formations.

To evaluate our bilingual term alignment approach, we used a gold standard of

EN-SL aligned karst terminology,18 which was manually created by the authors of

the karstology corpus (Vintar and Grčić-Simeunović 2016). The gold standard

consists of 52 English-Slovenian term pairs. For the evaluation experiment, we

aligned all Slovenian term with all English terms, resulting in a dataset of 52

positive examples and 2652 negative examples. With the best configuration for

precision (line 8 in Table 3), selected also as the best configuration in Repar et al.

(2018), precision was 100%, but recall was only 40.4%. Many term pairs containing

cognates such as ‘‘eogenetic cave—eogenetska jama’’, ‘‘epigenic aquifer—epigeni

vodonosnik’’ or ‘‘karst polje—kraško polje’’, were not aligned. With the final

cognate approach (line 10 in Table 3), we managed to retain 100% precision and

raise the recall to 50% by finding 7 additional cognate term pairs (aggressive

17 ‘‘uporabnik’’ means ‘‘user’’.
18 http://source.ijs.si/mmartinc/4real2018/tree/master/datasets/karst_corpus.
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water—agresivna voda, eogenetic cave—eogenetska jama, precipitation—precip-
itacija, ponor cave—ponorna jama, epigenic aquifier—epigeni vodonosnik, karst
polje—kraško polje, linear stream cave—linearna epifreatična jama). However one
half of correct term pairs remain undiscovered. We believe this is due to 1) domain-

specific words which are not cognates and are missing from the Giza?? dictionary

(e.g., porous aquifer—medzrnski vodonosnik and denuded cave—brezstropa jama),
and 2) valid cognate words which do not meet the threshold described in Sect. 4.8

(e.g. oxidization—oksidacija, percolation—perkolacija and liquefication—
likvifakcija).19

6 Replicability and reproducibility of our own terminology alignment
results

As mentioned before, availability of the source code can drastically improve the

reproducibility of experiments, since very detailed descriptions of procedures used

in the experiments are beyond the scope of most papers because of length

limitations and negative effects on the readability of the paper. Since we wanted to

ensure the full reproducibility of our approach, we decided to publish the source

code for all the conducted experiments and results that are published in the paper.

As we were aware that just the presence of source code itself does not guarantee

complete reproducibility, we decided that the published code should comply to the

following three criteria:

– Instructions on how to use the code should be as unambiguous, simple and clear

as possible.

– Code should be bug free and running it according to the instructions should yield

the exact same results as published in the paper.

– Running the code should require as little time and technical skills as possible.

In order to validate that the published code complies to these criteria, we asked three

students20 to try to reproduce the results published in the paper (Repar et al. 2018)

and after that answer the following questions related to the proposed criteria:

– Did you manage to reproduce the results?

– If not, what do you think was the main problem?

– If yes, how much time did you need for replicating the experiment?

– Were the instructions clear?

– Did you run into any specific problems during any part of the replicability

attempt? If yes, please describe it.

– Do you have any suggestions on how to further improve the reproducibility of

the results?

19 It might also make sense to include morphological information as a feature of the machine learning

algorithm, since all these word have endings typical of cognates in their respective languages.
20 2 Master students (one in Economy and one in Computer science) and 1 first year PhD student in ICT.
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We also imposed a time limit of 8 hours (one working day) for the entire

replicability attempt. If that limit was reached, the replicability attempt would count

as unsuccessful.

The feedback we got was interesting and made us reconsider the initial source

code criteria. Two out of three students managed to reproduce all the published

results in less than an hour without any major problems. They did however point out

some mistakes and ambiguities in the instructions on how to run the code. These

were mostly connected with the programming environment used by the students,

one of them using PyPI Python package manager for acquiring dependencies while

the other one used the Conda environment, for which the usage instructions were

not published.

The third student managed to reproduce the results in about two hours and

reported some major problems with dependencies installation. He was the only

person trying to reproduce the experiments in the Windows environment while the

other two students used a Linux operating system, and he reported problems with

the Python implementation of the Lemmagen lemmatizer (Juršič et al. 2010), which

he was unable to install properly on the Windows platform. He managed to

overcome the problem by manually removing the dependency from the code, by

which he limited the flexibility of the published source code (he could only use it for

the classification on the pre-generated train and test sets) but did not make the

reproduction impossible.

While he was successful at reproducing the results for eight out of nine

experiments published in the paper, he also reported a slight deviation (by less than

0.05 percentage point) from the reported recall and F-score in one of the

experiments. Although we are not sure what is the exact reason for this deviation,

we suspect it could be connected to the difference in operating systems.

These experiments show that programming environment and the choice of the

operating system can have an unexpected negative impact on the reproducibility.

While attaching code usage instructions for every possible programming environ-

ment and operating system is practically impossible, we do believe that the results

of this experiment show that a published source code should comply to one

additional criteria:

Table 9 Manual evaluation

results

Ann. stands for ‘‘Annotator’’

since the original paper uses two

annotators

Domain 1 2 3 4

Reported in Aker et al. (2013)

IT, Ann. 1 0.81 0.06 0.06 0.07

IT, Ann. 2 0.83 0.07 0.07 0.03

Auto, Ann. 1 0.66 0.12 0.16 0.06

Auto, Ann. 2 0.60 0.15 0.16 0.09

Replication

Finance 0.72 0.09 0.12 0.07

IT 0.79 0.01 0.09 0.12
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– Instructions should clearly specify on which operating system and in which

programming environment the reported results were produced.

We have updated the usage instructions for our source code to comply with these

criteria.

7 Reusability of our code in the ClowdFlows online platform

Because we want to make sure that our terminology alignment system is also

available to a wider audience of users with lower level of technical skills (e.g.,

translators or linguists) and because we want to encourage a very simple reusability

of our system, we have implemented the system into a cloud-based visual

programming platform ClowdFlows (Kranjc et al. 2012). The ClowdFlows platform

employs a visual programming paradigm in order to simplify the representation of

complex data mining procedures into visual arrangements of their building blocks.

Its graphical user interface is designed to enable the users to connect processing

components (i.e. widgets) into executable pipelines (i.e. workflows) on a design

canvas by a drag and drop technique, reducing the complexity of composition and

execution of these workflows. The platform also enables online sharing of the

composed workflows.

We took pretrained models of our terminology alignment system for English-

Slovenian, English-French and English-Dutch alignment and packed them in a

widget Terminology alignment, so it can be used out-of-the-box. The widget takes

two columns of the Pandas dataframe (McKinney 2011) containing the source and

target terms as inputs and returns a dataframe containing aligned term pairs. The

user needs to define the names of the columns in the dataframe containing source

and target language termlists, and the language of alignment as parameters. The user

can also switch between configurations Training set filtering 3 with the best

precision and Cognates approach with the on average best F-score for all three

languages while still having good precision by either enabling or disabling the

Maximize recall widget parameter. Such an end to end system for bilingual

terminology alignment in ClowdFlows is implemented at: http://clowdflows.org/

workflow/13789/.21 Another widget called Terminology alignment evaluation is

used for determining the performance of the system (if we have a gold standard

available), taking as input the dataframe produced by the Terminology alignment
widget and a dataframe containing true alignments, and outputting the performance

score in terms of precision, recall and F-score.

Workflow in Fig. 1 (available at http://clowdflows.org/workflow/13753/) is a

ClowdFlows implementation for terminology alignment and evaluation. The source

and target terminologies are both loaded from a CSV file with the help of the Load
Corpus From CSV widget and fed as input to the Terminology alignment widget,

21 Note that the execution time of term alignment increases rapidly with the increase in number of terms,

e.g., alignment of hundred terms takes around five minutes, while it takes about one hour for alignment of

thousand terms.
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which returns a dataframe with alignments. These are written to a CSV file with the

Corpus to CSV widget and also fed to the Terminology alignment evaluation widget

together with the dataframe containing true alignments (which was also loaded from

a CSV file with the Load Corpus From CSV widget) in order to estimate the

performance of the system. In addition, term alignment widget can also be incor-

porated into a bilingual terminology extraction workflow (Pollak et al. 2012). The

workflow with the newly added term alignment widget, is available at http://

clowdflows.org/workflow/13723/), where a user can now input text from a specific

domain in Slovenian and English and get aligned terminology as output.

8 Conclusions and future work

Based on our research and attempts at replicating a bilingual terminology alignment

paper reproducing its results, we propose a set of best practices any bilingual

terminology extraction paper (and more generally every NLP paper) should fulfill to

facilitate reproducibility and replicability of the experiments:

– Dataset availability. Availability of datasets (i.e. gold standard term lists,

corpora) is an essential prerequisite for successful replication.

– Experiment code availability. The main task of reproducibility and replicability

experiments is often to reconstruct the experiments in computer code. It is a

cumbersome process which inevitably requires that the reproducer/replicator

makes educated guesses at some point since a detailed description of the code is

beyond the scope of most papers. Having the original code available greatly

increases the ease of reproducibility and replicability experiments.

– Tool availability. Availability of a tool or application (online or offline) where

experiments can be conducted eases reproducibility and replicability, but also

enables the reusability of results by a larger community.

– Finally, releasing intermediate results, configuration settings and the actual

outcomes of individual experiments, while not essential, would provide future

researchers with an even greater possibility of successful reproduction of the

paper’s results.

Fig. 1 ClowdFlows implementation of the system for terminology alignment and evaluation available at
http://clowdflows.org/workflow/13753/
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A prerequisite for successful reproduction and replication is a clearly written

research paper. However as is evident from our example, it is often difficult to

include all necessary implementation notes given the length restrictions of the

paper. For this reason, another best practice would be to provide relevant

implementation examples alongside the code (which is what we did for feature

construction.22) Finally, as the experiment in Sect. 6 showed, even code itself is

sometimes not enough without additional implementation notes and information on

the operating systems and software used. In addition, testing the code by non-

authors is strongly recommended.

Our attempts focused on the approach to bilingual term alignment using machine

learning by Aker et al. (2013). They approach term alignment as a bilingual

classification task—for each term pair, they create various features based on word

dictionaries (i.e. created with Giza?? from the DGT translation memory) and word

similarities across languages. They evaluated their classifier on a held-out set of

term pairs and additionally by manual evaluation. Their results on the held-out set

were excellent, with 100% precision and 66% recall for the English-Slovenian and

English-French language pair and 98% precision and 82% recall for English-Dutch.

Our reproduction attempt focused on three language pairs: English-Slovenian,

English-Dutch and English-French (in contrast with the original article where they

had altogether 20 language pairs) and we were unable to reproduce the results

following the procedures described in the paper. In fact, our results have been

dramatically different from the original paper with precision being less than 4% and

recall close to 90% for all three language pairs under consideration. We then tested

several different strategies for improving the results ranging from Giza??

dictionary cleaning, lemmatization, different ratios of positive and negative

examples in the training and test sets, training set filtering based on feature values

and term length, and adding new cognate-based features. The most effective

strategies employed unbalanced training set and training set filtering based on

certain feature values which resulted in precision exceeding 90% for all three

language combinations (Training set filtering 3 configuration, line 8 in Tables 3, 4

and 5). It is possible that in the original experiments authors performed a similar

training set filtering strategy, because the original paper mentions that their classifier

initially achieved low precision on Lithuanian language training set, which they

were able to improve by manually removing positive term pairs that had the same

characteristics as negative examples from the training set. However, no manual

removal is mentioned for Slovenian, Dutch or French. Further attempts were

directed at boosting recall and the performance of cognate-based features. By

adding additional cognate-based features, we were able to improve recall by around

16% for Dutch, 8% for French and by around 2% for Slovenian (over the Training
set filtering 3 configuration) at a cost of a moderate drop in precision.

For evaluation we focused only on Slovenian, which is our native language and

of primarily interest for our applied tasks. We performed manual evaluation similar

to the original paper and reached roughly the same results with our adapted

approach. In addition, because we discovered that Eurovoc data is of limited use for

22 http://source.ijs.si/mmartinc/4real2018/blob/master/feature_examples.docx.
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evaluating the performance of cognate-based features, we ran experiments on an

English-Slovenian karstology gold standard term list. With the Cognates approach
configuration (line 10 in Tables 3, 4 and 5), we improved recall by 11% (compared

to the Training set filtering 3 configuration) and a qualititive analysis of the results

showed that the new strategies for boosting the performance of cognate-based

features do indeed result in more cognate term pairs being properly aligned.

This paper demonstrates some of the obstacles for research reproducibility and

replicability, with the prime one being code unavailability. Had we had access to the

code of the original experiments, it is highly likely that replicating the original paper

would be a trivial matter. Also in this particular case, the discrepancy in the results

could be attributed to the scope of the original paper - with more than 20

languages—which is also a demonstration of very impressive approach—it would

be impossible to describe procedures for all of them. We weren’t able to reproduce

the results of the original paper, but after developing the optimization approaches

described above over the course of several months, we were able to reach a useful

outcome at the end. We believe that providing supplementary material online, i.e.

the code and datasets, is the only way of assuring complete reproducibility of

results. For this reason, in order to help with any future reproducibility/replicability

attempts of our paper, we are publishing the code at: http://source.ijs.si/mmartinc/

4real2018.

