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1 Introduction
The EMBEDDIA project aims to develop monolingual and cross-lingual technology for news media in-
dustry. The overall objective of WP2, named Advanced NLP Technologies for Less-Resourced Languages, is
to advance a range of fundamental NLP technologies with the following specific objectives:

• Advance cross-lingual semantic enrichment, including named entity recognition and disambigu-
ation, and event detection (inT2.1).

• Advance multilingual keyword and terminology extraction and matching technology (in T2.2).

• Advance multilingual natural language generation (in T2.3).

This deliverable (D2.6), entitled Final multilingual keyword extraction techniques, is the final report of T2.2,
which started in M1 and lasted until M24, and presents the advances since the previous deliverable on
Initial keyword extraction techniques (D2.3).

First we provide the definition of core terms used in this deliverable that were for the most part introduced
already in deliverable D2.3.

Keywords are terms (i.e. expressions) that best describe the subject of a document (Beliga et al., 2015)
and a good keyword effectively summarises the content of a document allowing it to be efficiently
retrieved when needed.

Terms are verbal designations of general concepts in a specific subject field (as defined in ISO 1087
standard). In contrast to keywords, which are usually assigned on a single document level, terms
are more frequently used on a document collection level, i.e. domain level. While not all terms
are keywords, there is a strong overlap between the most frequent terms and keywords, therefore
term extraction techniques can be applied successfully to keyword extraction.

Keyword extraction refers to the process of automatically extracting keywords from documents.

Term alignment (or terminology alignment) is the process of aligning terms between two candidate term
lists in two languages.

Keywords are the most important words describing a document. In a media analysis setting, keywords
correspond to tags that are added to articles by news providers and support search on the news portals
and link articles together. During the project, the media partners—more specifically ExM (Ekspress
meedia) and 24sata for whom Trikoder (TRI) provides services—have clearly identified keyword extrac-
tion as one of the tasks where automatization is feasible and can clearly benefit in real life settings. On
the other hand, terms, which denote expressions characteristic for a specific domain, are most frequently
discussed in the fields of translation and terminology management. However, in media analysis, terms
are relevant for analysing the vocabulary of different news categories (e.g., sports vs. foreign policy).
As similar techniques can be used for both, the field has a strong exploitation potential for applying
methods from the media setting (keywords) to the translation industry and terminography (terms), and
vice versa. Term alignment, referring to alignment of terms across two or more languages, is relevant
also in the news analysis setting when used for finding corresponding keywords from tagsets in different
languages.

In this report, we present our supervised keyword extraction system TNT-KID (Martinc, Škrlj, & Pollak,
2020). Its initial version was presented in D2.3, but we improved the methods and performed experi-
ments during the second year of the project and here present the final method and results. The method
was applied to media partners’ datasets, and a combined method complementing TNT-KID results with
tagset matching techniques was proposed to satisfy the need of media partners to identify a larger
number of keywords. Next, we briefly present experiments by TEXTA, where keyword extraction is con-
sidered as a classification task (this approach named TEXTA Hybrid tagger is done in collaboration with
WP6, see deliverables D6.7 and D6.8). Further, in this report, we present how term alignment tech-
niques presented in the previous deliverable D2.3 were applied to the ExM tagset for aligning keywords
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in Estonian and Russian, and present also further developments in term extraction and alignment meth-
ods using embeddings.

In addition, this report presents also the advances in keyword and term extraction applied to scientific
texts, which is a relevant application area especially given the time of the COVID-19 pandemics. The
work includes the presentation of how our unsupervised keyword extraction method RaKUn (Škrlj et al.,
2019) (that was presented in the previous deliverable of this task D2.3) was used to build the COVID-19
Explorer (http://covid19explorer.ijs.si/), a tool for fast and interactive literature prioritization. Next,
we present two methods for identification of terms by which new scientific knowledge can be discovered
from scientific literature, with applications in the biology and COVID-19 domains. This work shows
promising exploitation potential of the results of the project.

The work performed in task T2.2 resulted in several papers, which are included in the Appendices of
this deliverable:

• Martinc, Škrlj, & Pollak (2020): “TNT-KID: Transformer-based Neural Tagger for Keyword Identi-
fication”, submitted to Natural language engineering journal (2nd revision), available as preprint
(Appendix A), introduces our novel transformer-based keyword extraction approach (covered in
Section 2);

• Lavrač et al. (2020): “Bisociative Literature-Based Discovery: Lessons Learned and New Word
Embedding Approach”, published in New generation computing journal (Appendix B), presenting
a bisociative scientific knowledge discovery approach using word embeddings (summarised in
Section 7.3);

• Martinc, Škrlj, et al. (2020): “COVID-19 therapy target discovery with context-aware literature min-
ing”, published in Proceedings of Discovery science conference (Appendix C), presenting a contextual-
embeddings-based term identification for scientific discovery (introduced in Section 7.2);

• Grčić-Simeunović et al. (2020 (to apprear)): A bilingual approach to specialised adjectives through
word embeddings in the karstology domain, to be published in proceedings of the TOTH confer-
ence (Appendix D), which presents a study on embeddings-based terminological study on adject-
ives (summarised in Section 6.3).

• Covid-19 explorer (http://covid19explorer.ijs.si/): a tool for prioritization of scientific literature
of Covid-19 based on research developed in the first part of T2.2 (Škrlj et al. (2019)) (see Section
7.1).

This deliverable is structured as follows. In Section 2, we present the core part of the work presented
in this deliverable, the design and evaluation of the supervised neural keyword extractor TNT-KID. In
Section 3 we focus on media partners’ dataset on which we apply TNT-KID, and a development of
a combined approach for improving a recall. In Section 4, we briefly present the work on keyword
extraction on a media dataset (from external media company), where the keyword matching is framed
as a classification task. In Section 5, we present the application of term alignment techniques to the
ExM tagset (keywords of our media partner contain Estonian and Russian keywords) in and further
advances on the term alignment method, followed by novel term extraction experiments in Section 6.
We finish the report by describing our work on terms and keywords in scientific papers (Section 7),
which is showing exploitation potential of EMBEDDIA developments. The two final sections present
conclusions and future work (in Section 8) and the outputs resulting from our work in the final year of
the task T2.2 (Section 9).

2 TNT-KID: Novel neural keyword extraction method
and its evaluation on public datasets

This section presents a novel keyword extraction method Transformer-based Neural Tagger for Keyword
IDentification (TNT-KID). In the previous deliverable on Initial keyword extraction techniques (D2.3), we
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have already introduced initial developments of our proposed method TNT-KID. Since then, we have
made many advances, as we improved the method (e.g., adapting the attention mechanism and loss
function), added novel experiments (new datasets and state-of-the-art approaches for comparison),
added ablation studies, visualisation and wrote the paper Martinc, Škrlj, & Pollak (2020) (presented in
Appendix A), which was submitted to the Natural Language Engineering journal.

Unsupervised approaches, such as RaKUn (Škrlj et al., 2019) and YAKE (Campos et al., 2018b), work
fairly well and have some advantages over supervised approaches, as they are language and genre
independent, do not require any training, and are computationally undemanding. Nevertheless, as
already explained in previous deliverable D2.3, the motivation for the novel supervised keyword extrac-
tion method comes from the observation that unsupervised approaches also have a couple of crucial
deficiencies:

• The above unsupervised approaches use simple statistics like word occurrence and co-occurrence
(as in term frequency – inverse document frequency, TF-IDF, and graph based features, such as
PageRank) to detect the importance of each word in the document. They are therefore semantic-
ally relatively weak.

• Since these systems cannot be trained on a dataset with manually labelled keywords, they cannot
be adapted to the specifics of the syntax, semantics, content, genre and keyword assignment
regime of a specific text (e.g., a variance in a number of keywords).

These deficiencies result in a much worse performance when compared to the state-of-the-art super-
vised algorithms (see Table 2), which have a direct access to the gold standard keyword set for each text
during the training phase, enabling more efficient adaptation. The newest supervised neural algorithms
(Meng et al., 2019; Yuan et al., 2019) therefore achieve excellent performance under satisfactory training
conditions and can model semantic relations much more efficiently than algorithms based on simpler
word frequency statistics. On the other hand, these algorithms are resource demanding, require vast
amount of domain specific data for training and can therefore not be used in domains and languages
that lack manually labelled resources of sufficient size.

TNT-KID1 is capable of overcoming the aforementioned deficiencies of supervised and unsupervised
approaches. We show that, while requiring only a fraction of manually labelled data required by other
neural approaches, the proposed approach achieves the performance comparable to the state-of-the-
art supervised approaches on test sets for which a lot of manually labelled training data is available. On
the other hand, if training data that is sufficiently similar to the test data is scarce, our model outperforms
the state-of-the-art approaches by a large margin. This is achieved by leveraging the transfer learning
technique, where a keyword tagger is first trained in an unsupervised way as a language model on a
large corpus and then fine-tuned on a (usually) small-sized corpus with manually labelled keywords.
By conducting experiments on two different domains, computer science articles and news, we show
that the language model pretraining allows the algorithm to successfully adapt to a specific domain and
grasp more semantic information of the text, which drastically reduces the needed amount of labelled
data for training the keyword detector.

The transfer learning technique (Peters et al., 2018a; Howard & Ruder, 2018), which has recently be-
come a well established procedure in the field of natural language processing (NLP), in a large majority
of cases relies on very large unlabelled textual resources used for language model pretraining. For
example, a well known English BERT model (Devlin et al., 2018) was pretrained on the Google Books
Corpus (Goldberg & Orwant, 2013) (800 million tokens) and Wikipedia (2,500 million tokens). On the
other hand, we show that smaller unlabelled domain specific corpora (87 million tokens for computer
science and 232 million tokens for news domain) can be successfully used for unsupervised pretraining,
which makes the proposed approach easily transferable to languages with less textual resources and
also makes training more feasible in terms of time and computer resources available.