In terms of future work, we plan to expand the feature set by introducing the

features derived from the distributions in parallel corpora (e.g. co-frequency,

logDice and other measures, see Baisa et al. (2015)), as well as investigate novel

methods using cross-lingual embeddings. In terms of reproducibility, we plan to

extend the study to a systematic comparison of different term alignment and term

extraction methods.
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TermEnsembler
An ensemble learning approach to bilingual
term extraction and alignment

Andraž Repar, Vid Podpečan, Anže Vavpetič, Nada Lavrač
& Senja Pollak
Jožef Stefan Institute

This paper describes TermEnsembler, a bilingual term extraction and align-
ment system utilizing a novel ensemble learning approach to bilingual term
alignment. In the proposed system, the processing starts with monolingual
term extraction from a language industry standard file type containing
aligned English and Slovenian texts. The two separate term lists are then
automatically aligned using an ensemble of seven bilingual alignment meth-
ods, which are first executed separately and then merged using the weights
learned with an evolutionary algorithm. In the experiments, the weights
were learned on one domain and tested on two other domains. When evalu-
ated on the top 400 aligned term pairs, the precision of term alignment is
over 96%, while the number of correctly aligned multi-word unit terms
exceeds 30% when evaluated on the top 400 term pairs.

Keywords: bilingual terminology alignment, terminology extraction,
ensemble learning, evolutionary algorithm

1. Introduction

With the onset of globalized markets, the need for effective multilingual com-
munication has never been greater. Language industry, a term used to describe
collectively the companies that offer translation and other related language ser-
vices, has been steadily growing for several years and the increase in the volume of
translated words brought along the need to streamline the translation process with
automated solutions. In the 1990s, translation companies embraced computer-
assisted translation (CAT) tools that allow them to store translations in a database
and recycle them in future translation tasks.
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Parallel to this process, another distinct (but related) development took place
which revolved around terminology in the translation process. While several solu-
tions and tools have been proposed, terminology remains one of the main prob-
lem areas for the translation industry. For example, a 2014 report1 by SDL, a
market leader in translation and terminology management software solutions,
showed that among 140 companies, 51 percent of the respondents did not have a
terminology management process in place, while a survey by Schmitz and Straub
(2016) showed that among 800 respondents, 89.5 percent often or constantly expe-
rience that different organizational areas or employees use different terms for
the same concept and that 51.9 percent of employees often or constantly cannot
understand terms immediately. SDL Translation Technology Insights Series sur-
vey,2 which focused on translation quality conducted among a mix of translation
buyers, language service providers and freelance translators, found that “inconsis-
tencies in the use of terminology” is the number one reason of translation rework
(i.e. when translation is deemed not good enough and the source text has to be
translated again) and recommended that, in order to improve translation quality,
terminology management be prioritized.

Due to the early adoption of CAT tool technology in the translation industry,
most translation companies have large repositories of translation memories. To
illustrate, Gouadec (2007) reported that among more than 430 translation job
advertisements surveyed, 95 percent contain a requirement for a “translation
memory skill.” In the period since that study, translation memories have remained
a central component of any translation company business model.

This paper addresses the above-mentioned needs of the translation industry
by proposing a system for semi-automated terminology extraction and alignment,
currently focusing on English and Slovenian. The system, developed for one of the
largest language service providers in Southeast Europe, consists of:

– A concept-oriented terminology database, where all the data is stored, allow-
ing import from and export into industry-standard terminology management
formats.

– A terminology extraction workflow, including automated extraction or
import of manually defined monolingual terminology, followed by a novel
approach to term alignment utilizing an evolutionary algorithm to combine
the results of several individual bilingual term alignment methods.

1. SDL Research – Terminology: An End-to-End Perspective (http://www.sdl.com/download
/terminology-an-endtoend-perspective/71114/). Accessed 3 March 2017.
2. Research Study 2016: Translation Technology Insights – Productivity (https://www.sdl.com
/download/tti16-productivity/109572/). Accessed 3 March 2017.
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– A web interface for managing the database and controlling the extraction and
alignment algorithms.

– Additional functionalities for extraction of good example sentences and iden-
tification of the domain in which the term is used.

The novel approach to bilingual term alignment is the main contribution of this
work. We systematically compare several existing term alignment methods, pro-
pose a novel Phrase-Table-Based Alignment (PTBA) method based on Pialign
(Neubig et al. 2011), as well as a novel methodology using an evolutionary algo-
rithm to combine solutions of an ensemble of elementary term alignment algo-
rithms. We evaluate the performance of the system on three different domains,
where one domain was used for training and two domains were used for testing
the proposed approach.

This paper is structured as follows: Section 2 describes the related work,
Section 3 describes the system and its methodology, Section 4 contains the exper-
iments and results, while Section 5 contains the conclusions and plans for future
work.

2. Related work

Terminology extraction refers to structuring terminological knowledge from
unstructured text. Parallel translation databases (i.e. translation memories), which
are omnipresent in the translation industry, lend themselves nicely to automated
terminology extraction. In addition to terminology, various other types of infor-
mation can be extracted, such as named entities, collocations or good examples.

In terms of input text, we can distinguish between monolingual terminology
extraction, where terms are extracted from text in one language, and bilingual or
multilingual terminology extraction, where the goal is to extract and align terms
from text in two or more languages. A brief survey of related work is presented in
Sections 2.1 and 2.2, respectively.

2.1 Monolingual term extraction

In the broadest sense, there are two different approaches to monolingual term
extraction: linguistic and statistical. The linguistic approach utilizes the distinctive
linguistic aspects of terms – most often their syntactic patterns, while the statis-
tical approach takes advantage of term frequencies in the corpus. However, most
state-of-the-art systems are hybrid, using a combination of the two approaches;
e.g., Justeson and Katz (1995) first define part-of-speech patterns of terms and then
use simple frequencies to filter the term candidates.
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Many terminology extraction algorithms are based on the concepts of ter-
mhood and unithood defined by Kageura and Umino (1996). Termhood is “the
degree to which a stable lexical unit is related to some domain-specific concepts”
and unithood is “the degree of strength or stability of syntagmatic combinations
and collocations.” Termhood-based statistical measures function on a presump-
tion that a term’s relative frequency will be higher in domain-specific corpora than
in the general language. Several approaches utilizing termhood have been devel-
oped, including those by Ahmad et al. (2000) and Vintar (2010). Common statis-
tical measures are used to measure unithood, such as mutual information (Daille
et al. 1994) or t-test (Wermter and Hahn 2005).

In the last few years, word embeddings – vectors of real numbers representing
words on a corpus – have become a very popular natural language processing
technique. The turning point was the paper by Mikolov et al. (2013) describing
word2vec, a word embedding toolkit that can create vector space models much
faster than previous attempts. Several attempts have already been made to utilize
word embeddings for terminology extraction (e.g. Amjadian et al. (2016), Wang
et al. (2016), Khan et al. (2016) and Zhang et al. (2018)).

2.2 Bilingual term extraction and alignment

At the highest level, bilingual terminology extraction can be divided into extrac-
tion from comparable and extraction from parallel corpora, where parallel cor-
pora are composed of source texts and their translations in one or more different
languages, while comparable corpora are composed of monolingual texts col-
lected from different languages using similar sampling techniques (McEnery et al.
2006). For alignment of terms between the two languages, the methods typically
utilize the idea that a term and its translation tend to occur in similar lexical con-
texts (Daille and Morin 2005).

In the language-industry context, taking into account parallel bilingual sen-
tence pairs, stored in the translation memory, brings significant advantages to
the task of terminology extraction. Broadly speaking, there are two distinct
approaches to bilingual terminology extraction from parallel corpora according
to Foo (2012):

– Align-extract, where we first align single and multi-word units in parallel sen-
tences and then extract the relevant terminology from a list of candidate term
pairs, and

– Extract-align, where we first extract monolingual candidate terms from both
sides of the corpus and then align the terms.
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A state-of-the-art align-extract approach is proposed by Macken et al. (2013) uti-
lizing a chunk-based alignment method to produce a list of candidate term pairs,
which are then filtered using statistical methods.

The extract-align approach is the more common of the two. Kupiec (1993)
describes an algorithm for noun phrase extraction followed by alignment with a
statistical estimation algorithm, achieving precision of 90 percent on the highest
ranking candidate pairs. Vintar (2010) describes an extract-align approach named
“bag-of-equivalents”, where after monolingual extraction, the term pairs are
aligned with the help of word alignment probabilities. Baisa et al. (2015) describe a
frequency-based term alignment algorithm utilizing a variation of logDice to score
the strength of the candidate term pair alignment. Haque et al. (2014) first gener-
ate candidate terms monolingually and then build a phrase table using the Moses
toolkit (Koehn et al. 2007) and compare the extracted terms with the phrases in
the table. Precision among the top 100 candidate term pairs often exceeds 90 per-
cent. Aker et al. (2013) treat bilingual term alignment as a binary classification task,
achieving good results. More recently, Hazem and Morin (2017) experiment with
word embeddings used to augment bilingual terminology extraction from special-
ized comparable corpora (achieving precision of 70.9 percent).

The approach proposed in this paper is based on the idea of utilizing evolu-
tionary algorithms which mimic biological evolution (i.e. reproduction, mutation,
selection) to optimize the stated objective. Specifically, we use the genetic algo-
rithm implementation in DEAP (Distributed Evolutionary Algorithms in Python)
by Fortin et al. (2012) to build a term alignment ensemble.

3. TermEnsembler system and methodology

In this section, we describe the functionality of the developed TermEnsembler sys-
tem, starting with the system overview and the background technologies used, and
then focusing on bilingual term alignment as the main contribution of this paper.

3.1 System overview

The TermEnsembler system extracts bilingual terminology from English and
Slovenian texts, and stores it into a concept-based terminology database, meaning
that the entries are organized to correspond to a concept (cf. the general theory
of terminology proposed by Wüster (1979)), but a concept might have more than
one corresponding designator. It is a semi-automated system, meaning that the
user can select several extraction parameters and manually curate the monolingual
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extraction results for better bilingual alignment. While the system currently sup-
ports two languages (English and Slovenian), additional languages can be added by
implementing appropriate language-specific background technologies similar to
the ones described in this paper. In addition to the extraction of individual terms in
each of the two languages (extracted using the approach described in Section 3.2), it
also stores aligned term pairs (aligned using the approach described in Section 3.3).
We have also developed a method for extracting good examples and domains, but
as these are additional functionalities, we refer the reader to the previous papers by
Repar and Pollak (2017a, 2017b).

The system relies on several background resources and technologies, used in
different components of the system:

– Preprocessing: Texts are extracted from the translation memory (TMX) and
preprocessed using the part-of-speech tagger and Wordnet lemmatizer from
NLTK (Bird et al. 2009) for English and using the ReLDI tagger and lemma-
tizer (Ljubešić and Erjavec 2016) for Slovenian.

– Monolingual term extraction: Monolingual term extraction method LUIZ-CF
by Pollak et al. (2012), extending LUIZ (Vintar 2010), is used as a basis for our
upgraded LUIZ-CF++ term extraction approach.

– Bilingual term alignment: We use the Pialign phrase table extraction func-
tionality (Neubig et al. 2011) as a basis for implementing three different bilin-
gual term alignment approaches PTBA-1, PTBA-2 and PTBA-3 used in our
experiments. In the reimplementation of bilingual LUIZ, we use Giza++ for
word alignment (Och and Ney 2003). For weight assignment in our ensemble
approach, we use the evolutionary computation framework DEAP (Distrib-
uted Evolutionary Algorithms in Python) by Fortin et al. (2012).

The overall structure of the system is shown in Figure 1. The starting point is a
bilingual corpus in the standard translation memory format TMX, from which
also available metadata, such as term domain or language variety can be extracted.
The text is extracted and preprocessed resulting in a list of aligned lemmatized
and POS-tagged sentence pairs. These pairs are sent into the additional metadata
extraction (e.g., when domain information is not available in the TMX) and the
monolingual extraction process, which results in two separate monolingual term
lists (for TL1 and TL2). At this point, these two term lists can be curated by the
user of the system. The (raw or curated) term lists are then taken as input to the
bilingual alignment process (described in detail in Figure 2), which produces the
final list of aligned term pairs. Finally, these term pairs are entered in the termbase
alongside the metadata extracted in the step described above.
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Figure 1. TermEnsembler: Methodology and components of the TermEnsembler system.
Note that at several points human curation is possible (after monolingual extraction, after
bilingual alignment or when accepting terms and metadata in the termbase. The
monolingual step can also be skipped if the monolingual term lists are manually provided

3.2 Monolingual term extraction: LUIZ-CF++ upgrade of LUIZ-CF

The implemented monolingual term extraction approach LUIZ CF++ is based on
the LUIZ hybrid approach by Vintar (2010) and refined with scoring and ranking
functions implemented in LUIZ-CF by Pollak et al. (2012). The LUIZ approach is
based on a list of part-of-speech patterns and a formula for comparison of term
frequency between a domain corpus and a general language corpus (we used fre-
quency lists from corpus Kres (Logar et al. 2012) for Slovenian and the British
National Corpus (2007) for English).

In LUIZ-CF++, used in our experiments, we upgraded the LUIZ-CF mono-
lingual term extraction approach by implementing the following additional func-
tionalities:

– Near-duplicates detection: When importing the terms, the near duplicates (e.g.
the orthography with or without spaces or hyphens, British and American
English spellings) are detected and not created as new entries, but can be
added as term variants of existing entries.

– Nested term filtering: According to Frantzi et al. (2000), nested terms are the
terms that appear within other longer terms, and may or may not appear by
themselves in the corpus. If the difference between a term and its nested term
is below a certain threshold (which, in our case, can be defined by the user),
only the longer term is returned. If not, both terms are included in the final
output.
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3.3 Bilingual term alignment: A novel ensemble learning approach

In this section, we describe the core part of TermEnsembler, i.e. the bilingual term
alignment methodology implementing the extract-align approach explained in
Section 2.2. Having implemented seven elementary term alignment approaches (3
existing, one modified, and 3 novel variants based on Pialign), this section intro-
duces a novel ensemble-based approach combining the selected elementary term
alignment approaches using an evolutionary algorithm.

We start by a brief outline of the proposed term alignment approach, illus-
trated in Figure 2. The input to the proposed TermEnsembler’s bilingual term
alignment methodology are two term lists (TL1 and TL2), which are automatically
extracted using the monolingual extraction component (described in Section 3.2)
or are human-defined. These two term lists are fed into seven individual bilingual
term alignment algorithms that produce a total of 7 separate lists of aligned term
pairs (aligned term lists or ATL), ranked by their alignment probability score as
described in Section 3.3.1. The outputs of each alignment method are first nor-
malized (separately) to the [0,1] interval, then fed into the evolutionary weights
optimization algorithm described in Section 3.3.3 (which uses an external ground
truth list (GTL) of manually annotated term pairs) to produce an optimal set
of weights. These weights are then used to merge the seven ATLs into the final
merged ATL using the procedure from Section 3.3.2.

Figure 2. TermEnsembler’s bilingual term alignment methodology
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3.3.1 Individual bilingual term alignment algorithms
Each term alignment component described in this section produces a list of
aligned term pairs ranked by their alignment scores, which are normalized
between 0 and 1. The calculation of the scores is described below. The first four
reimplemented approaches produce each one output (one aligned term list), while
the last, novel approach, has three variants, leading to a total of seven output lists
of aligned term pairs.

Co-frequency
Co-frequency cofreq(tS, tT) simply counts the number of sentences in which a
term (tS) from a source language S and a term (tT) from target language T co-
occur in the same sentence pair. The higher the co-occurrence count, the higher
the probability that the terms are a correct term pair. This is the simplest of the
used approaches and is completely language independent, but it does not take into
account any language specifics. Because of that, it also requires a larger input cor-
pus to produce sensible results.

Dice
This approach to bilingual terminology extraction is based on the Dice algorithm
(Dice 1945). The co-frequency score from the previous component is used in the
calculation of the Dice score, defined as follows:

where (tS) and (tT) are source and target terms, respectively. The freq(t) function
stands for the frequency of term t in the entire corpus. A score based on Dice is
used also in Sketch Engine (Baisa et al. 2015).

Mutual information
Similar as Dice, MI (Church and Hanks 1990) calculates term alignment by taking
into account the co-frequency of source and target terms and the individual fre-
quency of each term. It is defined as follows:

It usually contains the multiplication with N (in our case the number of candidate
terms), but since in our case N is constant across terms, we can omit it if we just
want to rank the terms.

BI-LUIZ+
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We used a modified version of the bilingual component of the LUIZ approach,
described by Vintar (2010). This approach takes as input two lists of term can-
didates (one for the source language and one for the target language) and word
alignment pairs (with probabilities). The original paper uses the Twente aligner
(Hiemstra 1998), while we used the GIZA++ (Och and Ney 2003).3

Using the alignments, the best matches (1 or more) are computed for each
source term as follows: given a source term, we iterate through all target terms. For
each target term we compute a score by summing the probabilities that a target
token is a translation of a source token. Note that in the original paper by Vintar
(2010) the equivalence score takes all single-word probabilities and divides them
by the number of words, but dividing is not performed in our re-implementation
as in the testing phase it produced worse results.4 If the score is non-zero, we add
the target term to the list of candidates.

Novel Phrase-Table-Based Alignment (PTBA) approaches PTBA-1, PTBA-2
and PTBA-3
The proposed PTBA approaches are novel bilingual term alignment approaches
that we have developed based on Pialign (Neubig et al. 2011), an unsupervised
model for joint phrase alignment and extraction using nonparametric Bayesian
methods and inversion transduction grammars. Pialign follows a similar
approach to phrase table generation in statistical machine translation (SMT)
(Koehn et al. 2007), however, instead of first generating word alignments and
then extracting a phrase table consistent with these alignments, it joins the phases
of alignment and extraction by constructing a generative model that includes
phrases at many levels of granularity, from single words to full sentences. Similar
to Haque et al. (2014), the PTBA approach uses machine translation phrase tables
for term alignment, but differs from it in several aspects described below.

The proposed PTBA approach takes as input a corpus and produces the list
of aligned terms as output. Specifically, the Pialign alignments are read and used
for mapping that stores for each English word all the computed Slovenian align-
ments along with the frequency of each alignment. As illustration, take the follow-
ing example:

manager → upravitelj (20%), upravljavec (30%), upravljavec premoženja (50%)

The same mapping is also created for the reverse direction (Slovenian to English).
For each aligned sentence pair found to contain some English and Slovenian
terms, we compute the matching of all English terms from this sentence against

3. We had to use a different alignment method since the Twente aligner does not work anymore.
4. In communication with Vintar it has been confirmed that division has been later excluded
from the formula.
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all phrases from this sentence, and the best matching is retained. The matching
is computed as the ratio of the most similar substring (i.e. if the phrase contains
the entire term, the result is 100%). As a result, for each English phrase found in
a sentence we record which terms found in this sentence are a part of this phrase.
The matching procedure is repeated also for Slovenian. Finally, for each sentence
we retain only the term-to-phrase mappings that exist in both directions. That is,
we store a mapping if an English term from some sentence matches an English
phrase from the same sentence and a Slovenian term from the aligned Slovenian
sentence matches with the aligned Slovenian phrase.

As a side result of this term-to-phrase matching procedure, we propose the
following procedure to obtain a list of direct candidates for aligned terms (i.e. we
identify the phrase alignments consisting of a single term). The conditions are that
the best term-to-phrase matching score is at least 95% for English and 90% (as the
language is morphologically more varied) for Slovene and the difference in length
of term string and phrase string is not greater than 4. An example, where a term
matches the phrase with nearly no differences is a term upravitelj and the phrase
upravitelji. As this is the only element of the phrase, we assume that the aligned
phrase is the term’s equivalent in English (e.g. manager).

The matching problem is addressed as follows: For each sentence, we have a
list of phrases in English, their aligned counterparts in Slovenian, a list of terms
for each English phrase and a list of terms for each Slovenian phrase. When
computing the matching between English and Slovenian terms we also take into
account the possibility that the terms can consist of several words.

We define the matching score of a multi-word English term to a multi-word
Slovenian term as the sum of best single word alignment scores among all word
combinations between the terms. Consider the following example:

English sentence The name of the share class Allianz….
Slovenian sentence Ime razreda delnic Allianz…
English phrase The name of the share class
Slovenian phrase Ime razreda delnic
English terms share, share class
Slovenian terms delnica, razred delnic

The matching algorithm computes the sum of all best word alignment scores. For
example score(share, delnica) + score(class, razred) is the alignment score for terms
share class and razred delnic (the word (mis)alignments share-razred and class-
delnica have very low or possibly zero scores and are not added to the sum).

The matching scores are accumulated for all phrases and all sentences. In the
end, we obtain the probability distributions for the translation of English terms
into Slovenian and Slovenian terms into English. Using this information, we can
produce three translation tables: symmetric, English to Slovenian, and Slovenian
to English, respectively. The symmetric table consists of only those aligned terms
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where the greedy probabilistic translation is the same in both directions. That is,
a pair of English and Slovenian terms have each other listed as the most probable
translation. The other two translation tables simply list the most likely translation
in each direction. In this way, we have defined three different PTBA term align-
ment methods, resulting in three separate outputs of the PTBA term alignment
method:

– PTBA-1 Aligned Term list, containing the results of the symmetric translation
table.

– PTBA-2 Aligned Term list, containing the results of the English to Slovenian
and Slovenian to English translation tables.

– PTBA-3 Aligned Term list, containing the list of direct alignment candidates
produced as a side result of the term-to-phrase matching procedure.

3.3.2 Final term pair ranking by ensemble-based weighting of separate lists
of term pairs

This section presents the key part of the developed methodology for ranking of
aligned term pairs, i.e. the mechanism for assigning weights to separate lists of
term pairs obtained by individual term alignment algorithms, and the merging
mechanism using an ensemble weighting approach.

The ensemble score (Escore) is computed from two separate weighting scores:

– the algorithm weight (w), and
– the term pair score (score), normalized to [0,1].

A merging procedure for computing the final ensemble score Escore takes the
individual term pair scores (score) from each of the seven elementary algorithms,
together with weights for each approach provided by the user or assigned by
automated means (i.e. the evolutionary algorithm approach explained below) and
returns the final aligned term list, re-normalized on the [0,1] interval.

Merging procedure

1. For all term pairs (tS, tT) compute Escore(tS, tT):
Escore(tS, tT ) = wcofreq scorecofreq(tS, tT ) +

wdice · scoredice(tS, tT ) +
wmi · scoremi(tS, tT ) +
wmi · scoremi(tS, tT ) +
wluiz · scoreluiz(tS, tT) +
wPBA1 · scorePTBA-1(tS, tT) +
wPBA2 · scorePTBA-2(tS, tT) +
wPBA3 · scorePTBA-3(tS, tT)
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2. Compute Normalized Escore(tS, tT )∈[0,1]
3. Rank term pairs (tS, tT ) in decreasing order of their Normalized Escore(tS, tT )

3.3.3 Evolutionary weighting of term alignment algorithms
To be able to effectively search the large space of various weight values, we decided
to use an evolutionary algorithm to find an optimal configuration. Specifically, we
utilized the genetic algorithm (GA) implementation in DEAP (Distributed Evo-
lutionary Algorithms in Python) by Fortin et al. (2012), an evolutionary computa-
tion framework, which can be used for rapid prototyping and testing of ideas and
is designed to make algorithms explicit and data structures transparent. The GA
algorithm starts with a random population and then applies crossover (producing
new (children) members of the population from existing (parent) members) and
mutation (randomly changing individual members – similar to biological muta-
tion) operations for a successive number of generations. In each generation, the
children are evaluated using a custom evaluation function and those that perform
better than the parents are retained, while those that perform worse are discarded
which eventually leads to an optimal result.

We start by generating a population of random sets of seven real numbers in
the form of 7-tuples of weights of the 7 individual bilingual term alignment out-
puts:

(wcofreq, wdice, wmi, wluiz, wPBA1, wPBA2, wPBA3 )

Each 7-tuple is used to generate a final bilingual term list (see Section 3.3.2) and
is evaluated against a database of manually annotated term pairs provided in the
training dataset. We used the parameters suggested in the DEAP documentation:
number of generations: 100; population: 100; crossover probability: 0.5; mutation
probability: 0.2.

We repeated the GA algorithm execution 20 times, and then calculated the
average precision and standard deviation of the best performing 7-tuple of weights
in each GA repetition. We selected the overall best performing 7-tuple learned on
the training domain (training dataset) and tested its performance on two separate
domains (test datasets). DEAP can be set up to optimize a single objective (i.e.
precision among the Top 400 term pairs as in Section 4.4.1) or multiple objectives
(i.e. precision among the Top 400 term pairs and number of correct multi-word
unit (MWU) term pairs as in Section 4.4.2) at the same time.
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4. Experiments and results

This section describes the experiments conducted to evaluate the TermEnsembler
bilingual term alignment methodology and the datasets used in the experiments,
followed by the results of the experiments and a qualitative analysis of errors.

4.1 Experimental setting

In these experiments, our goal was to find the best weight configuration for the
7 outputs produced by the individual term alignment components. To do so, we
first evaluated the outputs individually in terms of overall precision and precision
of MWU (multi-word unit) terms and then tried to find the best weight configu-
ration using the evolutionary algorithm. We learned the best weight configuration
on one domain (Financial) and then tested it on two others, non-related domains
(IT and Automotive), by which we show that it is applicable to different domains.

The experimental setting was as follows. In creating the monolingual term
lists as described in Section 3.2, we included only the terms that appear more than
10 times in the dataset.

– The evaluation criterion was the precision of term alignment, where the cri-
terion for annotation was proper alignment, and not whether the individual
English and Slovenian units are actually terms or not.

The latter requires further clarification.

– As bilingual term alignment is the main focus of this paper, we were primarily
concerned with whether the terms are aligned properly (whether the terms
are translation equivalents) and not whether the terms are true terms in each
language.5 For illustration, consider the following two examples:

exchange rate – menjalni tečaj
end of march – konec marca

In the first example, both terms (English and Slovenian) are true terms
according to the definition of a term from ISO 1087 (“verbal designation of
a general concept in a specific subject field”), while the terms in the second
example are much less likely to be considered terms in the sense of ISO 1087.
However, for the purposes of evaluating the bilingual alignment algorithm
both examples were considered correct.

5. An evaluation by a subject-matter expert reviewing the top 200 term pairs produced by the
system showed that 74.5% of them are true terms.
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– The evaluation was performed by a single annotator, which is the only realistic
setting in a language-industry environment. Nevertheless, for inter-annotator
evaluation, we acquired a second annotator to annotate a subset of the final
output produced (and previously annotated by the main annotator) with the
final weight configuration (see Section 4.4) on the Financial domain. The
inter-annotator agreement was high, with both annotators agreeing in more
than 95% of term pairs and Cohen’s kappa (Cohen 1968) reaching 0.900. This
denotes almost perfect agreement according to Landis and Koch (1977), and
we can safely assume that annotations performed by a single annotator are
highly accurate.