Unlike most other proposed state-of-the-art neural keyword extractors (Meng et al., 2017, 2019; Yuan
et al., 2019), we do not employ recurrent neural networks but instead opt for a transformer architecture

1Code is available under the MIT license at https://github.com/EMBEDDIA/tnt_kid/.
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(Vaswani et al., 2017), which has not been widely employed for the task at hand. In fact, the study
by Sahrawat et al. (2020) is the only study we are aware of that employs transformers for the keyword
extraction task. Another difference between our approach and recent state-of-the-art approaches is the
task formulation. While Meng et al. (2017, 2019) and Yuan et al. (2019) formulate a keyword extraction
task as a sequence-to-sequence generation task, where the classifier is trained to generate an output
sequence of keyword tokens step by step according to the input sequence and the previous gener-
ated output tokens, we formulate a keyword extraction task as a sequence labelling task, similar as in
Gollapalli et al. (2017), Luan et al. (2017) and Sahrawat et al. (2020).

Besides presenting a novel keyword extraction procedure, the study also offers an extensive error ana-
lysis, in which the visualization of transformer attention heads is used to gain insights into inner workings
of the model and in which we pinpoint key factors responsible for the differences in performance of TNT-
KID and other state-of-the-art approaches. Finally, this study also offers a systematic evaluation of
several building blocks and techniques used in a keyword extraction workflow in the form of an ablation
study. Besides determining the extent to which transfer learning affects the performance of the keyword
extractor, we also compare two different pretraining objectives, autoregressive language modelling and
masked language modelling (Devlin et al., 2018), and measure the influence of transformer architec-
ture adaptations, a choice of input encoding scheme and the addition of part-of-speech (POS) tags
information on the performance of the model.

2.1 Related work

This section overviews selected methods for keyword extraction, supervised in Section 2.1.1 and un-
supervised in Section 2.1.2. The related work is focused on the newest keyword extraction methods;
therefore, for a more comprehensive survey of older methods, we refer the reader to Hasan & Ng
(2014).

2.1.1 Supervised keyword extraction methods

Traditional supervised approaches to keyword extraction considered the task as a two step process (the
same is true for unsupervised approaches). First, a number of syntactic and lexical features are used to
extract keyword candidates from the text. Secondly, the extracted candidates are ranked according to
different heuristics and the top n candidates are selected as keywords (Yuan et al., 2019). One of the first
supervised approaches to keyword extraction was proposed by Witten et al. (2005), whose algorithm
named KEA uses only TF-IDF and the term’s position in the text as features for term identification.
These features are fed to the Naive Bayes classifier, which is used to determine for each word or phrase
in the text if it is a keyword or not. Medelyan et al. (2009) build on the KEA approach and proposed
the Maui algorithm, which also relies on the Naive Bayes classifier for candidate selection but employs
additional semantic features, such as e.g., node degree, which quantifies the semantic relatedness of
a candidate to other candidates, and Wikipedia-based keyphraseness, which is the likelihood of a phrase
being a link in the Wikipedia.

A more recent supervised approach is the so-called sequence labelling approach to keyword extraction
by Gollapalli et al. (2017), where the idea is to train a keyword tagger using token-based linguistic,
syntactic and structural features. The approach relies on a trained Conditional Random Field (CRF)
tagger and the authors demonstrated that this approach is capable of working on-par with slightly older
state-of-the-art systems that rely on information from the Wikipedia and citation networks, even if only
within-document features are used. Another sequence labelling approach proposed by Luan et al.
(2017) builds a sophisticated neural network by combing an input layer comprising a concatenation of
word, character and part-of-speech embeddings, a bidirectional Long Short-Term Memory (BiLSTM)
layer and a CRF tagging layer. They also propose a new semi-supervised graph based training regime
for training the network.
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Some of the most recent state-of-the-art approaches to keyword detection consider the problem as a
sequence-to-sequence generation task. The first research leveraging this tactic was proposed by Meng
et al. (2017), employing a generative model for keyword prediction with a recurrent encoder-decoder
framework with an attention mechanism capable of detecting keywords in the input text sequence and
also potentially finding keywords that do not appear in the text. Since finding absent keywords involves
a very hard problem of finding a correct class in a set of usually thousands of unbalanced classes, their
model also employs a copying mechanism (Gu et al., 2016) based on positional information, in order to
allow the model to find important keywords present in the text, which is a much easier problem.

The model proposed by Meng et al. (2017) has been somewhat improved by investigating different
ways in which the target keywords can be fed to a classifier during the training phase. While the original
system used a so-called one-to-one approach, where a training example consists of an input text and
a single keyword, the improved model (Meng et al., 2019) now employs a one-to-seq approach, where
an input text is matched with a concatenated sequence made of all the keywords for a specific text.
The study also shows that the order of the keywords in the text matters. The best performing model
from Meng et al. (2019), named CopyRNN, is used in our experiments for the comparison with the
state-of-the-art (see Section 2.3). A one-to-seq approach has been even further improved by Yuan
et al. (2019), who incorporated two diversity mechanisms into the model. The mechanisms (called
semantic coverage and orthogonal regularization) constrain the over-all inner representation of a generated
keyword sequence to be semantically similar to the overall meaning of the source text and therefore
force the model to produce diverse keywords. The resulting model leveraging these mechanisms has
been named CatSeqD and is also used in our experiments for the comparison of TNT-KID with the
state-of-the-art.

A further improvement of the generative approach for keyword detection has been proposed by Chan
et al. (2019), who integrated a reinforcement learning (RL) objective into the keyphrase generation
approach proposed by Yuan et al. (2019). This was done by introducing an adaptive reward function
that encourages the model to generate sufficient amount of accurate keyphrases. They also proposed
a new Wikipedia based evaluation method that can more robustly evaluate the quality of the predicted
keyphrases by also considering name variations of the ground-truth keyphrases.

We are aware of one study that tackled keyword detection with transformers. Sahrawat et al. (2020) fed
contextual embeddings generated using several transformer and recurrent architectures (BERT (Devlin
et al., 2018), RoBERTa (Liu et al., 2019), GPT-2 (Radford et al., 2019), ELMo (Peters et al., 2018b),
etc.) into two distinct neural architectures, a bidirectional Long short-term memory network (BiLSTM)
and a BiLSTM network with an additional Conditional random fields layer (BiLSTM-CRF). Same as in
Gollapalli et al. (2017), they formulate a keyword extraction task as a sequence labelling approach, in
which each word in the document is assigned one of the three possible labels: kb denotes that the word
is the first word in a keyphrase, ki means that the word is inside a keyphrase, and ko indicates that the
word is not part of a keyphrase.

The study shows that contextual embeddings generated by transformer architectures generally perform
better than static (e.g., FastText embeddings (Bojanowski et al., 2017)) and among them BERT show-
cases the best performance. Since all of the keyword detection experiments are conducted on scientific
articles, they also test SciBERT (Beltagy et al., 2019), a version of BERT pretrained on a large multi-
domain corpus of scientific publications containing 1.14M papers sampled from Semantic Scholar. They
observe that this genre specific pretraining on texts of the same genre as the texts in the keyword data-
sets, slightly improves the performance of the model. They also report significant gains in performance
when the BiLSTM-CRF architecture is used instead of BiLSTM.

The neural sequence-to-sequence models are capable of outperforming all older supervised and unsu-
pervised models by a large margin but do require a very large training corpora with tens of thousands of
documents for successful training. This means that their use is limited only to languages (and genres) in
which large corpora with manually labelled keywords exist. On the other hand, the study by Sahrawat et
al. (2020) indicates that the employment of contextual embeddings reduces the need for a large dataset
with manually labelled keywords. These models can therefore be deployed directly to smaller datasets

9 of 148



ICT-29-2018 D2.6: Final keyword extraction

by leveraging semantic information already encoded in contextual embeddings.

2.1.2 Unsupervised keyword extraction methods

The previous section discussed recently emerged methods for keyword extraction that operate in a
supervised learning setting and can be data-intensive and time consuming. Unsupervised keyword
detectors can tackle these two problems, yet at the cost of the reduced overall performance.

Unsupervised approaches need no training and can be applied directly without relying on a gold stand-
ard document collection. They can be divided into statistical and graph-based methods:

• Statistical methods, such as KP-MINER (El-Beltagy & Rafea, 2009), RAKE (Rose et al., 2010) and
YAKE (Campos et al., 2018a,b), use statistical characteristics of the texts to capture keywords.

• Graph-based methods, such as TextRank (Mihalcea & Tarau, 2004), Single Rank (Wan & Xiao,
2008), TopicRank (Bougouin et al., 2013), Topical PageRank (Sterckx et al., 2015) and RaKUn
(Škrlj et al., 2019) build graphs to rank words based on their position in the graph.

Among the statistical approaches, the state-of-the-art keyword extraction algorithm is YAKE (Campos
et al., 2018a,b). It defines a set of features capturing keyword characteristics which are heuristically
combined to assign a single score to every keyword. These features include casing, position, frequency,
relatedness to context and dispersion of a specific term.

One of the first graph-based methods for keyword detection is TextRank (Mihalcea & Tarau, 2004), which
first extracts a lexical graph from text documents and then leverages Google’s PageRank algorithm to
rank vertices in the graph according to their importance inside a graph. This approach was somewhat
upgraded by TopicRank (Bougouin et al., 2013), where candidate keywords are additionally clustered
into topics and used as vertices in the graph. Keywords are detected by selecting a candidate from
each of the top-ranked topics. The most recent graph-based keyword detector is RaKUn (Škrlj et al.,
2019) that employs several new techniques for graph construction and vertice ranking. First, initial
lexical graph is expanded and adapted with the introduction of meta-vertices, i.e. aggregates of existing
vertices. Second, for keyword detection and ranking, a graph-theoretic load centrality measure is used
along with the implemented graph redundancy filters.

2.2 Methodology

This section presents the methodology of our approach. Section 2.2.1 presents the architecture of the
neural model, Section 2.2.2 covers the transfer learning techniques used, Section 2.2.3 explains how
the final fine-tuning phase of the keyword detection workflow is conducted and Section 2.2.4 covers
evaluation of the model.

2.2.1 Architecture

The model follows an architectural design of an original transformer encoder (Vaswani et al., 2017) and
is presented in Figure 1a. In the GPT-2 architecture (Radford et al., 2019), the encoder consists of
a normalization layer that is followed by a multi-head attention mechanism. A residual connection is
employed around the attention mechanism, which is followed by another layer normalization. This is fol-
lowed by the fully connected feed-forward and dropout layers, around which another residual connection
is employed.