Note that in addition to measuring the precision of term alignment, we initially
also considered measuring the recall, for which we would need a dataset con-
taining manually annotated term pairs. However, measuring recall proved to be
practically less relevant. The client arrived at the conclusion that in a production
environment of a language service provider, the recall is not of particular impor-
tance, while it is much more important that term extraction output be precise,
requiring no or minimal further processing or manual selection. As will be shown
in Section 4.4, TermEnsembler produces a large number of correct term pairs,
which satisfies the needs of the client. However, for the purpose of this article, we
did evaluate the recall on a small gold standard term list in Section 4.4.3.

4.2 Data

In our experiments we used three distinct datasets, all coming from a production
environment of a language service provider.

– Financial. This translation memory contains segments from a long-term
translation project in the financial domain, specifically annual reports of
investment funds and various related documentation. It has 18,197 segments
(i.e. bilingual segment pairs) with 396,295 words in English and 354,862 words
in Slovenian. The default configuration of the monolingual extractor returned
1,723 English and 1,953 Slovenian terms. This dataset was used to find the best
weight configuration with the evolutionary algorithm.

– IT. This translation memory was used in a long-term software localization
project. Most segments contain user interface strings and a smaller portion
also contains user assistance (i.e. help articles) content. It has 40,599 segments
(i.e. bilingual segment pairs) with 523,819 words in English and 473,430 words
in Slovenian. The default configuration of the monolingual extractor returned
2,234 English and 2,477 Slovenian terms. This dataset was used to test the best
weight configuration found with the evolutionary algorithm on the Financial
dataset.
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– Automotive. This translation memory was used in a long-term project for
a customer from the automotive industry and contains segments from user
manuals, internal service documentation and customer-facing promotional
materials. It has 65,516 segments (i.e. bilingual segment pairs) with 861,665
words in English and 779,145 words in Slovenian. The default configuration of
the monolingual extractor returned 3,122 English and 3,879 Slovenian terms.
This dataset was used to test the best weight configuration found with the evo-
lutionary algorithm on the Financial dataset.

Detailed statistics for each dataset, including the number of terms obtained by
monolingual terminology extraction, are presented in Table 1.

Table 1. Detailed statistics of the three datasets used in the experiments
Financial IT Automotive

Total segments  18,197  40,599  65,516

Total English words 396,295 523,819 861,665

Total Slovenian words 354,862 473,430 779,145

Unique English words  11,365  21,711  25,591

Unique Slovenian words  20,093  31,973  43,406

English terms   1,723   2,234   3,122

Slovenian terms   1,953   2,477   3,879

4.3 Experimental comparison of individual bilingual term alignment
components

In this section, we systematically compare the performance of individual bilingual
term alignment components from two aspects. First, we focus on the overall pre-
cision of the Top N term pairs produced by each component, and then we turn
our attention to MWU (multi-word unit) term pairs found in the top N term pairs
produced by the individual components.

4.3.1 Precision of individual term alignment components
Table 2 provides the results for precision for each method on the Financial
dataset. We can observe that two PTBA methods have the highest precision,
followed by another PTBA method and the three frequency-based components
(Co-frequency, Dice and Mutual information), while BI-LUIZ+ has the lowest
precision.
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Table 2. Precision of individual bilingual alignment components on the Financial dataset
on the Top 100, Top 200, Top 400 and Top 800 term pairs according to their
(normalized) alignment score

Top 100 Top 200 Top 400
Top 800/

TotalTotal term
pairs Corr. Prec. Corr. Prec. Corr. Prec. Corr. Prec.

Co-freq 1,492 60 0.600 111 0.555 175 0.438 292 0.366

Dice 1,492 57 0.570 128 0.640 272 0.680 511 0.693

MI 1,492 59 0.590 120 0.600 229 0.573 398 0.498

BI-
LUIZ+

1,561 43 0.430  82 0.410 136 0.340 228 0.285

PTBA-1  591 93 0.930 183 0.915 350 0.875 486 0.822

PTBA-2 1,341 74 0.740 148 0.740 246 0.616 436 0.546

PTBA-3  674 98 0.980 193 0.965 360 0.900 523 0.777

Note that since the total number of term pairs of PTBA-3 and PTBA-1 is lower than 800, the last col-
umn denotes precision on the total number of pairs (i.e. Top 674 and Top 591, respectively).

4.3.2 Single vs. multi-word unit terms
While precision is the most important performance indicator of a bilingual term
alignment algorithm, we also wanted to have more details on the ratio between
single and multi-word terms in the outputs, because the client communicated that
having translations of multi-words terms is much more useful than just simple
one-word units. Since we are looking at bilingual term pairs, we consider a pair to
be a single-word unit if both terms (English and Slovenian) are single-word units,
and multi-word if at least one of the terms is a multi-word unit (MWU). For illus-
tration, see the three examples below:

issuance – izdaja SINGLE-WORD UNIT
registrar – agent za registracijo MULTI-WORD UNIT
stock market – borzni trg MULTI-WORD UNIT

Specifically, we looked at how many of the top N terms produced by individual
components are correct MWU term pairs. This decision was again reached in
communication with the client who wanted to have the ability to request a specific
number (N) of term pairs to be returned by TermEnsembler and our goal was to
make the returned term pairs as good as possible, both in terms of overall preci-
sion and in the number of correct MWU terms.

In Table 3, we can observe that the Dice algorithm produces the most correct
term pairs in all 4 scenarios, closely followed by MI. BI-LUIZ+ produces a lot of
multi-word terms but its precision (calculated as correct MWU terms divided by
all MWU terms in the top N term pairs) is relatively low, while the PTBA methods
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produce few MWU term pairs in the Top 100 pairs, but improve in this respect in
Top 200, Top 400 and Top 800 scenarios.

Table 3. Total number of MWU term pairs (and their precision) in top N terms, correct
MWU term pairs on the Financial dataset

Top 100 Top 200 Top 400 Top 800/Total

Cor/tot Prec Cor/tot Prec Cor/tot Prec Cor/tot Prec

Co-freq  2/21 0.420  7/49 0.143  17/128 0.133  49/383 0.128

Dice 52/94 0.553 106/175 0.606 198/320 0.619 358/589 0.608

MI 50/87 0.575 102/178 0.573 187/351 0.533 295/678 0.435

BI-LUIZ+  43/100 0.430  82/200 0.410 103/363 0.284 136/680 0.200

PTBA-1 20/24 0.833 51/61 0.836 133/170 0.782 199/273 0.729

PTBA-2 15/38 0.395 39/85 0.459  90/234 0.385 194/527 0.368

PTBA-3 14/14 1.000 54/57 0.947 130/146 0.890 218/278 0.784

Note that since the total number of term pairs of PTBA-3 and PTBA-1 is lower than 800, the last col-
umn denotes precision on the total number of pairs (i.e. Top 674 and Top 591, respectively).

4.4 Results of the TermEnsembler’s bilingual term alignment approach

The key question in our system is how to determine the optimal configuration of
weights for the merging script described in Section 3.3. Table 2 and Table 3 above
clearly show that some of the methods are much more effective than the others.
Similar to the reasoning in Section 4.3, we want to test two distinct scenarios:

– In the first one, we want to find the best overall precision.
– In the second one, we want to find the best compromise between the overall

precision and the number of correct multi-word units.

We decided to focus the evaluation of the weight configuration on the top 400
term pairs, because the client believes that 400 terms are enough to produce a use-
ful terminological resource in a standard translation project. In other words, we
try to optimize the configuration to return the best results on the top 400 term
pairs. Also, the starting point for comparison is the result of the PTBA-3 compo-
nent that has an overall precision of 0.900 and returns 130 correct multi-word unit
term pairs (see Table 2). This means that any weight configuration would need to
improve on these results.

As evident from Table 4, assigning the same weight to all components does
not yield results superior to the PTBA-3 component. The same is true if we assign
weights according to their individual precision (calculated in Table 2) relative to
the lowest value (i.e. the weight of BI-LUIZ+ is 1.0 and the rest are calculated
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proportionally). This is why we decided to use the DEAP evolutionary algorithm
described in Section 3.3 for weight configuration.

4.4.1 Optimizing for optimal precision
In the first experiment, we wanted to construct a weight configuration that would
result in the highest possible precision, which means that we minimize the num-
ber of incorrect pairs. We performed 20 repetitions of the evolutionary algorithm
execution. The average precision of the best performing 7-tuples of weights in
each of the 20 repetitions was 0.949 with a standard deviation of 0.009. The
overall best precision of 0.960 was achieved by three different weight configura-
tions (see Table 5),6 showing that the evolutionary algorithm exceeds the results of
PTBA-3 by 6% (see Table 4).

Table 4. Results of the various weight configurations on the Financial domain
Top 400

PTBA-3 0.900

Equal weights 0.725

Precision weights 0.732

Evolutionary algorithm 0.960

To test whether this configuration can be applied universally, we used it to evalu-
ate precision on two additional domains: Automotive and IT. To do so, we tested
all three configurations from Table 5 and calculated the average overall precision.
As can be observed from Table 6, the weight configuration produced by the evo-

6. The calculated weights show that the PTBA-3 component is always the most significant
one, followed by PTBA-1, and next Cofreq followed by all other methods (which can in some
cases even have negative weights). Several factors that contribute to the actual magnitude of
weights have to be taken into account when interpreting the results. First, the weights are com-
puted using different heuristics. Second, the components produce results of different lengths
and those returning a small number of mostly correct results are likely to obtain a higher weight.
Next, the evolutionary algorithm will try to adjust the weights in such way that segments of
high ranked correct results will make it to the final list. If the same or similar segment of cor-
rect results appears at the bottom of the list of another component, its promotion to the final list
is likely to be too costly as this would also promote several incorrect results. For example, the
reason for the negative weights in some of the repetitions in Table 5 is that the scores assigned
by a particular component (i.e. PTBA-2) are too high compared to other components. This is
confirmed by the results of the manual evaluation of individual components in Table 2 where
we can observe that PTBA-2 has a significantly lower precision than PTBA-1 or PTBA-3. The
weights of the remaining 4 components are significantly lower, close to 0, with the highest one
of them being Cofreq.
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Table 5. The best performing weight configurations when optimizing overall precision
using an evolutionary algorithm
Rep # Cofreq Dice MI Luiz PTBA-1 PTBA-2 PTBA-3

3 0.619 0.196  0.010 0.053 4.481 −2.867 11.046

8 0.327 0.086  0.008 0.022 1.564  0.137  5.494

10 0.561 0.106 −0.017 0.104 2.177 −0.758 10.268

lutionary algorithm returns good results on unseen data (IT and Automotive) as
well, with precision on unseen data actually exceeding the precision on the train-
ing data (i.e. Financial domain).

Table 6. Precision of the weight configuration produced by the evolutionary algorithm
on the Financial domain and applied to the Automotive and IT domain. The results were
obtained as an average precision of the three weight configurations shown in Table 5

Top 400

Financial 0.960±0.000

Automotive 0.984±0.001

IT 0.984±0.001

4.4.2 Optimizing for a compromise between optimal precision and number
of correct multi-word unit term pairs

In the next step, we modified the evolutionary algorithm to optimize the config-
uration for the highest precision and the largest number of multi-word units at
the same time. While the equal weight configuration and the weight configuration
based on individual precision values produce a higher number of MWUs, they
also introduce a fair amount of noise resulting in lower precision. As is evident
from Table 7, the configuration produced by the evolutionary algorithm has the
highest precision while maintaining a decent amount of MWUs (a high number
of which are also correct – MWU precision of 0.919). The results closest to this
configuration are returned by the PTBA-3 component, but the number of MWUs
is significantly lower.

These results were achieved by running 20 repetitions of the evolutionary
algorithm and selecting the best weight configuration based on the following cri-
terion: the best configuration has the highest number of correct MWUs and must
have an overall precision greater than the best individual component (in our case,
PTBA-3). The best weight configuration was thus produced in repetition 19 and
had the weights shown in Table 8.
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Table 7. Overall precision, total number of MWUs, number of correct MWUs and
precision of MWUs of the configuration produced by the evolutionary algorithm
compared to various other configurations, measured on the Financial domain

Precision Total MWUs Correct MWUs MWU precision

PTBA-3 0.900 146 130 0.890

Equal weights 0.725 311 205 0.659

Precision weights 0.733 312 208 0.667

Evolutionary algorithm 0.955 185 170 0.919

Table 8. The best performing weight configuration when optimizing for a compromise
between optimal precision and number of correct multi-word unit term pairs
Rep # Cofreq Dice MI Luiz PTBA-1 PTBA-2 PTBA-3

19 0.219 0.229 0.009 0.116 2.855 −4.739 11.470

Once again, we tested whether the configuration produced by the evolutionary
algorithm can be used universally by applying it to two additional domains: Auto-
motive and IT. The results can be found in Table 9.

Table 9. Top 400 results of the weight configuration produced by the evolutionary
algorithm on the Financial domain and applied to the Automotive and IT domain

Precision Total MWUs Correct MWUs MWU precision

Financial 0.955 185 170 0.919

Automotive 0.990 153 151 0.987

IT 0.985 130 126 0.969

In both domains, the results are similar to what we observed in the Financial
domain. In fact, the results are even better in the two new domains with overall
precision in the Top 400 term pair candidates exceeding 98%, and the MWU pre-
cision above 96%. The actual ratio of correct MWU terms among the Top 400
terms is 38% on the Automotive domain and 32% on the IT domain. We decided
to use this configuration as the final configuration in the client’s production envi-
ronment.

4.4.3 Recall of the TermEnsembler system
Due to the client’s preference, the majority of our experiments were focused on
precision, but we did also evaluate recall on a corpus subsample, where a gold
standard termlist of 88 financial terms was produced by manual expert annota-
tion. With the final weight configuration (used in the production environment)
the recall of the TermEnsembler system was 60%.
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4.5 Qualitative analysis of errors

To better understand the types of errors that the system makes, for each of the
three domains we have performed a qualitative analysis of the first 50 incorrect
term pairs7 among the list of 800 top ranked term pairs suggested by the system,
using the final weight configuration suggested by the evolutionary algorithm. We
observed that most of the errors are due to discrepancies between the English
and Slovenian monolingual extraction process, rather than due to the incorrect
alignment procedure, and that many incorrect term pairs can be considered “par-
tially correct”. We illustrate several examples of incorrect alignments below, start-
ing with minor errors followed by some more severe cases of misaligned terms.

In some of the highly ranked term pairs, one part of a term in one language is
missing because the term was incorrectly extracted, which results in partially cor-
rect term pair, such as (the word in brackets was not extracted):

Financial: interest (rate) – obrestna mera
Automotive: (quick) repair kit – komplet za hitro popravilo
IT: missing (value) – manjkajoča vrednost

A particularly difficult issue for the system are product names. Because they may
not follow standard language rules regarding the construction of terms, they are
difficult to detect without a pre-defined product name list or a well performing
named entity recognition system. Consequently, many of the incorrectly extracted
named entities contain parts of product names. The Financial dataset in particular
has a high number of named entities, which is a reason for lower results compared
to the other two corpora. Such examples include:

Equity – delnica8

BNP Paribas – Paribas
Flexible Bond Strategy – Bond Strategy

In a limited number of cases, the monolingual terms and the alignment itself are
correct, but the resulting term pair is not correct. In the two examples from the
Automotive dataset, the source text uses miles per gallon to denote gas mileage,
but the Slovenian translation (due to the preferences of the customer) uses kilo-
meters per 100 liters. A similar case can be observed with units denoting weight.

Mile – km
Lb – kg

7. The positions of the 50th incorrect term pair for all three domains: 518 for Financial, 756 for
Automotive, and 661 for IT.
8. Note that “equity” can appear either as a common noun (i.e. equity=assets) or as a part of a
proper noun (e.g., Global Equity Climate Change).
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In a smaller number of cases close to the bottom of the list of extracted term pairs,
the alignment is completely off and the meaning of the source term is not the same
as the meaning of the target term (which can be explained by the frequent co-
occurrence of the terms in the text), for example:

Financial: gross national income – svetovna banka
Automotive: similar heavy object – pritrjen nosilec koles
IT: folder number – znesek kredita

Finally, we compared the ratio between the two major error types in the three
domains (see Table 10). In the Financial and Automotive domains, the majority of
the incorrect terms can be ascribed to the category “Partially correct”, which are
predominantly errors arising from incorrect monolingual extraction (but could
also be related to incorrect translation or wrong alignment of the two terms).
Because the monolingual term is missing a word or several words or contains
redundant words, the resulting term pair was not classified as correct. However,
the alignment is not completely wrong nor completely useless, because the term
can be quickly corrected in a semi-automated terminology setting.

Table 10. A comparison of the two major error type among the 50 analysed incorrect
term pairs

Financial Automotive IT

Different meaning 38% 12% 56%

Partially correct 62% 88% 44%

5. Conclusions and future work

This paper describes TermEnsembler, a terminology extraction and alignment
system, created from the point of view of language service providers in the lan-
guage and translation industry. It consists of a concept-oriented terminology
database with industry-standard file format support for easy sharing with other
terminological applications, an online user interface for database management
and semi-automatic term extraction, a monolingual terminology extraction algo-
rithm (currently supporting English and Slovenian) and a novel bilingual align-
ment methodology with several components.

The first step is monolingual extraction based on the work of Vintar (2010)
and Pollak et al. (2012) with some additional modifications, such as a filter for
nested terms and near-duplicate recognition. The final result of this step are two
lists of terms (one for each language) with the terms ordered by their termhood
score. The next step, which is the central part of the paper, involves bilingual
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alignment of the terms in the two lists. We have implemented and evaluated a
total of seven methods – implementing approaches from the related work and the
newly proposed approaches – which all return a list of aligned English-Slovenian
term pairs. The evaluation of each approach separately shows that the highest pre-
cision was obtained by the newly developed phrase-table-based term alignment
approach PTBA-3 which directly matches the extracted terms with phrases from
the phrase table.

For final implementation, we experimented with different merging methods
for the 7 outputs by assigning weights to produce a final list of term pairs. After
initial experiments with equal weight and precision-based weights, we opted for
an ensemble optimization approach using the genetic algorithm implementation
from the evolutionary algorithm framework DEAP by Fortin et al. (2012), which
takes random weight configurations and tries to optimize them towards a certain
goal over a successive number of generations.

We have trained the bilingual alignment approach in TermEnsembler on one
domain and tested it on two different domains achieving excellent results, with
more than 96% of the top 400 term pair alignments produced by the system eval-
uated as correct by a human evaluator. In addition, we have also tried to optimize
the system for producing a greater number of multi-word terms because they are
particularly complicated for translation. When optimizing the evolutionary algo-
rithm for overall precision and number of correct multi-word terms, at least a
third of the top 400 term pair alignments returned by our system were correct
multi-word terms, with precision computed on the MWUs reaching 0.919. All in
all, we believe the high precision of our system among the top 400 terms would
require only minor manual human curation to produce a viable term list for day-
to-day work in the language industry.

We also briefly looked into whether bilingual term alignment improves the
quality of monolingual terms. An experienced translator compared the top 200
terms returned by the initial algorithm (the LUIZ-CF variant described in Pollak
et al. (2012)) for each of the two languages in all three domains and compared
them with the top 200 terms produced by TermEnsembler after bilingual term
alignment. The results show that TermEnsembler does improve the monolingual
quality of terms (precision) by around 10%.

In terms of future work, we have identified several lines of research. We will
continue adding new languages, implementing and systematically evaluating dif-
ferent monolingual term-extraction approaches. For bilingual alignment, we will
initially focus on a systematic optimization of the evolutionary algorithm parame-
ters and then look into implementing user-friendly parameters that would allow
the users to tweak the weights towards greater overall precision or larger number of
MWU terms. We will also test other, potentially faster optimization methods such
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as differential evolution and Newton-like methods as well as develop machine-
learning solutions for term alignment, combining the proposed statistical scores
and cognate-based features, as in Aker et al. (2013). Finally, given a recent trend of
well performing word-embeddings methods leading to excellent results in various
natural-language processing tasks, we aim to address bilingual term-extraction as
a well-suited task for developing cross-lingual embedding based term alignment
methods, stimulated by the work of Conneau et al. (2018).

Acknowledgements

The system’s interface and the elementary term extraction approaches were designed and devel-
oped in the scope of the TermIolar project by the Jožef Stefan Institute and Iolar d.o.o. The
authors acknowledge the contribution of Simon Bratina and Davorin Sečnik (of Iolar d.o.o.) to
functional specifications, additional requirements, evaluation of the interim results and provid-
ing important feedback and suggestions. The authors thank also Špela Vintar for her clarifica-
tions in the reimplementation of bilingual LUIZ term alignment.

The authors acknowledge the financial support of Slovenian Research agency for funding
part of this research in the scope of basic research program Knowledge Technologies (Grant
No. P2-0103) and the project Terminology and Knowledge Frames across Languages (Grant No.
J6-9372). This paper is supported by European Union’s Horizon 2020 research and innovation
programme under grant agreement No. 825153, project EMBEDDIA (Cross-Lingual Embed-
dings for Less-Represented Languages in European News Media). The results of this paper
reflect only the author's view and the Commission is not responsible for any use that may be
made of the information it contains.

References

Ahmad, Khurshid, Lee Gillam, and Lena Tostevin. 2000. “Weirdness Indexing for Logical
Document Extrapolation and Retrieval (WILDER).” In Proceedings of the 8th Text
Retrieval Conference (TREC-8), 717–724. Washington, USA.

Aker, Ahmet, Monica Paramita, and Rob Gaizauskas. 2013. “Extracting Bilingual
Terminologies from Comparable Corpora.” In Proceedings of the 51st Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), 402–411. Sofia,
Bulgaria.

Amjadian, Ehsan, Diana Inkpen, Tahereh Paribakht, and Farahnaz Faez. 2016. “Local-Global
Vectors to Improve Unigram Terminology Extraction.” In Proceedings of the 5th
International Workshop on Computational Terminology, 2–11. Osaka, Japan.

TermEnsembler 117

ICT-29-2018 D2.3: Initial keyword extraction

106 of 127



Baisa, Vít, Barbora Ulipová, and Michal Cukr. 2015. “Bilingual Terminology Extraction in
Sketch Engine.” In 9th Workshop on Recent Advances in Slavonic Natural Language
Processing, RASLAN 2015 – Proceedings, 61–67. Karlova Studánka, Czech Republic.

Bird, Steven, Ewan Klein, and Edward Loper. 2009. Natural Language Processing with Python:
Analyzing Text with the Natural Language Toolkit. Sebastopol: O’Reilly Media Inc.

Church, Kenneth Ward, and Patrick Hanks. 1990. “Word Association Norms, Mutual
Information, and Lexicography.” Computational Linguistics 16 (1): 22–29.

Cohen, Jacob. 1968. “Weighted Kappa: Nominal Scale Agreement Provision for Scaled
Disagreement or Partial Credit.” Psychological Bulletin 70 (4): 213.
https://doi.org/10.1037/h0026256

Conneau, Alexis, Guillaume Lample, Marc’Aurelio Ranzato, Ludovic Denoyer, and
Hervé Jégou. 2018. “Word Translation Without Parallel Data.” (https://arxiv.org/abs/1710
.04087) Accessed 2 February 2019.

Daille, Béatrice, and Emmanuel Morin. 2005. “French-English Terminology Extraction from
Comparable Corpora.” In Proceedings of the 2nd International Joint Conference on Natural
Language Processing, 707–718. Jeju Island, South Korea.

Daille, Béatrice, Éric Gaussier, and Jean-Marc Langé. 1994. “Towards Automatic Extraction of
Monolingual and Bilingual Terminology.” In Proceedings of the 15th Conference on
Computational linguistics, 515–521. Kyoto, Japan. https://doi.org/10.3115/991886.991975

Dice, LR. 1945. “Measures of the Amount of Ecologic Association between Species.” Ecology 26
(3): 297–302. https://doi.org/10.2307/1932409

Foo, Jody. 2012. Computational Terminology: Exploring Bilingual and Monolingual Term
Extraction. Linköping: Linköping University Electronic Press.

Fortin, Félix-Antoine, François-Michel De Rainville, Marc-André Gardner, Marc Parizeau,
and Christian Gagné. 2012. “DEAP: Evolutionary Algorithms Made Easy.” Journal of
Machine Learning Research 13 (no. Jul): 2171–2175.

Frantzi, Katerina, Sophia Ananiadou, and Hideki Mirna. 2000. “Automatic Recognition of
Multi-Word Terms:. the C-Value/NC-Value Method.” International Journal on Digital
Libraries 3(2): 115–130. https://doi.org/10.1007/s007999900023

Gouadec, Daniel. 2007. Translation as a Profession. Amsterdam/Philadephia: John Benjamins.
https://doi.org/10.1075/btl.73

Haque, Rejwanul, Sergio Penkale, and Andy Way. 2014. “Bilingual Termbank Creation via
Log-Likelihood Comparison and Phrase-Based Statistical Machine Translation.” In
Proceedings of the 4th International Workshop on Computational Terminology
(Computerm), 42–51. Dublin, Ireland. https://doi.org/10.3115/v1/W14‑4806

Hazem, Amir, and Emmanuel Morin. 2017. “Bilingual Word Embeddings for Bilingual
Terminology Extraction from Specialized Comparable Corpora.” In Proceedings of the 8th
International Joint Conference on Natural Language Processing, 685–693. Taipei, Taiwan.

Hiemstra, Djoerd. 1998. “Multilingual Domain Modeling in Twenty-One: Automatic Creation
of a Bi-Directional Translation Lexicon from a Parallel Corpus.” In Proceedings of the 8th
CLIN Meeting, 41–58. Amsterdam, The Netherlands.

Justeson, John, and Slava Katz. 1995. “Technical Terminology: some Linguistic Properties and
an Algorithm for Identification in Text.” Natural Language Engineering 1 (1): 9–27.
https://doi.org/10.1017/S1351324900000048

Kageura, Kyo, and Bin Umino. 1996. “Methods of Automatic Term Recognition: A Review.”
Terminology 3 (2): 259–289. https://doi.org/10.1075/term.3.2.03kag

118 Andraž Repar, Vid Podpečan, Anže Vavpetič, Nada Lavrač & Senja Pollak

ICT-29-2018 D2.3: Initial keyword extraction

107 of 127



Khan, Muhammad Tahir, Yukun Ma, and Jung-jae Kim. 2016. “Term Ranker: A Graph-Based
Re-Ranking Approach.” In Proceedings of the 29th International Florida Artificial
Intelligence Research Society Conference, 310–315. Key Largo, USA.