For two distinct training phases, language model pretraining and fine-tuning, two distinct “heads” are
added on top of the encoder, which is identical for both phases and therefore allows for the transfer
of weights from the pretraining phase to the fine-tuning phase. The language model head predicts the
probability for each word in the vocabulary that it appears at a specific position in the sequence and
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Figure 1: TNT-KID’s architecture overview.

consists of a dropout layer and a feed forward layer of size SL∗|V |, where SL stands for sequence length
(i.e., a number of words in the input text) and |V | stands for the vocabulary size. This is followed by the
adaptive softmax layer (Grave et al., 2017) (see description below).

During fine-tuning, the language model head is replaced with a token classification head, in which we
apply ReLu non-linearity and dropout to the encoder output, and then feed the output to the feed forward
classification layer of size SL ∗ NC, where NC stands for the number of classes (in our case 2, since we
model keyword extraction as a binary classification task). Finally, a softmax layer is added in order to
obtain probabilities for each class.

We also propose some significant modifications of the original GPT-2 architecture described above:

1. Re-parametrization of the attention mechanism

2. Addition of the part-of-speech (POS) tag sequence input

3. Replacement of the standard input embedding layer and softmax function with adaptive input
representations (Baevski & Auli, 2018) and an adaptive softmax (Grave et al., 2017)

4. Addition of the two bidirectional Long short-term memory (BiLSTM) layers to the output of the
transformer encoder

5. An employment of the BiLSTM-CRF classification head on top of the transformer encoder (Sahrawat
et al., 2020)

The re-parametrization of the attention mechanism (1) allows to model the relation between a token and
its position more directly (see Figure 1b). Note that standard scaled dot-product attention (Vaswani et
al., 2017) requires three inputs, a so-called query, key, value matrix representations of the embedded input
sequence and its positional information (i.e., element wise addition of input embeddings and positional
embeddings) and the idea is to obtain attention scores (in a shape of an attention matrix) for each
relation between tokens inside these inputs by first multiplying query (Q) and transposed key (K ) matrix
representations, applying scaling and softmax functions, and finally multiplying the resulting normalized
matrix with the value (V ) matrix, or more formally,
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Attention(Q,K ,V ) = softmax
(
QKT

√
dk

)
V

where dk represents the scaling factor, usually corresponding to the first dimension of the key matrix.
On the other hand, we propose to add an additional positional input representation matrix Kposition and
model attention with the following equation:

Attention(Q,K ,V ,Kpos) = softmax
(
QKT + QKT

position√
dk

)
V

The reason behind this modification is connected with the hypothesis, that token position is important in
the keyword identification task and with this re-parametrization the model is capable of directly modelling
the importance of relation between each token and each position. Note that we use relative positional
embeddings for representing the positional information, same as in Dai et al. (2019), where the main
idea is to only encode the relative positional information in the hidden states instead of the absolute
positional information.

Second, besides the text input, we also experiment with the additional part-of-speech (POS) tag se-
quence as an input (2). This sequence is first embedded and then added to the word embedding
matrix. Note that this additional input is optional and is not included in the model for which the results
are presented in Section 2.3.3 due to marginal effect on the performance of the model in the proposed
experimental setting (see Section 2.5).

While the modifications presented above affect both training phases (i.e., the language model pre-
training and the token classification fine-tuning), the third modification only affects the language model
pretraining (see Section 2.2.2) and involves replacing the standard input embedding layer and softmax
function with adaptive input representations (Baevski & Auli, 2018) and an adaptive softmax (Grave et
al., 2017) (3). The main idea is to exploit the unbalanced word distribution to form word clusters con-
taining words with similar appearance probabilities. The entire vocabulary is split into a smaller cluster
containing about 10 percent of words that appear most frequently, a second slightly bigger cluster that
contains words that appear less frequently and a third cluster that contains all the other words that ap-
pear rarely in the corpus. During language model training, instead of predicting an entire vocabulary
distribution at each time step, the model first tries to predict a cluster in which a target word appears in
and after that predicts a vocabulary distribution just for the words in that cluster. Since in a large majority
of cases the target word belongs to the smallest cluster containing most frequent words, the model in
most cases only needs to generate probability distribution for a tenth of a vocabulary, which drastically
reduces the memory requirements and time complexity of the model at the expense of a marginal drop
in performance.

We also present the modification, which only affects the fine-tuning token classification phase (see Sec-
tion 2.2.3). During this phase, a two layer randomly initialised encoder, consisting of dropout and two
bidirectional Long short-term memory (BiLSTM) layers, is added (with element-wise summation) to the
output of the transformer encoder (4). The initial motivation behind this adaptation is connected with
findings from the related work which suggest that recurrent layers are quite successful at modelling po-
sitional importance of tokens in the keyword detection task (Meng et al., 2017; Yuan et al., 2019) and by
the study of Sahrawat et al. (2020), who also reported good results when a BiLSTM classifier and con-
textual embeddings generated by transformer architectures were employed for keyword detection. Also,
the results of the initial experiments suggested that some performance gains can in fact be achieved by
employing this modification.

In terms of computational complexity, a self-attention layer complexity is O(n2 ∗ d) and the complexity of
the recurrent layer is O(n ∗ d2), where n is the sequence length and d is the embedding size (Vaswani et
al., 2017). This means that the complexity of the transformer model with an additional BiLSTM encoder
is therefore O(n2 ∗ d2). When it comes to the number of parameters, the standard TNT-KID model
employs sequence size of 256, embedding size of 512 and 8 attention layers, resulting in altogether
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2562 ∗ 512 ∗ 8 = 268435456 parameter. By adding the recurrent encoder with two recurrent bidirectional
layers (which is the same as adding 4 recurrent layers, since each bidirectional layer contains two
unidirectional LSTM layers), the number of parameters increases by 256 ∗ 5122 ∗ 4 = 268435456. In
practice this means that the model with the additional recurrent encoder conducts token classification
roughly two times slower than the model without the encoder. Note that this addition does not affect
the language model pretraining, which tends to be the more time demanding task due to larger corpora
involved.

Additionally, we also experiment with an employment of the BiLSTM-CRF classification head on top of
the transformer encoder (5), in order to compare our proposed approach to the approach proposed by
Sahrawat et al. (2020) (see Section 2.5 for more details about the results of this experiment). For this
experiment, during the fine-tuning token classification phase, the token classification head described
above is replaced with a BiLSTM-CRF classification head proposed by Sahrawat et al. (2020), contain-
ing one BiLSTM layer and a CRF (Lafferty et al., 2001) layer.2 Outputs of the BiLSTM f = f1, ..., fn are
fed as inputs to a CRF layer, which returns the output score s(f , y) for each possible label sequence
according to the following equation:

s(f , y) =
n∑

t=1

τyt−1,yt + ft,yt

τyt−1,yt is a transition matrix representing the transition score from class yt−1 to yt . The final probability of
each label sequence score is generated by exponentiating the scores and normalizing over all possible
output label sequences:

p(y |f ) = exp(s(f , y))∑
y′ exp(s(f

′, y ′))

To find the optimal sequence of labels efficiently, the CRF layer uses the Viterbi algorithm (Forney,
1973).

2.2.2 Transfer learning

Our approach relies on a transfer learning technique (Howard & Ruder, 2018; Devlin et al., 2018),
where a neural model is first pretrained as a language model on a large corpus. This model is then fine-
tuned for each specific keyword detection task on each specific manually labelled corpus by adding and
training the token classification head described in the previous section. With this approach, the syntactic
and semantic knowledge of the pretrained language model is transferred and leveraged in the keyword
detection task, improving the detection on datasets that are too small for the successful semantic and
syntactic generalization of the neural model.

In the transfer learning scenario, two distinct pretraining objectives can be considered. First is the
autoregressive language modelling where the task can be formally defined as predicting a probabil-
ity distribution of words from the fixed size vocabulary V , for word w t, given the historical sequence
w1:t-1 = [w1, ...,wt−1]. This pretraining regime was used in the GPT-2 model (Radford et al., 2019) that we
modified. Since in the standard transformer architecture self-attention is applied to an entire surrounding
context of a specific word (i.e. the words that appear after a specific word in each input sequence are
also used in the self-attention calculation), we employ obfuscation masking to the right context of each
word when the autoregressive language model objective is used, in order to restrict the information only
to the prior words in the sentence (plus the word itself) and prevent target leakage (see Radford et al.
(2019) for details on the masking procedure).

2Note that in the experiments in which we employ BiLSTM-CRF, we do not add an additional two layer BiLSTM encoder
described above to the output of the transformer encoder.
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Another option is a masked language modelling objective, first proposed by Devlin et al. (2018). Here, a
percentage of words from the input sequence is masked in advance, and the objective is to predict these
masked words from an unmasked context. This allows the model to leverage both left and right context,
or more formally, the token w t is also determined by sequence of tokens w t+1:n = [wt+1, ...,wt+n]. We follow
the masking procedure described in the original paper by Devlin et al. (2018), where 15 percent of words
are randomly designated as targets for prediction, out of which 80 percent are replaced by a masked
token (< mask >), 10 percent are replaced by a random word and 10 percent remain intact.

The final output of the model is a softmax probability distribution calculated over the entire vocabulary,
containing the predicted probabilities of appearance (P) for each word given its left (and in case of the
masked language modelling objective also right) context. Training therefore consists of the minimization
of the negative log-loss (NLL) on the batches of training corpus word sequences by backpropagation
through time:

NLL = −
n∑

i=1

logP(wi |w1:i-1) (1)

While the masked language modelling objective might outperform autoregressive language modelling ob-
jective in a setting where a large pretraining corpus is available (Devlin et al., 2018) due to the inclusion
of the right context, these two training objectives have at least to our knowledge never been compared
in a setting where only a relatively small domain specific corpus is available for the pretraining phase.
For more details about the performance comparison of these two pretraining objectives, see Section
2.5.