Koehn, Philipp, Hieu Hoang, Alexandra Birch, Chris Callison-Burch, Marcello Federico,
Nicola Bertoldi, Brooke Cowan et al. 2007. “Moses: Open Source Toolkit for Statistical
Machine Translation.” In Proceedings of the 45th Annual Meeting of the ACL on Interactive
Poster and Demonstration Sessions, 177–180. Prague, Czech Republic.
https://doi.org/10.3115/1557769.1557821

Kupiec, Julian. 1993. “An Algorithm for Finding Noun Phrase Correspondences in Bilingual
Corpora.” In Proceedings of the 31st Annual Meeting on Association for Computational
Linguistics, 17–22. Columbus, USA. https://doi.org/10.3115/981574.981577

Landis, Richard, and Gary Koch. 1977. “The Measurement of Observer Agreement for
Categorical Data.” Biometrics 33 (1): 159–174. https://doi.org/10.2307/2529310

Ljubešić, Nikola, and Tomaž Erjavec. 2016. “Corpus vs. Lexicon Supervision in
Morphosyntactic Tagging: the Case of Slovene.” In Proceedings of the 10th International
Conference on Language Resources and Evaluation (LREC 2016), 23–28. Portorož, Slovenia.

Logar, Nataša, Miha Grčar, Marko Brakus, Tomaž Erjavec, Špela Arhar Holdt, and
Simon Krek. 2012. Korpusi slovenskega jezika Gigafida, KRES, ccGigafida in ccKRES:
gradnja, vsebina, uporaba [Slovenian language corpora Gigafida, KRES, ccGigafida,
ccKRES: creation, content, use]. Ljubljana: Trojina, zavod za uporabno slovenistiko;
Fakulteta za družbene vede.

Macken, Lieve, Els Lefever, and Veronique Hoste. 2013. “Texsis: Bilingual Terminology
Extraction from Parallel Corpora using Chunk-Based Alignment.” Terminology 19 (1):
1–30. https://doi.org/10.1075/term.19.1.01mac

McEnery, Tony, Richard Xiao, and Yukio Tono. 2006. Corpus-Based Language Studies: An
Advanced Resource Book. London: Taylor & Francis.

Mikolov, Tomas, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. “Efficient Estimation of
Word Representations in Vector Space.” (https://arxiv.org/abs/1301.3781) Accessed 10 July
2018.

Neubig, Graham, Taro Watanabe, Eiichiro Sumita, Shinsuke Mori, and Tatsuya Kawahara.
2011. “An Unsupervised Model for Joint Phrase Alignment and Extraction.” In
Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics,
632–641. Portland, USA.

Och, Franz Josef, and Hermann Ney. 2003. “A Systematic Comparison of Various Statistical
Alignment Models.” Computational Linguistics 29 (1): 19–51.
https://doi.org/10.1162/089120103321337421

Pollak, Senja, Anže Vavpetič, Janez Kranjc, Nada Lavrač, and Špela Vintar. 2012. “NLP
Workflow for On-Line Definition Extraction from English and Slovene Text Corpora.” In
Proceedings of KONVENS 2012, 53–60. Vienna, Austria.

Repar, Andraž, and Senja Pollak. 2017a. “Good Examples for Terminology Databases in
Translation.” In Electronic Lexicography in the 21st century. Proceedings of eLex 2017
Conference, 651–661. Leiden, Netherlands.

Repar, Andraž, and Senja Pollak. 2017b. “Ontology-Based Translation Memory Maintenance.”
In Proceedings of the 20th International Multiconference Information Society 2017, 19–22.
Ljubljana, Slovenia.

TermEnsembler 119

ICT-29-2018 D2.3: Initial keyword extraction

108 of 127



Schmitz, Klaus Dirk, and Daniela Straub. 2016. “Tight Budgets and a Growing Number of
Languages Impede Terminology Work.” tcworld magazine for international information
management (http://www.tcworld.info/e-magazine/technical-communication/article
/tight-budgets-and-a-growing-number-of-languages-impede-terminology-work/).
Accessed 24 August 2018.

The British National Corpus, version 3 (BNC XML Edition). 2007. Distributed by Bodleian
Libraries, University of Oxford, on behalf of the BNC Consortium. (URL: http://www
.natcorp.ox.ac.uk/). Accessed 10 March 2017.

Vintar, Špela. 2010. “Bilingual Term Recognition Revisited. The Bag-of-Equivalents Term
Alignment Approach.” Terminology 16 (2): 141–158. https://doi.org/10.1075/term.16.2.01vin

Wang, Rui, Wei Liu, and Chris McDonald. 2016. “Featureless Domain-Specific Term
Extraction with Minimal Labelled Data.” In Proceedings of the Australasian Language
Technology Association Workshop, 103–112. Melbourne, Australia.

Wermter, Joachim, and Udo Hahn. 2005. “Paradigmatic Modifiability Statistics for the
Extraction of Complex Multi-Word Terms.” In Proceedings of the Conference on Human
Language Technology and Empirical Methods in Natural Language Processing, 843–850.
Vancouver, Canada.

Wüster, Eugene. 1979. Introduction to the General Theory of Terminology and Terminological
Lexicography. Vienna: Springer.

Zhang, Zigi, Jie Gao, and Fabio Ciravegna. 2018. “SemRe-Rank: Incorporating Semantic
Relatedness to Improve Automatic Term Extraction Using Personalized PageRank.”
(https://arxiv.org/abs/1711.03373) Accessed 7 January 2019.

Address for correspondence

Andraž Repar
International Postgraduate School Jožef Stefan
Jožef Stefan Institute
Jamova 39, Ljubljana
Slovenia
repar.andraz@gmail.com

Co-author information

Vid Podpečan
Jožef Stefan Institute
vid.podpecan@ijs.si

Anže Vavpetič
Jožef Stefan Institute
hi@anzevavpetic.com

Nada Lavrač
Jožef Stefan Institute
nada.lavrac@ijs.si

Senja Pollak
Jožef Stefan Institute
senja.pollak@ijs.si

120 Andraž Repar, Vid Podpečan, Anže Vavpetič, Nada Lavrač & Senja Pollak

ICT-29-2018 D2.3: Initial keyword extraction

109 of 127



Karst exploration: Extracting terms and definitions from
karst domain corpus

Senja Pollak1,2, Andraž Repar1, Matej Martinc1, Vid Podpečan1

1Jožef Stefan Institute, Ljubljana, Slovenia
2Usher Institute of Population Health Sciences and Informatics, Edinburgh Medical School, Edinburgh, UK

E-mail: senja.pollak@ijs.si, repar.andraz@gmail.com, matej.martinc@ijs.si, vid.podpecan@ijs.si

Abstract
In this paper, we present the extraction of specialized knowledge from a corpus of karstology literature. Domain
terms are extracted by comparing the domain corpus to a reference corpus, and several heuristics to improve the
extraction process are proposed (filtering based on nested terms, stopwords and fuzzy matching). We also use
a word embedding model to extend the list of terms, and evaluate the potential of the approach from a term
extraction perspective, as well as in terms of semantic relatedness. This step is followed by an automated term
alignment and analysis of the Slovene and English karst terminology in terms of cognates. Finally, the corpus
is used for extracting domain definitions, as well as triplets, where the latter can be considered as a potential
resource for complementary knowledge-rich context extraction and visualization.

Keywords: karstology; term extraction; term embeddings; term alignment; definition extraction; triplets; spe-
cialized corpora

1. Introduction

The totality of means of expression in a language can be divided into general language and
specialized language. Even if there is no distinct boundary between the two, it can be said
that general language defines the sum of the means of linguistic expression encountered by
most speakers of a given language, whereas specialized language goes beyond the general
vocabulary based on the socio-linguistic or the subject-related aspect. The latter arises as a
consequence of constant development and specialization in the fields of science, technology,
and sociology (Svensen, 1993: p. 48-49). Similar to the definition of technical language
by Svensen, in the context of terminology, specialized language, also called language for
special purposes, is defined as a “language used in a subject field and characterized by
the use of specific linguistic means of expression” (ISO 1087-1:2000).

If lexicologists and lexicographers mainly focus on words or lexemes, terminologists focus
on terms, i.e., the words with a protected status when used in special subject domains
(Pearson, 1998: p. 7). In contemporary approaches, the dichotomy ‘word-term’ is wiped-
out. For Kageura (2002) terms are functional variants of words. Cabré Castellví (2003:
p. 189) claims that all terms are words by nature and notes that “we recognize the
terminological units from their meaning in a subject field, their internal structure and
their lexical meaning”. According to Myking (2007: p. 86), the traditional terminology is
concept-based and the new directions are lexeme-based.

A definition is a characterization of the meaning of the lexeme (Jackson, 2002: p. 93). It is
“a representation of a concept by a descriptive statement which serves to differentiate it
from related concepts” (ISO 12620:2009). The concept to be defined is called a definien-
dum, the part defining its meaning definiens, and the optional element (usually a verb)
connecting the two parts in a sentence, is called a hinge.

Granger (2012) highlights six most significant innovations of electronic lexicography in
comparison to the traditional methods: a) corpus integration, meaning the inclusion of
authentic texts in the dictionaries; b) more and better data, since there are no more space
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limitations and one has the possibility to add multimedia data; c) efficiency of access
(quick search and different possibility of database organization); d) customization, mean-
ing that the content can be adapted to the user’s needs; e) hybridization, denoting that
the limits between different types of language resources—e.g., dictionaries, encyclopedias,
term banks, lexical databases, translation tools—are breaking down; and f) user input,
since collaborative or community-based input is integrated. Similar can be claimed for
terminological work, where recent approaches in terminology science consider knowledge
(represented in texts) as conceptually dynamic and linguistically varied (Cabré, 1999;
Kageura, 2002), and where novel methods in data acquisition, organization and repre-
sentation, are being constantly developed. Knowledge can be extracted from specialized
resources automatically, benefiting from the advances in the field of natural language pro-
cessing. Moreover, attempts in dynamic, visual representation of domain knowledge have
been proposed in recent years, e.g., EcoLexicon1 (Faber et al., 2016).

In this work, we present the extraction of specialized knowledge from a corpus of karstol-
ogy, i.e. an interdisciplinary domain at the intersection of geology, hydrology, and speleol-
ogy. The domain is of high interest, as karst is possibly the most prominent geographical
feature of Slovenia (with karst formations being some of popular tourist and natural at-
tractions in Slovenia). It is also an interesting example of how terminology is dynamically
evolving in a cross-linguistic context. The literature published in English contains many
local Slovenian scientific terms and toponyms for typical geomorphological karst struc-
tures, which makes it appropriate for research and identification of cognates, as well as
homonym terms, with possible differences in meaning accross cultures.

Withing the TermFrame2 project, we focus on the specialized knowledge of karst science,
and plan to develop methods that allow for context- and language-dependent investigation
into a domain, relying on semi-automated tools. In this paper, we apply some of the
methods that we have previously developed to a new domain, resulting in a repository of
karst term and definition candidates in Slovene and English, contributing to the karstology
terminological science. Next, we propose a word embedding based term list extension
and triplet extraction that can be used for visualization. These are novel components,
contributing to terminological domain modelling.

This paper is structured as follows. After presenting the related work in automated spe-
cialized knowledge extraction in Section 2, we present the resources used (Section 3),
methods (Section 4), results (Section 5) and conclude the paper with a discussion and
plans for future work (Section 6).

2. Related work
Terminological work has undergone a significant change with the emergence of computa-
tional approaches resulting in semi-automated extraction of terms, definitions and other
knowledge structures from raw text. Automatic terminology extraction has been imple-
mented for various languages, including English (e.g., Sclano & Velardi, 2007; Frantzi &
Ananiadou, 1999; Drouin, 2003) and Slovene (e.g., Vintar, 2010; Pollak et al., 2012), which
are the languages in our corpus. In the last few years, word embeddings (Mikolov et al.,
2013) have become a very popular natural language processing technique and several at-
tempts have already been made to utilize word embeddings for terminology extraction

1 http://ecolexicon.ugr.es/en/index.htm
2 http://termframe.ff.uni-lj.si/
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(e.g., Amjadian et al., 2016; Zhang et al., 2017). We use word embeddings techniques for
extending term lists.

Also in bilingual term extraction and alignment, numerous approaches have been pro-
posed, including Gaussier (1998), Kupiec (1993), Lefever et al. (2009), Vintar (2010),
Baisa et al. (2015), as well as Aker et al. (2013), who treat bilingual term alignment as a
binary classification task. The modified version of the latter approach described in Repar
et al. (2018), is also used in this paper.

Automated definition extraction approaches have been developed for several languages,
including English (e.g., Navigli & Velardi, 2010), Slovene (e.g., Fišer et al., 2010) and
multilingual methods (e.g., Faralli & Navigli, 2013). In our work we use a pattern-based
definition extraction method for English and Slovene (Pollak et al., 2012).

In addition to definitions, authors have focused on extracting different types of semantic
relations. Pattern-based approaches (Hearst, 1992; Roller et al., 2018), as well as machine
learning techniques have been proposed (cf. Nastase et al., 2013). In contrast to extracting
predefined semantic relations, the Open Information Extraction (OIE) paradigm considers
relations as expressed by parts of speech (Fader et al., 2011), paths in a syntactic parse
tree (Ciaramita et al., 2005), or sequences of high-frequency words (Davidov & Rappoport,
2006). In our experiments we use the ReVerb triplet extractor by Etzioni et al. (2011).