2.2.3 Keyword identification

Since each word in the sequence can either be a keyword (or at least part of the keyphrase) or not,
the keyword tagging task can be modeled as a binary classification task, where the model is trained
to predict if a word in the sequence is a keyword or not.3 Figure 2 shows an example of how an input
text is first transformed into a numerical sequence that is used as an input of the model, which is then
trained to produce a sequence of zeroes and ones, where the positions of ones indicate the positions
of keywords in the input text.

Since a large majority of words in the sequence are not keywords, the usage of a standard NLL func-
tion (see Equation 1), which would simply calculate a sum of log probabilities that a word is either a
keyword or not for every input word sequence, would badly affect the recall of the model since the ma-
jority negative class would prevail. To solve this problem and maximize the recall of the system, we
propose a custom classification loss function, where probabilities for each word in the sequence are first
aggregated into two distinct sets, one for each class. For example, text “The advantage of this is to include
distributed interactions between the UDDI clients.” in Figure 2 would be split into two sets, first one containing
probabilities for all the words in the input example which are not keywords (The, advantage, of, this, is, to,
include, between, the, clients, .), and the other containing probabilities for all the words in the input example
that are keywords or part of keyphrases (distributed, interactions, UDDI). Two NLLs are calculated, one for
each probability set, and both are normalized with the size of the set. Finally, the NLLs are summed.
More formally, the loss is computed as follows. Let W = {wi}ni=1 represent an enumerated sequence of
tokens for which predictions are obtained. Let pi represent the predicted probabilities for the i-th token
that it either belongs or does not belong to the ground truth class. The oi represents the output weight
vector of the neural network for token i and j corresponds to the number of classes (two in our case as
the word can be a keyword or not). Predictions are in this work obtained via a log-softmax transform
(lso), defined as follows (for the i-th token):

3Note that this differs from the sequence labelling approach proposed by Sahrawat et al. (2020), where each word in the
document is assigned one of three possible labels (see Section 2.1 for details).
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Input text

The advantage of this is to introduce distributed interactions between the UDDI clients .

Input (X)

1    123     12  43   4  8   1011       12027       8300         74    1  7237   412   32                 

Target (Y)

0  0  0  0  0  0  0  1  1 0  0  1 0  0

Figure 2: Encoding of the input text “The advantage of this is to introduce distributed interactions between the
UDDI clients.” with keywords distributed interactions and UDDI. In the first step, the text is converted
into a numerical sequence, which is used as an input to the model. The model is trained to convert
this numerical sequence into a sequence of zeroes and ones, where the ones indicate the position of a
keyword.

pi = lso(oi ) = log
exp(oi )∑
j exp(oj)

.

The loss function is comprised from two main parts. Let K+ ⊆ W represent tokens that are keywords
and K− ⊆ W the set of tokens that are not keywords. Note that |K− ∪ K+| = n, i.e., the two sets cover
all considered tokens for which predictions are obtained. During loss computation, only the probabilities
of the ground truth class are considered. We mark them with p+

i or p−i . Then the final loss is computed
as

Loss = L+ + L− = − 1

|K+|
∑

wi∈K+

p+
i + (− 1

|K−|
∑

wi∈K−

p−i )

Note that even though all predictions are given as an argument, the two parts of the loss address
different token indices (i).

In order to produce final set of keywords for each document, tagged words are extracted from the
text and duplicates are removed. Note that a sequence of ones is always interpreted as a multi-word
keyphrase and not as a combination of one-worded keywords (e.g., distributed interactions from Figure 2
is considered as a single multi-word keyphrase and not as two distinct one word keywords). After that,
the following filtering is conducted:

• If a keyphrase is longer than four words, it is discarded.

• Keywords containing punctuation (with the exception of dashes and apostrophes) are removed.
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• The detected keyphrases are ranked and arranged according to the softmax probability assigned
by the model in a descending order.

2.2.4 Evaluation

To asses the performance of the model, we measure F1@k score, a harmonic mean between Precision@k

and Recall@k. In a ranking task, we are interested in precision at rank k. This means that only the
keywords ranked equal to or better than k are considered and the rest are disregarded. Precision is the
ratio of the number of correct keywords returned by the system divided by the number of all keywords
returned by the system, or more formally:

precision =
|correct returned keywords@k|

|returned keywords|

Recall@k is the ratio of the number of correct keywords returned by the system and ranked equal to or
better than k divided by the number of correct ground truth keywords:

recall =
|correct returned keywords@k|

|correct keywords|

Due to the high variance of a number of ground truth keywords, this type of recall becomes problematic
if k is smaller than the number of ground truth keywords, since it becomes impossible for the system
to achieve a perfect recall. (Similar can happen to precision@k, if the number of keywords in a gold
standard is lower than k, and returned number of keywords is fixed at k.)

Finally, we formally define F1@k as a harmonic mean between Precision@k and Recall@k:

F1@k = 2 ∗ P@k ∗ R@k
P@k + R@k

In order to compare the results of our approach to other state-of-the-art approaches, we use the same
evaluation methodology as Yuan et al. (2019) and Meng et al. (2019), and measure F1@k with k be-
ing either 5 or 10. Note that F1@k is calculated as a harmonic mean of macro-averaged precision
and recall, meaning that precision and recall scores for each document are averaged and the F1 score
is calculated from these averages. Same as in the related work, lowercasing and stemming are per-
formed on both the gold standard and the generated keywords (keyphrases) during the evaluation. Only
keywords that appear in the text of the documents (present keywords)4 were used as a gold standard
and the documents containing no present keywords were removed, in order to make the results of the
conducted experiments comparable with the reported results from the related work.

2.3 Experiments

We first present the datasets used in the experiments. This is followed by the experimental design and
the results achieved by TNT-KID in comparison to the state-of-the-art.

2.3.1 Keyword extraction datasets

Experiments were conducted on seven datasets from two distinct genres, scientific papers about com-
puter science and news. The following datasets from the computer science domain are used:

4Note that scientific and news articles often list keywords that do not appear in the text of the article. For example, an NLP
paper would often list “Text mining” as a keyword of the paper, even though the actual phrase does not appear in the text of the
paper.
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• KP20k (Meng et al., 2017): This dataset contains titles, abstracts, and keyphrases of 570,000 sci-
entific articles from the field of computer science. The dataset is split into train set (530,000),
validation set (20,000) and test set (20,000).

• Inspec (Hulth, 2003): The dataset contains 2,000 abstracts of scientific journal papers in computer
science collected between 1998 and 2002. Two sets of keywords are assigned to each document,
the controlled keywords that appear in the Inspec thesaurus, and the uncontrolled keywords, which
are assigned by the editors. Only uncontrolled keywords are used in the evaluation, same as by
Meng et al. (2017), and the dataset is split into 500 test papers and 1500 train papers.

• Krapivin (Krapivin et al., 2009): This dataset contains 2,304 full scientific papers from computer
science domain published by ACM between 2003 and 2005 with author-assigned keyphrases.
460 papers from the dataset are used as a test set and the others are used for training. Only titles
and abstracts are used in our experiments.

• NUS (Nguyen & Kan, 2007): The dataset contains titles and abstracts of 211 scientific conference
papers from the computer science domain and contains a set of keywords assigned by student
volunters and a set of author assigned keywords, which are both used in evaluation.

• SemEval (Kim et al., 2010): The dataset used in the SemEval-2010 Task 5, Automatic Keyphrase
Extraction from Scientific Articles, contains 244 articles from the computer science domain collec-
ted from the ACM Digital Library. 100 articles are used for testing and the rest are used for training.
Again, only titles and abstracts are used in our experiments, the article’s content was discarded.

From the news domain, three datasets with manually labelled gold standard keywords are used:

• KPTimes (Gallina et al., 2019): The corpus contains 279,923 news articles containing editor as-
signed keywords that were collected by crawling New York Times news website5. After that, the
dataset was randomly divided into training (92.8 percent), development (3.6 percent) and test (3.6
percent) sets.

• JPTimes (Gallina et al., 2019): Similar as KPTimes, the corpus was collected by crawling Japan
Times online news portal6. The corpus only contains 10,000 English news articles and is used in
our experiments as a test set for the classifiers trained on the KPTimes dataset.

• DUC (Wan & Xiao, 2008): The dataset consists of 308 English news articles and contains 2,488
hand labelled keyphrases.

The statistics about the datasets that are used for training and testing of our models are presented in
Table 1. Note that there is a big variation in dataset sizes in terms of number of documents (column No.
docs), and in an average number of keywords (column Avg. kw.) and present keywords per document
(columns Avg. present kw.), ranging from 2.35 present keywords per document in KPTimes-valid to 7.79
in DUC-test.

2.3.2 Experimental design

We conducted experiments on the datasets described in Section 2.3.1. First, we lowercased and token-
ized all datasets. We experimented with two tokenization schemes, word tokenization and Senten-
cepiece (Kudo & Richardson, 2018) byte-pair encoding (see Section 2.5 for more details on how these
two tokenization schemes affect the overall performance). During both tokenization schemes, a special
< eos > token is used to indicate the end of each sentence. For the best performing model, for which the
results are presented in Section 2.3.3, byte-pair encoding was used.7 For generating the additional POS

5https://www.nytimes.com
6https://www.japantimes.co.jp
7As in byte-pair encoding the subword information is already considered, there is no need to perform additional prepossessing

techniques, such as lemmatization or stemming.
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Table 1: Datasets used for empirical evaluation of keyword extraction algorithms. No.docs stands for number of
documents, Avg. doc. length stands for average document length in the corpus, Avg. kw. stands for
average number of keywords per document in the corpus, % present kw. stands for the percentage of
keywords that appear in the corpus (i.e., percentage of document’s keywords that appear in the text of the
document) and Avg. present kw. stands for the average number of keywords per document that actually
appear in the text of the specific document.

Dataset No. docs Avg. doc. length Avg. kw. % present kw. Avg. present kw.
Computer science papers
KP20k-train 530,000 156.34 5.27 62.43 3.29
KP20k-valid 20,000 156.55 5.26 62.30 3.28
KP20k-test 20,000 156.52 5.26 62.55 3.29
Inspec-valid 1500 125.21 9.57 76.92 7.36
Inspec-test 500 121.82 9.83 78.14 7.68
Krapivin-valid 1844 156.65 5.24 54.34 2.85
Krapivin-test 460 157.76 5.74 55.66 3.20
NUS-test 211 164.80 11.66 50.47 5.89
SemEval-valid 144 166.86 15.67 45.43 7.12
SemEval-test 100 183.71 15.07 44.53 6.71
News articles
KPTimes-train 259,923 783.32 5.03 47.30 2.38
KPTimes-valid 10,000 784.65 5.02 46.78 2.35
KPTimes-test 10,000 783.47 5.04 47.59 2.40
JPTimes-test 10,000 503.00 5.03 76.73 3.86
DUC-test 308 683.14 8.06 96.62 7.79

tag sequence input described in Section 2.2.1, which was not used in the best performing model, Aver-
aged Perceptron Tagger from the NLTK library (Loper & Bird, 2002) was used. The neural architecture
was implemented in PyTorch (Paszke et al., 2019).

In the pretraining phase, two language models were trained for up to ten epochs, one on the concatena-
tion of all the texts from the computer science domain and the other on the concatenation of all the texts
from the news domain. Overall, the language model train set for computer science domain contained
around 87 million tokens and the news train set about 232 million tokens. These small sizes of the
language model train sets enable relatively fast training and smaller model sizes (in terms of number of
parameters) due to the reduced vocabulary.

After the pretraining phase, the trained language models were fine-tuned on each dataset’s validation
sets, i.e., datasets with a suffix -valid (see Table 1, which were randomly split into 80 percent of doc-
uments used for training and 20 percent of documents used for validation. The documents containing
more than 256 tokens are truncated, while the documents containing less than 256 tokens are padded
with a special < pad > token at the end. Each model was fine-tuned for a maximum of 10 epochs and
after each epoch the trained model was tested on the documents chosen for validation. The model that
showed the best performance on this set of validation documents (in terms of F@10 score) was used
for keyword detection on the test set. Validation sets were also used to determine the best hyperpara-
meters of the model and all combinations of the following hyperparameter values were tested before
choosing the best combination, which is written in bold in the list below and on average worked best for
all the datasets in both domains8:

• Learning rates: 0.00005, 0.0001, 0.0003, 0.0005, 0.001

• Embedding size: 256, 512

• Number of attention heads: 4, 8, 12

• Sequence length: 128, 256

8Note that the same set of hyperparameters are also used in the pretraining phase.
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• Number of attention layers: 4, 8, 12

Note that in our experiments, we use the same splits as in related work (Meng et al., 2019, 2017; Gal-
lina et al., 2019) for all datasets with predefined splits i.e., all datasets with a validation set (see Table 1.
The exceptions are NUS, DUC and JPTimes datasets with no available predefined validation-test splits.
For NUS and DUC, 10-fold cross-validation is used and the model used for keyword detection on the
JPTimes-test dataset was fine-tuned on the KPTimes-valid dataset. Another thing to consider is that
in the related work by Yuan et al. (2019), Meng et al. (2017) and Gallina et al. (2019), to which we are
comparing, large datasets KPTimes-train and KP20k-train with 530,000 documents and 260,00 docu-
ments, respectively, are used for the classification model training and these trained models are applied
on all test sets from the matching domain. On the other hand, we do not train our classification models
on these two large train sets but instead use smaller KPTimes-valid and KP20k-valid datasets for train-
ing, since we argue that, due to language model pretraining, fine-tuning the model on a relatively small
labelled dataset is sufficient for the model to achieve competitive performance. We do however conduct
the language model pretraining on the concatenation of all the texts from the computer science domain
and the news domain as explained above, and these two corpora also contain texts from KPTimes-train
and KP20k-train datasets.

2.3.3 Keyword extraction results and comparison to the state-of-the-art

In Table 2, we present the results achieved by TNT-KID and a number of algorithms from the related
work on the datasets presented in Table 1. Evaluation measures were presented in Section 2.2.4. Only
keywords which appear in a text (present keywords) were used as a gold standard in order to make the
results of the conducted experiments comparable with reported results from the related work. Note that
TF-IDF, TextRank, YAKE and RaKUn algorithms are unsupervised and do not require any training, KEA,
Maui, GPT-2, GPT-2 + BiLSTM-CRF and TNT-KID were trained on the different validation set for each of
the datasets, and CopyRNN and CatSeqD were trained on the large KP20k-train dataset for keyword
detection on computer science domain, and on the KPTimes-train dataset for keyword detection on the
news domain, since they require a large train set for competitive performance.

For RaKUn (Škrlj et al., 2019) and YAKE (Campos et al., 2020), we report results for default hyperpara-
meter settings, since the authors of RaKUn and YAKE claim that a single hyperparameter set can offer
sufficient performance across multiple datasets. We used the author’s official github implementations9

in the experiments. For KEA and Maui we do not conduct additional testing on corpora for which results
are not available in the related work (KPTimes, JPTimes and DUC corpus) due to bad performance of
the algorithms on all the corpora for which results are available. Finally, for TF-IDF and TextRank we
report results from the related work where available (Yuan et al., 2019) and use the implementation of
the algorithms from the Python Keyphrase Extraction (PKE) library10 to generate unavailable results.
Same as for RaKUn and YAKE, default hyperparameters are used.

For KEA, Maui, CopyRNN and CatSeqD, we report results for the computer science domain published
in Yuan et al. (2019) and for the news domain we report results for CopyRNN published in Gallina et
al. (2019). The results that were not reported in the related work are results for CatSeqD on KPTimes,
JPTimes and DUC, since this model was originally not tested on these three datasets, and the F1@5
score results for CopyRNN on KPTimes and JPTimes. Again, author’s official github implementations11

were used for training and testing of both models. The models were trained and tested on the large
KPTimes-train dataset with a help of a script supplied by the authors of the papers. Same hyperpara-
meters that were used for KP20k training in the original papers (Yuan et al., 2019; Meng et al., 2019)
were used.

We also report results for the unmodified pretrained GPT-2 (Radford et al., 2019) model with a standard
feed forward token classification head, and a pretrained GPT-2 with a BiLSTM-CRF token classification

9https://github.com/SkBlaz/rakun and https://github.com/LIAAD/yake
10https://github.com/boudinfl/pke
11https://github.com/memray/OpenNMT-kpg-release
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Table 2: Empirical evaluation of state-of-the-art keyword extractors. Results marked with * were obtained by our
implementation or reimplementation of the algorithm and results without * were reported in the related
work.

Unsupervised approaches Supervised approaches

TF-IDF TextRank YAKE RaKUn KEA Maui CopyRNN CatSeqD GPT-2 GPT-2 +
BiLSTM-CRF TNT-KID

KP20k
F1@5 0.072 0.181 0.141* 0.177* 0.046 0.005 0.317 0.348 0.252* 0.339* 0.342*
F1@10 0.094 0.151 0.146* 0.160* 0.044 0.005 0.273 0.298 0.256* 0.342* 0.346*
Inspec
F1@5 0.160 0.286 0.204* 0.101* 0.022 0.035 0.244 0.276 0.293* 0.467* 0.447*
F1@10 0.244 0.339 0.223* 0.108* 0.022 0.046 0.289 0.333 0.335* 0.525* 0.525*
Krapivin
F1@5 0.067 0.185 0.215* 0.127* 0.018 0.005 0.305 0.325 0.210* 0.280* 0.301*
F1@10 0.093 0.160 0.196* 0.106* 0.017 0.007 0.266 0.285 0.214* 0.283* 0.307*
NUS
F1@5 0.112 0.230 0.159* 0.224* 0.073 0.004 0.376 0.374 0.274* 0.311* 0.350*
F1@10 0.140 0.216 0.196* 0.193* 0.071 0.006 0.352 0.366 0.305* 0.332* 0.369*
SemEval
F1@5 0.088 0.217 0.151* 0.167* 0.068 0.011 0.318 0.327 0.261* 0.214 0.291*
F1@10 0.147 0.226 0.212* 0.159* 0.065 0.014 0.318 0.352 0.295* 0.232 0.355*
KPTimes
F1@5 0.179* 0.022* 0.105* 0.168* * * 0.406* 0.424* 0.353* 0.439* 0.469*
F1@10 0.151* 0.030* 0.118* 0.139* * * 0.393 0.424* 0.354* 0.440* 0.469*
JPTimes
F1@5 0.266* 0.012* 0.109* 0.225* * * 0.256* 0.238* 0.258* 0.344* 0.337*
F1@10 0.229* 0.026* 0.135* 0.185* * * 0.246 0.238* 0.267* 0.346* 0.360*
DUC
F1@5 0.098* 0.120* 0.106* 0.189* * * 0.083 0.063* 0.247* 0.281* 0.312*
F1@10 0.120* 0.181* 0.132* 0.172* * * 0.105 0.063* 0.277* 0.321* 0.355*
Average
F1@5 0.130 0.157 0.149 0.172 * * 0.288 0.297 0.269* 0.334* 0.356*
F1@10 0.152 0.166 0.170 0.153 * * 0.280 0.295 0.288* 0.353* 0.386*

head, as proposed in Sahrawat et al. (2020) and described in Section 2.2.112. For these two models,
we apply the same fine-tuning regime as for TNT-KID, i.e. we fine-tune the models for up to 10 epoch
on each dataset’s validation sets (see Table 1), which were randomly split into 80 percent of documents
used for training and 20 percent of documents used for validation. The model that showed the best per-
formance on this set of validation documents (in terms of F@10 score) was used for keyword detection
on the test set. We use the default hyperparameters for both models and the original GPT-2 tokenization
regime.

Overall, supervised neural network approaches drastically outperform all other approaches. Among
them, TNT-KID performs the best on all eight datasets in terms of F1@10 but is outperformed by Cat-
SeqD (on four datasets) or GPT-2+ BiLSTM-CRF (on two datasets) on six out of eight datasets in terms
of F1@5. In terms of F1@10, CatSeqD performs competitively on KP20k, Krapivin, NUS, SemEval
and KPTimes datasets but is outperformed by a large margin on three other datasets by both GPT-2 +
BiLSTM-CRF and TNT-KID. To be more specific, in terms of F1@10, TNT-KID outperforms the CatSeqD
approach by almost 20 percentage points on the Inspec dataset, on the DUC dataset, it outperforms
CatSeqD by about 25 percentage points, and on JPTimes it outperforms CatSeqD by about 12 percent-
age points.