This study presents the knowledge extraction steps within the TermFrame project, com-
plementing previous work in karstology modelling presented in Vintar & Grčić-Simeunović
(2017), and contributing to the emerging karstology knolwedge base. The extracted knowl-
edge was used in the frame-based annotation approach, identifying the semantic cate-
gories, relations and relation definitors in definitions of karst concepts, as presented in
Vintar et al. (2019), as well as in topic modeling using term co-occurrence network pre-
sented in Miljković et al. (2019). The work is also closely related to Faber et al. (2016),
a multilingual visual thesaurus of environmental science, which was developed following
frame-based, cognitively-oriented approach to terminology.

3. Resources

The corpus of karstology was constructed within the TermFrame project; it consists of
Slovene, Croatian and English texts. We focus on the Slovene and English parts of the
TermFrame corpus (v1.0). The English subcorpus contains cca. 1.6 M words and the
Slovene one cca. 1 M words (see Table 1 for details).

Table 1: Statistics for English and Slovenian subcorpora.

English Slovene
Vocabulary size 64,079 73,813
Documents 24 60
Sentences 103,322 57,575
Words 1,673,132 1,041,475
Tokens 1,972,320 1,231,039
Type-to-token ratio 0.032 0.060

ICT-29-2018 D2.3: Initial keyword extraction

112 of 127



In addition, we are using a short gold standard list of Karst domain terms, called QUIKK
termbase3. The QUIKK term base consists of terms in four languages, but for the purposes
of our experiments, the Slovene and English term lists are used, containing 57 and 185
terms, respectively.

4. Methods
4.1 Term candidate extraction

First, we present the procedure of extracting terms by comparing the words in the noun
phrases in the domain and reference corpora, and next we present a method using word
embeddings to extend the list of terms.

4.1.1 Statistical term extraction

For extracting domain terms we use the LUIZ-CF term extractor (Pollak et al., 2012),
which is a variant of LUIZ (Vintar, 2010) refined with scoring and ranking functions. The
term extraction uses part-of-speech patterns for detecting noun phrases and compares the
frequencies of words (lemmas) in the noun phrase in the domain corpus of karstology and
a reference corpus.

The output is a list of term candidates in Slovene and English, above a selected fre-
quency4 and/or termhood threshold. In addition, we applied the following filtering and
term merging procedures:

• Nested terms filtering: Nested terms are the terms that appear within other longer
terms and may or may not appear by themselves in the corpus (Frantzi et al.,
2000). As in Repar et al. (2019), the difference between a term and its nested
term is defined by a frequency difference threshold: if a term in a corpus appears
predominantly within a longer string, only the longer term is returned. If not (if a
shorter term appears independently of a longer term more frequently than the set
parameter), both terms are included in the final output.5

• Stop words filtering: If a term candidate is found on the stop word list, the term
is excluded from the final list.6

• Term merging by fuzzy matching: Frequently, we can find terms that are extracted
as separate terms but are in fact duplicates because they are written in different
variants. This can be due to spelling variations (e.g., British and American English,
using hyphenation or not), typos (which are relatively frequent when we deal with
large text collections), errors due to pdf-to-text conversions etc. The proposed term
merging is based on Levenshtein edit distance (Levenshtein, 1966): if two terms are
nearly identical (default threshold is 95%), they will be merged and mapped to a

3 http://islovar.ff.uni-lj.si/karst
4 We set minimum frequency to 15.
5 In our experiments, the parameter is set to 15 to match minimum frequency.
6 General stop words are not problematic, as they are frequent also in a reference corpus, and therefore
not identified as terms by LUIZ-CF. However, the words specific to the academic discourse, are not
frequent in general language and therefore often appear as extracted term candidates. To exclude
them, we use the following short stop words list: example, use, source, method, approach, table, figure,
percentage, et, al., km.
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common identifier. In addition, a rule which handles the case when two terms have
a different prefix but the same tail and should not be recognized as duplicates can
be applied.

4.1.2 Extending term lists with word embeddings

Word embeddings are vector representations of words, where each word is assigned a multi-
dimensional vector of real numbers, characterizing the word based on the lexical context
in which it appears. When vectors are computed on very large corpora, and especially
with recent advances in models using neural networks, these representations have seen a
huge success within various natural language processing tasks.

The embeddings capture certain degree of semantics, as words that are similar or semanti-
cally related are closer together in the vector space. Previous research conducted by Diaz
et al. (2016) showed that embeddings can be successfully used for expanding queries on
topic specific texts. In this research, we test if word embeddings can be used for a similar
task of extending the gold standard term lists to find more domain terms. According to the
research conducted by Diaz et al. (2016), embeddings trained only on small topic specific
corpora outperform non-topic specific general embeddings trained on very large general
corpora for the task of query expansion due to strong language use variation in special-
ized corpora. Therefore, we use the same approach for extending the term list and train
custom embeddings on the specialized corpus instead of using pretrained embeddings.

In our experiments, we have trained FastText embeddings (Bojanowski et al., 2017) on
the Slovenian and English karst subcorpora and use them to find twenty closest words
(according to cosine distance between embeddings) for the first fifty terms in the QUIKK
term base7. These related words are sorted according to their proximity to the term
and the first, second, tenth and twentieth ranked words are used in manual evaluation.
Embeddings for multi-word terms are generated by averaging the word embeddings for
each word in the term.8

4.2 Cognates detection and term alignment

English terms are mapped to Slovene equivalents using a data mining approach by Aker
et al. (2013) reimplemented in Repar et al. (2018). Bilingual term alignment is treated as a
binary classification, with a support vector machine classifier trained on various dictionary
and cognate-based features that express correspondences between the words (composing a
term) in the target and source language. The first take advantage of dictionaries (Giza++)
created from large parallel corpora, and the latter exploit string-based word similarity
between languages (cf. Gaizauskas et al., 2012). In addition, the cognate-based features
(see Table 2) allow to identify cognate term pairs, which are interesting as karst terms in

7 To be exact, 50 English terms, and 47 Slovene terms, since only 47 Slovenian terms from the QUIKK
term base appear in the Slovenian corpus.

8 There are several possible multi-word term aggregation approaches, such as summation of compo-
nent word vectors, averaging of component word vectors, creating multi-word term vectors, etc. As
comparing different techniques is beyond the scope of this study, we decided for the simple averaging
technique, as previous research on this topic conducted on the medical domain (Henry et al., 2018)
found no statistically significant difference between any multi-word term aggregation method.
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different languages clearly share their origin, but there exist also well-known examples of
non-equivalent cognates (e.g., Slovene dolina vs. English doline).

Table 2: Cognate-based features used for term alignment.
Feature Description
Longest Common Subsequence Ratio Measures the longest common non-consecutive sequence of charac-

ters between two strings
Longest Common Substring Ratio Measures the longest common consecutive string (LCST) of charac-

ters that two strings have in common
Dice similarity 2*LCST / (len(source) + len(target))
Normalized Levensthein distance (LD) 1 - LD / max(len(source), len(target))

4.3 Definition candidates extraction

We use the pattern-based module of the definition extractor (Pollak et al., 2012), which
is available online.9 The soft pattern matching is used to extract sentences of forms NP
is NP, NP refers to NP, NP denotes NP, etc., and the parameters contain language (EN,
SL), as well as the position of the term in Slovene (if the term must be at the beginning
of the sentence, after a larger set of predefined start patterns (our choice) or anywhere in
a sentence).

4.4 Triplet extraction

As predefined definition patterns (cf. Section 4.3) were designed for extracting specific
knowledge contexts, we complement the approach by open-relation extraction (this ex-
periment is conducted only for English, as for Slovene the tools are not available). We
use ReVerb (Fader et al., 2011), which extracts relation phrases and their arguments and
results in triplets of form:

<argument1, relation phrase, argument2>

We believe that in the case that argument1 and argument2 match domain terms, the
triplets can be exploited as a method for extraction of knowledge-rich contexts (an al-
ternative to definitions). They are also a useful input for visualization of terminological
knowledge and can meet the needs of frame-based terminology, aiming at facilitating user
knowledge acquisition through different types of multimodal and contextualized informa-
tion, in order to respond to cognitive, communicative, and linguistic needs (Gil-Berrozpe
et al., 2017). Previously, triplets have been used in other domains, e.g., in systems biology
for building networks from domain literature (Miljković et al., 2012).

9 http://clowdflows.org/workflow/8165/
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5. Evaluation setting and results
5.1 Term candidates extraction

5.1.1 Statistical term extraction

We extracted 4397 English term candidates and 2946 Slovene term candidates. A domain
expert and a linguist specialized in terminology with high domain understanding manually
evaluated all term candidates for Slovene and the top 1823 (above a selected threshold)10

term candidates for English. The following categories were used:

• Not a term (label: 0)
• Karst term (label: 1)
• Broader domain terms (label: 2)
• Named entity (label: 3)

To distinguish between karst and broader domain terms, the following criterium is used.
While karstology is in itself an interdisciplinary field, in TermFrame the focus is on karst
geomorphology entailing surface and underground landforms, and karst hydrology with
its typical forms and processes. Terms from neighbouring domains (geography, biology,
geochemistry etc.) which are not exclusive to karst are considered broader domain terms.
In case of disagreement, the two annotators made consensus on the final category. As
presented in Table 3, the resulting list of terms contains 351 karst terms for English and
158 for Slovene. The newly extracted karst terms, such as cave, uvala, doline, denudation
describing landforms, processes, environment, etc., can serve for the extension of the
manual QUIKK karstology term base, while for example the term candidate karst region
is not considered a term because it is too generic and compositional, denoting a different
underlying semantic relation (a region which contains karst).

The precision of term extraction is 0.516 for English and 0.235 for Slovene. For examples
of terms in each category, see Table 4, while top terms sorted by termhood score for
English and Slovene are presented in Tables 5 and 6, respectively.

Table 3: Term extraction results. Precision is calculated as the sum of all three positive categories (1, 2, 3) divided
by the number of evaluated terms.

Lang Evaluated terms Not a term Karst term Broader domain term Named entity Precision
Slovene 2946 2228 158 194 341 0.235
English 1823 882 351 434 156 0.516

In addition, we evaluate our filtering methods. All nested terms (306 for English, 105 for
Slovene) removed by the nested term filtering are correctly eliminated, the stop words
10 The reason for the discrepancy in the number of evaluated terms is that the evaluation for Slovene

yielded a much lower number of terms (categories 1 or 2) in Slovene than in English. Since we need a
large number of terms for additional steps, i.e. term alignment, we instructed the evaluators to process
the full list of term candidates for Slovene. If we took the same number of top terms for Slovene as
for English (top 1823), we get the following results (cf. Table 3): Not a term: 1187, Karst term: 140,
Domain term: 174, Named entity: 220, Precision: 0.293.
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Table 4: Examples of term extraction evaluation categories.

Lang Not a term Karst term Broader domain term Named entity
Slovene dinarska smer slepa dolina naplavna ravnica Planinsko polje

ilovnat material udornica mehansko preperevanje Podgorski kras
kataster jam kalcijev karbonat ravnovesna meja Gorski kotar

English deepest cave karst aquifer sea level Southeast Asia
world heritage subterranean water carbonic acid Castleguard Cave
largest spring phreatic cave cave habitat Central America

Table 5: Top 20 English karst term candidates with frequencies and categorization to karst terminology (1),
broader domain terminology (2), named entity (3) or non-term (0).

Rank Frequency Term Categorization
1 19269 cave 1
2 451 karst aquifer 1
3 522 karst area 1
4 459 cave system 1
5 314 dinaric karst 3
6 414 carbonate rock 1
7 348 cave passage 1
8 218 crna reka 3
9 271 karst system 1
10 209 karst feature 1
11 192 karst terrain 1
12 201 karst landscape 1
13 203 karst region 0
14 192 karst spring 1
15 564 united state 3
16 146 troglobitic specie 2
17 187 cave entrance 1
18 227 lava tube 2
19 169 cave sediment 1
20 164 karst rock 1

filter did not detect any terms which should not be removed, and all near duplicates (11
for English, 22 for Slovene) detected with the fuzzy match filter are also correct (e.g.,
“ground-water” was detected as a duplicate of “ground water”).

5.1.2 Extending term lists with word embeddings

The method was tested on 47 English and 50 Slovene source terms (i.e. the terms from
the gold standard list), for which out of 20 most related words (according to the cosine
distance between the source term and the related word), four per each source term were
selected for evaluation (first, second, tenth and twentieth ranked words), resulting in 200
term-word pairs for English and 188 for Slovene.11 Examples of ranked related words for
five English and five Slovene terms are presented in Table 7.
11 In this section, we intentionally name related words as words and not as terms, to contrast them to

the gold standard list of terms to which they are compared. As shown in the evaluation, they can be
in next step evaluated as terms or not.
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Table 6: Top 20 Slovene karst term candidates with frequencies and categorization to karst terminology (1),
broader domain terminology (2), named entity (3) or non-term (0).

Rank Frequency Term Categorization
1 1966 nadmorska višina 0
2 9543 jama 1
3 4472 kras 1
4 6359 voda 0
5 713 slepa dolina 1
6 4481 dolina 0
7 405 brezstropa jama 1
8 2948 apnenec 1
9 623 Pivška kotlina 3
10 2573 sediment 0
11 3418 dno 0
12 425 erozijski jarek 2
13 3608 polje 1
14 2770 rov 1
15 728 kraško polje 1
16 2049 udornica 1
17 4619 del 0
18 2564 kamnina 2
19 507 suha dolina 1
20 3882 oblika 0

Table 7: Examples of ranked related words for five English (upper five examples) and five Slovene (lower five
examples) terms.