While the results of CopyRNN are in a large majority of cases very consistent with CatSeqD (CopyRNN
performs slightly better than CatSeqD on DUC and JPTimes, and slightly worse on the other six data-
sets), results of TNT-KID are very similar to the results of GPT-2 + BiLSTM-CRF. In the majority of cases
TNT-KID outperforms GPT-2 + BiLSTM-CRF by a small margin according to both criteria, the excep-
tions being Inspec and JPTimes, where GPT-2 + BiLSTM-CRF performs the best out of all approaches

12We use the implementation of GPT-2 from the Transformers library (https://github.com/huggingface/transformers) and
use the Pytorch-crf library (https://pytorch-crf.readthedocs.io/en/stable/) for the implementation of the BiLSTM-CRF
token classification head.
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according to F1@5. Another exception is the SemEval dataset, where the GPT-2 + BiLSTM-CRF is
outperformed by TNT-KID by a large margin of about 12 percentage points. On the other hand, a GPT-2
model with a standard token classification head does not perform competitively on most datasets.

When it comes to the F1@5 measure, TNT-KID performs competitively on all the datasets. It outper-
forms all other algorithms on two datasets (KPTimes and DUC) and on average still performs the best
out of all algorithms (see row average). Nevertheless, the performance in terms of F1@5 is still notice-
ably worse than in terms of F1@10. The difference between TNT-KID and CatSeqD, which performs the
best on four out of eight datasets in terms of F1@5, can be partially explained by the difference in train-
ing regimes and the fact that our system was designed to maximize recall (see Section 2.2). Since our
system generally detects more keywords than CatSeqD and CopyRNN, it tends to achieve better recall,
which offers a better performance when up to 10 keywords need to be predicted. On the other hand,
a more conservative system that generally predicts less keywords tends to achieve a better precision,
which positively affects the F1 score in a setting where only up to 5 keywords need to be predicted. This
phenomenon will be analysed in more detail in Section 2.4, where we also discuss the very low results
achieved by CopyRNN and CatSeqD on the DUC dataset.

When it comes to two other supervised approaches, KEA and Maui, they perform badly on all datasets
they have been tested on and are outperformed by a large margin even by all unsupervised approaches.
When we compare just unsupervised approaches, TextRank achieves by far the best results according
to both measures on the Inspec dataset. This is the dataset with the on average shortest documents. On
the other hand, TextRank performs uncompetitively in comparison to other unsupervised approaches on
two datasets with much longer documents, KPTimes and JPTimes, where RaKUn and TF-IDF are the
best unsupervised approaches, respectively. Interestingly, it achieves the highest F@10 score out of all
unsupervised keyword detectors on the DUC dataset, which also contains long documents. Perhaps
this could be explained by the average number of present keywords, which is much higher for DUC-test
(7.79) than for KPTimes-test (2.4) and JPTimes-test (3.86) datasets.

Overall (see row average), TNT-KID offers the most robust performance on the test datasets and is
closely followed by GPT-2 + BiLSTM. CopyRNN and CatSeqD are very close to each other accord-
ing to both criteria. Out of unsupervised approaches, on average all of them offer surprisingly similar
performance. According to the F@10 score, YAKE on average works slightly better than the second
ranked TextRank and also in general offers more steady performance, since it gives the most consistent
results on a variety of different datasets. Similar could be said for RaKUn, the best ranked unsupervised
algorithm according to the F@5 score.

2.4 Error analysis

In this section we first analyse the reasons why transformer based TNT-KID is capable of outperforming
other state-of-the-art neural keyword detectors, which employ a generative model, by a large margin on
some of the datasets. Secondly, we gather some insights into the inner workings of the TNT-KID by a
visual analysis of the attention mechanism.

2.4.1 Comparison between TNT-KID and CatSeqD

As was observed in Section 2.3.3, transformer based TNT-KID and GPT-2 + BiLSTM-CRF outperform
generative models CatSeqD and CopyRNN by a large margin on the Inspec, JPTimes and DUC data-
sets. Here, we try to explain this discrepancy by focusing on the difference in performance between the
best transformer based model, TNT-KID, and the best generative model, CatSeqD. The first hypothesis
is connected with the statistical properties of the datasets used for training and testing, or more specific-
ally, with the average number of keywords per document for each dataset. Note that CatSeqD is trained
on the KP20k-train, when employed on the computer science domain, and on the KPTimes-train data-
set, when employed on news. Table 1 shows that both of these datasets do not contain many present
keywords per document (KP20k-train 3.28 and KPTimes-train 2.38), therefore training the model on
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these datasets conditions it to be conservative in its predictions and to assign less keywords to each
document than a more liberal TNT-KID. This gives the TNT-KID a competitive advantage on the datasets
with more present keywords per document.

Figure 3 shows a correlation between the average number of present keywords per document for each
dataset and the difference in performance in terms of F@10, measured as a difference between an
F@10 score achieved by TNT-KID and an F@10 score achieved by CatSeqD. The difference in per-
formance is the biggest for the DUC dataset (about 30 percentage points) that on average has the most
keywords per document, 7.79, and second biggest for Inspec, in which an average document has 7.68
present keywords.

The above hypothesis explains why CatSeqD offers competitive performance on the KP20k-test, Krapivin-
test, NUS-test and KPTimes-test datasets with similar number of keywords per document than its two
train sets but does not explain the competitive performance of CatSeqD on the SemEval test set that has
6.71 present keywords per document. Even more importantly, it does not explain the large difference in
performance between TNT-KID and CatSeqD on the JPTimes-test. This suggests that there is another
factor influencing the performance of some keyword detectors.

The second hypothesis suggests that the difference in performance could be explained by the difference
in training regimes and the different tactics used for keyword detection by the two systems. While TNT-
KID is fine-tuned on each of the datasets, no fine-tuning is conducted for CatSeqD that needs to rely
only on the information obtained during training on the large KP20k-train and KPTimes-train datasets.
This information seems sufficient when CatSeqD is tested on datasets that contain similar keywords
than the train sets. On the other hand, this training regime does not work for datasets that have less
overlapping keywords.

Figure 4 supports this hypothesis by showing strong correlation between the difference in performance
in terms of F@10 and the percentage of keywords that appear both in the CatSeqD train sets (KP20k-

Figure 3: Relation between the average number of present keywords per document for each test dataset and the
difference in performance (F@10TNT-KID − F@10CatSeqD).
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Figure 4: Relation between the percentage of keywords that appear in the train set for each test dataset and the
difference in performance (F@10TNT-KID − F@10CatSeqD).

train and KPTimes-train for computer science and news domain, respectively) and the test datasets.
DUC and Inspec datasets have the smallest overlap, with only 17 percent of keywords in DUC appear-
ing in the KPTimes-train and with 48 percent of keywords in Inspec appearing in the KP20k-train set.
On the other hand, Krapivin, NUS, KP20k and KPTimes, the test sets on which CatSeqD performs
more competitively, are the datasets with the biggest overlap, reaching up to 95 percent for KPTimes-
test.

Figure 4 also explains a relatively bad performance of CatSeqD on the JPTimes corpus (see Table 2)
despite the smaller average number of keywords per document. Interestingly, despite the fact that no
dataset specific fine-tuning for TNT-KID is conducted on the JPTimes corpus (since there is no validation
set available, fine-tuning is conducted on the KPTimes-valid), TNT-KID manages to outperform CatSeqD
on this dataset by about 12 percentage points. This suggests that a smaller keyword overlap between
train and test sets has less of an influence on the TNT-KID and could be explained with the fact, that
CatSeqD considers keyword extraction as a generation task and tries to generate a correct keyword
sequence, while TNT-KID only needs to tag an already existing word sequence, which is an easier
problem that perhaps requires less specific information gained during training.

According to the Figure 4, the SemEval test set is again somewhat of an outlier. Despite the keyword
overlap that is quite similar to the one in the JPTimes test set and despite having a relatively large set of
present keywords per document, CatSeqD still performs competitively on this corpus. This points to a
hypothesis that there might be another unidentified factor, either negatively influencing the performance
of TNT-KID and positively influencing the performance of CatSeqD, or the other way around.

We also experimented with CatSeqD fine-tuning in order to allow fairer comparison of the results, but
this did not result in improved performance of CatSeqD. As this is not the core part of this deliverable,
we point the reader to the Section CatSeqD fine-tuning in the paper by Martinc, Škrlj, & Pollak (2020) in
Appendix A.
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2.4.2 Dissecting the attention space

One of the advantages of the transformer architecture is its employment of the attention mechanism,
that can be analysed and visualized, offering insights into inner workings of the system and enabling
interpretation of how the neural net tackles the keyword identification task. This insight is nevertheless
limited, since it is still unclear what exactly is the nature of the relationship between attention weights
and model outputs (Jain & Wallace, 2019). The TNT-KID attention mechanism consists of multiple
attention heads (Vaswani et al., 2017) – square matrices linking pairs of tokens within a given text – and
we explored how this (activated) weight space can be further inspected via visualization and used for
interpretation.

While square attention matrices show importance of the correlations between all tokens in the document
for a keyword identification task, we focused only on the diagonals of the matrices, which indicate how
much attention the model pays to the “correlation” a specific word has with itself, i.e., how important is
a specific word for the classification of a specific token as either being a keyword or not. We extracted
these diagonal attention scores for eight attention heads of the last out of eight encoders, for each
of the documents in the SemEval-test and averaged the scores across an entire dataset by summing
together scores belonging to the same position in each head and dividing this sum with the number of
documents. Figure 5 shows the average attention score of each of the eight attention heads for each
token position. While there are distinct differences between heads, a distinct peak at the beginning of
the attention graph can be observed for all heads but one (head 4), which means that heads generally
pay more attention to the tokens at the beginning of the document. This suggests that the system has
learned that tokens appearing at the beginning of the document are more likely to be keywords (Figure
6 shows the actual keyword count for each position in the SemEval corpus) and once again shows the
importance of positional information for the task of keyword identification.

Another insight into how the system works can be gained by analysing how much attention was paid to
each individual token in each document. Figure 7 displays attentions for individual tokens, as well as
marks them based on predictions for an example document from the SemEval-test. Green tokens were
correctly identified as keywords, red tokens were incorrectly identified as keywords and less transpar-
ency (more colour) indicates that a specific token received more attention from the classifier.

Figure 7 shows that, at least for this specific document, tokens that were either correctly or incorrectly
classified as keywords did receive more attention than an average token. There are also some tokens
that received a lot of attention and were not classified as keywords, e.g., eos (end of sentence signs)
and pad (padding) signs, and also words like of, is, we, etc.. Another interesting thing to notice is the
fact, that the amount of attention associated with individual tokens that appear more than once in the
document varies and is somewhat dependent on the position of the token. 13

2.5 Ablation study

In this section we explore the influence of several choices and building blocks of the keyword extraction
workflow on the overall performance of the model:

• Language model pretraining; assessment whether pretraining positively affects the performance of
the keyword extraction and if the improvements are dataset or domain specific.

• Choice of pretraining regime; comparison of two pretraining objectives, autoregressive language
modelling and masked language modelling described in Section 2.2.2.

• Choice of input tokenization scheme; comparison of two tokenization schemes, word tokenization
and Sentencepiece (Kudo & Richardson, 2018) byte-pair encoding.

13Note that Figure 7 is just a motivating example. A more thorough statistical analysis of much more than just one document
would be required in order to draw proper conclusions about the behavior of the attention mechanism during keyword identification.
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• Part-of-speech(POS) tags; assessment whether adding POS tags as an additional input improves
the performance of the model.

Figure 5: Average attention for each token position in the SemEval corpus across eight attention heads. Distinct
peaks can be observed for tokens appearing at the beginning of the document in all but one out of eight
attention heads.

Figure 6: Number of keywords for each token position in the SemEval corpus. Distinct peaks can be observed for
positions at the beginning of the document.
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• Transformer architecture adaptations; as was explained in Section 2.2.1, in the fine-tuning stage
we add an additional BiLSTM encoder to the output of the transformer encoder. We also experi-
ment with the addition of the BiLSTM+CRF token classification head on top of the model, as was
proposed in Sahrawat et al. (2020) and described in Section 2.2.1. Here we assess the influence
of these additions on the performance of the model.

Table 3 presents the results on all datasets for several versions of the model, a model with no lan-
guage model pretraining (nolm), a model pretrained with an autoregressive language model objective
(lm), a model pretrained with a masked language model objective (maskedlm), a model pretrained with
an autoregressive language model objective and leveraging byte-pair encoding tokenization scheme
(lm+bpe), a model pretrained with an autoregressive language model objective and leveraging additional
POS tag sequence input (lm+pos), a model pretrained with an autoregressive language model objective
and a BiLSTM encoder (lm+rnn), a model pretrained with an autoregressive language model objective
leveraging byte-pair encoding tokenization scheme and a BiLSTM encoder (lm+bpe+rnn), and a model
pretrained with an autoregressive language model objective leveraging byte-pair encoding tokenization
scheme and a BiLSTM+CRF token classification head (lm+bpe+crf ) .

On average (see last two rows in Table 3), by far the biggest boost in performance is gained by employing
the autoregressive language model pretraining (column lm), improving the F@5 score by about 10
percentage points and the F@10 score by 11 percentage points in comparison to no language model

Figure 7: Attention-colored tokens. Green ones were correctly identified as keywords, red ones were incorrectly
identified as keywords and less transparency indicates stronger attention for the token. Underlined words
in italic were identified as keywords by the system.
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Table 3: Results of the ablation study. Column lm+bpe+rnn represents the results for the model that was used for
comparison with other methods from the related work in Section 2.3.3.

nolm lm maskedlm lm+bpe lm+pos lm+rnn lm+bpe+rnn lm+bpe+crf
KP20k

F1@5 0.2544 0.2922 0.2476 0.2958 0.3003 0.3349 0.3418 0.3478
F1@10 0.2304 0.2836 0.2313 0.2941 0.2986 0.3382 0.3457 0.3521

Inspec
F1@5 0.2868 0.4099 0.2875 0.4255 0.4136 0.4506 0.4471 0.4463
F1@10 0.3636 0.4994 0.3704 0.4871 0.5012 0.5253 0.5252 0.5147

Krapivin
F1@5 0.1919 0.2277 0.2046 0.2879 0.2494 0.3088 0.3009 0.3142
F1@10 0.1904 0.2314 0.2029 0.2884 0.2555 0.3164 0.3070 0.3178

NUS
F1@5 0.1909 0.3319 0.2372 0.3352 0.3339 0.3419 0.3502 0.3371
F1@10 0.1902 0.3492 0.2552 0.3586 0.3518 0.3626 0.3686 0.3658

SemEval
F1@5 0.1671 0.3070 0.1842 0.2462 0.2780 0.2696 0.2921 0.2524
F1@10 0.1950 0.3469 0.2528 0.2913 0.3426 0.3303 0.3552 0.3007

KPTimes
F1@5 0.2864 0.4242 0.3052 0.4211 0.4306 0.4627 0.4691 0.4408
F1@10 0.2760 0.4208 0.3017 0.4208 0.4300 0.4609 0.4693 0.4413

JPTimes
F1@5 0.2490 0.3305 0.2644 0.3341 0.3359 0.3790 0.3570 0.3357
F1@10 0.2478 0.3344 0.2705 0.3373 0.3402 0.3823 0.3596 0.3372

DUC
F1@5 0.1951 0.2848 0.1523 0.2759 0.2918 0.3003 0.3115 0.2943
F1@10 0.2265 0.3340 0.1979 0.3213 0.3386 0.3432 0.3551 0.3342

Average
F@5 0.2277 0.3260 0.2354 0.3277 0.3292 0.3560 0.3587 0.3461
F@10 0.2400 0.3500 0.2603 0.3499 0.3573 0.3824 0.3857 0.3705

pretraining (column nolm).

On the other hand, using the masked language modelling pretraining (column maskedlm) objective on
average yields only a somewhat negligible improvement of about 0.8 percentage point in terms of F@5
score and a slightly bigger improvement of about 2 percentage points in terms of F@10 score in com-
parison to no language model pretraining. Next, the results show that adding POS tags as an additional
input (column lm+pos) leads to only marginal performance improvements. Some previous studies sug-
gest that transformer based models that employ transfer learning already capture sufficient amount
of syntactic and other information about the composition of the text (Jawahar et al., 2019). Our res-
ults therefore support the hypothesis that additional POS tag inputs are somewhat unnecessary in
the transfer learning setting but additional experiments would be needed to determine whether this is
task/language specific or not.

Another adaptation that does not lead to any significant improvements when compared to the column
lm is the usage of the byte-pair encoding scheme (column lm+bpe). Nevertheless, usage of byte-pair
encoding does have an additional positive effect of drastically reducing the vocabulary of the model
(e.g., for computer science articles, this means a reduction from about 250.000 tokens to about 30.000)
and with it also the number of parameters in the model (from about 290 million to about 70 million). Fur-
thermore, adding an additional BiLSTM encoder in the fine-tuning stage of a pretrained model (column
lm+rnn) leads to consistent improvements on almost all datasets and to an average improvement of
about 3 percentage points in terms of both F@5 and F@10 scores. This confirms the findings from the
related work that recurrent neural networks work well for the keyword detection task and also explains
why a majority of state-of-the-art keyword detection systems leverage recurrent layers. Last but not
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least, we present results for a model in which we employed autoregressive language model pretraining,
used byte-pair encoding scheme and added a BiLSTM encoder (column lm+bpe+rnn) that was used for
comparison with other methods from the related work in Section 2.3.3, and results for the approach
proposed by Sahrawat et al. (2020), where a BiLSTM+CRF token classification head is added on top of
the transformer encoder, that employs byte-pair encoding scheme and autoregressive language model
pretraining (column lm+bpe+crf ). The BiLSTM+CRF performs quite well, outperforming all other con-
figurations on two (KP20k and Krapivin) datasets. On average it however still performs by more than
1 percentage point worse than both configurations employing an added BiLSTM encoder. For more
detailed analysis and interpretation of results for specific datasets, see the Ablation study section in
Martinc, Škrlj, & Pollak (2020) in Appendix A.

As a result of this ablation study, the TNT-KID refers to the best settings, i.e. lm+bpe+rnn, for which the
results are reported in Section 2.3.3 and is used also for training the media partners’ models in Section
3.

2.6 Conclusion

We have presented TNT-KID, a novel transformer based neural tagger for keyword identification that
leverages a transfer learning approach to enable robust keyword identification on a number of datasets.
The presented results show that the proposed model offers a robust performance across a variety of
datasets with manually labelled keywords from two different do-mains. We present the results of TNT-
KID applied to the media partners’ datasets in Seciton 3.

3 Keyword extraction experiments on media partners’
datasets

TNT-KID was developed for the purpose of the real-world usage in the media environment, i.e. to
automatize and accelerate the manual keyword tagging procedure conducted by the journalists for each
newly produced news article. The idea is to employ TNT-KID as a keyword recommendation system,
which would recommend keyphrase candidates that journalist could quickly pick out of the list of all
recommended keywords for the use in production. For this reason, in this section we present the
experiments in which we applied TNT-KID to media partners’ data, in order to determine its performance
in the real-life multilingual media company setting. So far, we have presented TNT-KID to ExM and
Styria and both companies expressed very positive feedback and showed interest in testing the system
for possible integration.

Since initial feedback from the ExM media house indicated that a general preference is to return a
somewhat longer list of keywords then the one usually returned by TNT-KID, we also present an ad-
ditional TF-IDF tagset matching technique that improves the recall of the proposed keyword extraction
system. The ExM also expects that the system should return a constant number of keywords for each
article and that this number should be large enough to offer a diverse spectrum of candidates, while still
small enough to enable the journalist a quick overview and selection of appropriate candidates. For this
reason, we decided that the system should return 10 candidates, which offers a reasonable trade-off
between diversity of keywords and ease of selection. The new hybrid system first checks how many
keywords were returned by TNT-KID and if the number is smaller than ten, the list is expanded by the
best ranked keywords returned by the TF-IDF based extraction system, where only the keywords that
are in the tagset are considered.