Term R1 R2 R10 R20
sinkhole shakehole suburban sinkpoint dump
aggressive water aggressively aggressiveness qc coldwater
epikarst zone epikarstic subcutaneous cutaneous epiphreatic
caprock sinkhole sinkpoint overbank suburb evacuation
seacave seacoast sealevel vrulja caveand
udornica udornina zapornica koliševka kamojstrnik
agresivna voda sposoben mehurček skoznjo preniči
epikras epikraški prenikujoč epr vadozen
vrtača vrtačast mikrovrtača globel neizravnan
rečna jama reža narečen mohoričev vodokazen

The two human evaluators evaluated the related words according to two criteria:

• Is the word a term
• Semantic similarity to the term

The first criterion is measured on a scale with four nominal classes (see Section 5.1.1),
while the second criterion uses a numerical scale from zero to ten, following the evaluation
procedure of Finkelstein et al. (2002), where zero suggests no semantic similarity and ten
suggests very close semantic relation (fractional scores were also allowed). The inter-
annotator agreement between two evaluators (according to the Cohen’s kappa coefficient)
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is 0.689 for the first criterion and 0.513 for the second criterion for English and 0.594 for
the first criterion and 0.389 for the second criterion for the Slovene evaluation.

Table 8 presents results for the evaluation of embeddings-based term extension. Out of
200 English term-word pairs, 112 were manually labeled as term-term pairs by at least one
evaluator which suggests that, at least for English, embeddings can be used for extending
the term list. Out of these 112 related terms, 52 were labeled as karst specific terms by at
least one evaluator. For Slovenian, the results are worse, since out of 188 term-word pairs
only 69 were labeled as term-term pairs and out of these only 36 are karst specific.

Out of 112 English term-term pairs, 62 were ranked first and second and 50 were ranked
tenth and twentieth according to the cosine distance similarity. Out of 69 Slovenian term-
term pairs, 39 were ranked first or second and 30 were ranked as tenth or twentieth. This
suggests that words that have most similar embeddings to terms according to the cosine
distance (rank 1 and rank 2) are also more likely to be terms themselves than words
that have less similar embeddings (rank 10 and rank 20). Similar applies to karst specific
term-term pairs, where for English 30 were ranked first or second and 22 were ranked
tenth or twentieth. For Slovenian, 24 out of 36 were ranked first or second and 12 were
ranked tenth or twentieth.

When it comes to semantic similarity, unsurprisingly better ranked related words were
manually evaluated as semantically more similar. For example, the first ranked (most
similar to terms according to the cosine distance) English related words got an average
semantic similarity score12 of 4.040 out of ten and first ranked Slovenian related words
got an average semantic similarity score of 4.468. These are larger averages than seman-
tic similarity score averages of 2.610 and 3.064 for English and Slovenian related words
ranked as twentieth. Another interesting observation is the fact that the average semantic
similarity score is the largest for English karst specific term-terms pairs (5.702) and much
lower if all the term-word pairs are considered (3.325). If we consider all term-term pairs,
the average semantic similarity score is 4.710. Same applies for Slovenian term-word pairs,
with semantic similarity score average rising from 3.859, when all term-words pairs are
considered, to 5.536, when only term-term pairs are considered, and up to 6.722, when
only karst specific term-term pairs are considered.

We also measure correlation between cosine distances and the semantic similarity scores
for term-word pairs using Pearson and Spearman correlation coeficients. The correlation
is generally low, the highest correlation being measured for Slovenian Karst specific term-
term pairs where the Pearson correlation reached the value of 0.341 and Spearman the
value of 0.208. There was no correlation measured on Slovene term-term pairs and sur-
prisingly, a small negative Pearson correlation was measured on Slovenian karst specific
term-term pairs and a small negative Spearman correlation was measured on English pairs
which were labeled as terms.

5.2 Cognate detection and term alignment

We evaluate the approach first on the QUIKK gold standard, where 100% precision and
the recall above 40% were obtained. Next, we add to the QUIKK gold standard also
12 Semantic similarity score for each related word is calculated as an average between the two semantic

similarity scores given by two evaluators.
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Table 8: English and Slovenian embeddings evaluation according to two criteria described in Section 4.1.2. Avg.
sem. score stands for the average of manually prescribed semantic similarity scores for each term-word pair, Avg.
cos. dist stands for the average cosine distance, Pearson corr. is a Pearson correlation coefficient between the
semantic similarity score and cosine distance values and Spearman corr. is a Spearman correlation coefficient
between the semantic similarity score and cosine distance values.

English Slovene
All words 200 188
Avg. sem. score 3.325 3.859
Avg. cos. dist. 0.747 0.760
Pearson corr. 0.181 0.231
Spearman corr. 0.136 0.194

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 50 50 50 50 47 47 47 47
Avg. sem. score 4.040 3.540 3.110 2.610 4.872 4.468 3.032 3.064
Terms 112 69
Avg. sem. score 4.710 5.536
Avg. cos. dist. 0.757 0.771
Pearson corr. 0.176 -0.018
Spearman corr. 0.160 -0.016

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 32 30 29 21 17 22 15 15
Karst terms 52 36
Avg. sem. score 5.702 6.722
Avg. cos. dist. 0.761 0.780
Pearson corr. 0.151 -0.152
Spearman corr. 0.070 -0.067

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 16 14 15 7 12 12 5 7
Not Terms 88 119
Avg. sem. score 1.563 2.887
Avg. cos. dist. 0.734 0.753
Pearson corr. -0.010 0.341
Spearman corr. -0.110 0.208

R1 R2 R10 R20 R1 R2 R10 R20
Distribution 18 20 21 29 30 25 32 32

the terms extracted using statistical method and term embeddings that were positively
evaluated. The total list of 908 English terms and 391 Slovene terms were input to the term
alignment algorithm. The resulting list of 93 aligned term pairs was manually evaluated.
In this experiment, the precision was 77.42% (72 term alignments out of 93 were correct),
while the recall could not be calculated, as the gold standard alignment was not available.

As described in Section 4.2, karst terminology contains a considerable amount of cognates.
See Table 9 for cognate values for Longest Common Substring Ratio, Longest Common
Subsequence Ratio, Dice Similarity, and Normalized Levensthein Distance).

5.3 Definition candidates extraction

In total, 1320 definition candidates were extracted for English, and 1218 for Slovene.
Definition candidates were manually validated by domain experts following two criteria:
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whether the sentence defines the concept, and whether the concept belongs to the domain
of karstology. To distinguish between definitions and non-definitions the experts checked
whether the sentence explains what the concept is, either by specifying its hypernym and
a set of distinguishing features (analytical), or by listing its hyponyms (extensional), or by
using another explanatory strategy (e.g., functional definitions). The definition candidates
were then assigned one of the following three categories:

• Definitions of karst terms (Example: Aggressiveness is an attribute of groundwater
that corresponds to a chemical potential for mobilization of a dissolved matter from
the rock.)

• Definitions of broader domain terms (biology, geology etc.). (Example: Exploration
geophysics is the science of seeing into the earth without digging or drilling.)

• Non-definitions (Example: The oldest rocks are the sandstones of Permian age,
which are only locally present.)

Table 9: Cognate scores for a sample of Slovene and English term pairs.

English term Slovene term LCSTR LCSSR Dice NormLD
mineralization mineralizacija 0.71 0.79 0.71 0.79
salinization salinizacija 0.67 0.75 0.67 0.75
nitrification nitrifikacija 0.54 0.69 0.54 0.69
aggressive water agresivna voda 0.25 0.63 0.27 0.50
karst plateau kraška planota 0.27 0.60 0.29 0.40
karst kras 0.20 0.60 0.22 0.40
marble marmor 0.50 0.50 0.50 0.50
karst drainage kraška drenaža 0.19 0.50 0.20 0.38
karst phenomena kraški pojav 0.13 0.47 0.14 0.20
linear stream cave linearna epifreatična jama 0.22 0.44 0.27 0.44

Table 10: Number of extracted definition candidates, evaluated as karst definitions, broader domain definitions
and non-definitions.

English Slovene
Karst definitions 218 260
Broader domain definitions 187 166
Non definitions 915 792
All definition candidates 1320 1218

As presented in Table 10, for English, out of 1320 definition candidates, 218 were evaluated
as karst definitions, and additional 187 as broader domain definitions (the precision of the
definition extraction on karst domain is thus 0.16 for strictly karst domain definitions,
and 0.31 for broader domain definitions (incl. karst definitions). For Slovene, there are
1218 definition candidates, out of which 260 are karst definitions and 166 are from broader
domain. The precision for definition extraction for Slovene is thus 0.21 for strictly karst
domain, and 0.35 for karst and broader domain.

The karst definitions were then used by domain experts and linguists in the scope of
the TermFrame project for fine-grained, annotation process, following frame-based ter-
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minology principles (Faber, 2015). The annotation principles and results are presented
in Vintar et al. (2019), where several annotation layers are proposed: definition element
layers (definiendum, definitor and genus); semantic categories (top level concepts are are
landforms, processes, geomes, entities, instruments/methods) and relations (16 relations,
such as has_form, has_cause).

5.4 Triplet extraction

The English subcorpus yielded 80,564 triplets. Below we list selected examples of relevant
triplets that are closely related to the karst domain:

• <Karst areas, commonly lack, surface water>
• <Karst areas, have, numerous stream beds that are dry except during pe-

riods of high runoff>
• <Sinkholes located miles away from rivers, can flood, homes and busi-

nesses>
• <Karst areas, offer, important resources>
• <Some collapse sinkholes, develop, where collapse of the cave roof reaches

the surface of the Earth>

The extracted triplets are analysed according to the most common relation patterns, to
estimate their potential for extending predefined definition patterns. From the relation
phrase part of the triplet, the verb is identified, showing the most frequent verb structures.
We remove all stopwords from the relation phrase using a general list of 174 English
stopwords. Table 11 lists 20 most frequent verb structures found in the processed 24
documents. The results show that many karst-specific relations can be detected (e.g.,
verbs related to different geological processes, such as occur, develop and form) but still
many general verbs are also frequent. The frequent relations from triplets will be discussed
in relation to the predefined set of relations used in definition frames annotation (cf. Vintar
et al., 2019).

verb count verb count
1 found 1451 11 appear 336
2 occur 1347 12 consist 323
3 use 878 13 represent 321
4 form 811 14 locate 313
5 develop 787 15 include 312
6 know 646 16 contain 310
7 provide 528 17 made 306
8 show 428 18 result 295
9 take 397 19 depend 273
10 describe 337 20 extend 272

Table 11: 20 most frequent verb structures compiled from 80,564 triplets. Note that stopwords were removed from
verb structures.

For visualization, after filtering the triplets by keeping only the ones where in a triplet
<argument1, relation phrase, argument2> the two arguments are karst terms13, we
13 QUIKK terms and manually evaluated terms from Section 5.1.1.
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construct a network where arguments are used as nodes and relation phrases as arcs. A
visualisation of a part of the triplet network obtained using Biomine network visualisation
tool (Eronen & Toivonen, 2012) is shown in Figure 1.

Figure 1: Visualisation of a part of the triplet network. Prior to the visualization, relation phrases were lemmatised
and the triplets were filtered according to the short gold standard list of Karst domain extended with an additional
evaluated list of terms.

6. Conclusion and further work

We model domain knowledge utilizing a range of natural language processing techniques,
including term extraction (using statistical methods, filtering and word embeddings), term
alignment and cognates detection, definition extraction and triplet extraction. The pro-
posed techniques form a pipeline for contemporary terminological work, relying on semi-
automated processes for knowledge extraction from specialized domain corpora. Several
modules in the pipeline rely on existing techniques, which were refined for the purposes of
this work (e.g., term extraction), while we believe that the use of embeddings and triplets
has not yet been sufficiently explored in the context of lexicography and terminography.
The hypothesis was that embeddings offer not only a possibility of extending a list of
terms, but also for grouping them to semantically related concepts, which can be of great
value in the organization of domain knowledge (in term bases and similar resources), and
also in contemporary lexicography resources.

We apply the proposed pipeline to a corpus of karst specialized texts. The main value
of the evaluation steps of term and definition extraction is to obtain new gold standard
karst knowledge resources that will be used in the scope of the TermFrame project for fine-
grained analysis and novel visual representation corresponding to the cognitive shifts in
recent terminology science approaches. On the other hand, we believe that the evaluation
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of word embeddings opens new perspectives to e-lexicography and terminography, as it
shows that popular techniques from natural language processing are relatively successful
for automatically extending the gold standard term lists (cca. half of English and one
third of Slovene terms being valid terms). The evaluation also shows that the semantic
similarity score is higher for the closest matching words (considering cosine similarity
between embeddings) than for the lower ranked words, which suggests that embeddings
do in fact manage to capture some semantic relations despite a relatively small training
corpus. On the other hand, correlation between cosine similarity and manual similarity
score is weak, which might indicate high variance in cosine similarity for related words for
different terms. We believe that semantic information has a huge potential for contributing
to the organization of term bases and visually interesting knowledge maps. In the same
line, we illustrate how triplet extraction in combination with term matching can serve as
a knowledge representation module used for visualizaton.

In future work, we will consider extending the corpus by using webcrawling techniques.
Next, our aim is to merge the pipeline to a set of services to support users in a knowl-
edge extraction process, for populating term bases, as well as in knowledge visualisation.
We believe that such tools will contribute to better understanding of similarities and
differences in terminological expression between languages, and support representations
reflecting dynamic culture and language specific knowledge.
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