In Section 3.1 we present the TF-IDF tagset matching technique, media partner datasets are described
in Section 3.2, while Sections 3.3 and 3.4 present the conducted experiments and results, respectively.
The conclusions are given in Section 3.5.
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3.1 TF-IDF based tagset matching

While the main feature of TNT-KID is that it is able to find new keywords, regardless of the fact if
the words appeared in the training set or not, the TF-IDF tagset matching based method, which is
less precise, is limited to only returning keyword candidates which have appeared as keywords in the
training set or were pre-approved by the media house editors. These predetermined keyword sets
contain 26,896 keywords for Croatian, 4,036 for Latvian, 5,953 for Russian and 59,242 for Estonian.
For Croatian and Latvian, the tagset was constructed automatically, i.e. by taking all the keywords from
the training set, while for Estonian and Russian, the tagset was an additional resource provided by the
media partners.

First, each article in the dataset is preprocessed according to the pipeline described in Figure 8. The
title and text of the article are concatenated and lowercased. Next, we conduct stopword removal
and tokenization. We strip any punctuation from each token and lemmatize the sequence of tokens
leveraging the Lemmagen (Juršič et al., 2010) lemmatizer, which supports languages for all datasets.
The final cleaned textual representation consists of the concatenation of all of the preprocessed words
from the document. We apply the same preprocessing procedure also on the predetermined keyword
sets for each language.

Figure 8: Preprocessing pipeline.

The TF-IDF weighting scheme assigns each word its weight w i,j based on the frequency of the word in
the document (term frequency) and the number of documents the word appears in (inverse document
frequency). More specifically:

1. Term-frequency (tf) counts the number of appearances of a word in the document.

2. Inverse-document-frequency (idf) ensures that words appearing in more documents are assigned
lower weights and is calculated as:

loge(
|D|
dfi

)

where dfi is the number of documents that contain word i and |D| the number of documents in the
corpus.

The entire metric is calculated as:
TF − IDF i = tf i,j · loge(

|D|
dfi

)

where tf i,j is the number of occurrences of the word i in the document j , dfi is the number of documents
containing word i and |D| the number of documents.
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The assumption is that words with a higher TF-IDF value are more likely to be keywords. Nevertheless,
since the results in Section 2.3.3 indicate that unsupervised approaches towards keyword extraction
tend to produce much worse results than supervised, the list of TF-IDF ranked keyword candidates ob-
tained for each document is limited only to words which appeared in predefined keyword tagsets.

For combining the TNT-KID and TF-IDF (TNT-KID+TF-IDF), we first take the keywords by TNT-KID, while
the missing keywords (to achieve the set goal of 10) are selected by taking the top-ranked candidates
from the TF-IDF tagset matching extraction.

3.2 Media partners datasets

We conduct experiments on datasets containing news in four languages, Latvian, Estonian, Russian
and Croatian. Latvian, Estonian and Russian datasets contain news from Ekspress Group, specifically
from our Estonian partner Ekspress Meedia (ExM) and from Latvian Delfi. The Croatian dataset was
acquired from 24sata news portal belonging to Styria Media Group, one of the leading media groups in
Austria, Croatia, and Slovenia. Most of the content in the dataset comes from two leading news portals
in the Croatian market in terms of page visits and business results. The dataset statistics are presented
in Table 4. For the training set, we used the articles from 2018, while for the test set the articles from
2019 were used.

Table 4: Media partners’ datasets used for empirical evaluation of keyword extraction algorithms. No.docs stands
for number of documents, Avg. doc. length stands for average document length in the corpus, Avg.
kw. stands for average number of keywords per document in the corpus, % present kw. stands for
the percentage of keywords that appear Avgin the corpus (i.e., percentage of document’s keywords that
appear in the text of the document) and Avg. present kw. stands for the average number of keywords per
document that actually appear in the text of the specific document.

Dataset No. docs Avg. doc. length Avg. kw. % present kw. Avg. present kw.
latvian-train 13133 378.03 3.23 0.53 1.69
latvian-test 11641 460.15 3.19 0.55 1.71

estonian-train 10750 395.24 3.81 0.65 2.77
estonian-test 7747 411.59 4.09 0.69 3.12
croatian-train 47479 420.32 3.10 0.47 1.32
croatian-test 5277 464.14 3.28 0.55 1.62
russian-train 13831 392.82 5.66 0.76 4.44
russian-test 11475 335.93 5.43 0.79 4.33

3.3 Experimental setup

We conducted experiments on the datasets described in Section 3.2. We evaluated TNT-KID, the TF-
IDF tagset matching, as well as the combined approach. In addition, for Croatian and Estonian, we
also present three strongest baselines employed in the English TNT-KID study, CopyRNN (Meng et al.,
2017), CatSeqD (Yuan et al., 2019) and BERT + BiLSTM-CRF (Sahrawat et al., 2020), which were
trained on the same train datasets as TNT-KID. For TNT-KID and the baselines, we employ the same
hyperparameter configurations that were used for the English experiments (see Section 2.3).

• TNT-KID: The best configuration of our proposed TNT-KID approach (a model pretrained with an
autoregressive language model objective, leveraging Sentencepiece (Kudo & Richardson, 2018)
byte-pair encoding tokenization scheme and an additional BiLSTM encoder) was used for keyword
extraction and the input text was lowercased for all languages. Same hyperparameters were used
as for the experiments on the English datasets (see Section 2.3).
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• TF-IDF tagset matching: We use TF-IDF-based weighting of keywords and select the top-ranked
keywords that are present in the tagset (see Section 3.1). The preprocessing procedure is de-
scribed in Figure 8.

• TNT-KID + TF-IDF: first the keywords are extracted by TNT-KID, and then if less then 10 keywords
are selected, the additional keywords are taken from the top ranked TF-IDF tagset matching ap-
proach.

• CopyRNN: The best performing model from Meng et al. (2019) is used, reffered to as CopyRNN.

• CatSeqD: An improved one-to-seq approach by (Yuan et al., 2019), who incorporated the mech-
anisms called semantic coverage and orthogonal regularization to constrain the over-all inner repres-
entation of a generated keyword sequence to be semantically similar to the overall meaning of the
source text and therefore force the model to produce diverse keywords.

• BERT + BiLSTM-CRF(Sahrawat et al., 2020): instead of using a pretrained GPT-2 with a BiLSTM-
CRF token classification head, as we do for the English experiments, here we use a pretrained
uncased multilingual BERT with an embedding size of 768 and 12 attention heads (Devlin et al.,
2018)14, since there is no multilingual GPT-2 model available.

For TNT-KID, which is the only model that requires language model pretraining, language models were
trained on train sets in Table 4 for up to ten epochs. Next, TNT-KID and BERT + BiLSTM-CRF were fine-
tuned on the training datasets, which were randomly split into 80 percent of documents used for training
and 20 percent of documents used for validation. The documents containing more than 256 tokens are
truncated, while the documents containing less than 256 tokens are padded with a special < pad >

token at the end. Same as for the experiments described in Section 2.3, we fine-tuned each model for a
maximum of 10 epochs and after each epoch the trained model was tested on the documents chosen for
validation. The model that showed the best performance on this set of validation documents (in terms
of F@10 score) was used for keyword detection on the test set.

For CopyRNN and CatSeqD, we employ the training procedure recommended by the authors of the
systems, i.e., the models are trained for 100.000 train steps on all train sets using the default configura-
tion.

For evaluation, we present precision, recall and F1 score, while F1@10 and R@10 are the most relevant
metrics for our media partners. Only keywords which appear in a text (present keywords) were used as
a gold standard since we only evaluate approaches for keyword tagging that are not capable of finding
keywords which do not appear in the text. Lowercasing and lemmatization (using Lemmagen lemmatizer
(Juršič et al., 2010)) are performed on both the gold standard and the generated keywords (keyphrases)
during the evaluation.

3.4 Keyword extraction results

The results for TNT-KID, TF-IDF and the combination of both for all media datasets are presented in
Table 5, as well as additional results with other state-of-the-art approaches for Croatian and Estonian
(which are the main two languages, as they cover the core needs of EMBEDDIA partners).

The results vary from one dataset to another. While the best performance in terms of F1@5 and F1@10
on the Croatian dataset is achieved by BERT + BiLSTM-CRF, on the Estonian dataset TNT-KID offers
more competitive performance. The other two baselines, CopyRNN and CatSeqD perform somewhat
uncompetitively on both Croatian and Estonian. Interestingly, CopyRNN manages to outperfom Cat-
SeqD on both datasets, even though CatSeqD offered more competitive performance than CopyRNN
on English.

TF-IDF on itself performs poorly on all datasets besides Croatian, where it offers performance compar-
able to CopyRNN and CatSeqD. The most likely reason for this discrepancy is the difference in quality of

14We use the implementation of BERT from the Transformers library (https://github.com/huggingface/transformers).
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Table 5: Results on the media partner datasets.

Model P@5 R@5 F1@5 P@10 R@10 F1@10
Croatian

TF-IDF 0.1518 0.3404 0.2100 0.1289 0.5607 0.2096
TNT-KID 0.3485 0.5359 0.4223 0.3354 0.5594 0.4194

TNT-KID + TF-IDF 0.2793 0.6517 0.3911 0.2034 0.9230 0.3334
CopyRNN 0.2277 0.3166 0.2418 0.2263 0.3193 0.2409
CatSeqD 0.1580 0.3561 0.2040 0.1389 0.4052 0.1887

BERT + BiLSTM-CRF 0.4728 0.4585 0.4655 0.4724 0.4602 0.4662
Estonian

TF-IDF 0.0377 0.0785 0.0510 0.0388 0.1523 0.0619
TNT-KID 0.5067 0.5649 0.5343 0.5055 0.6035 0.5502

TNT-KID + TF-IDF 0.2956 0.5924 0.3944 0.1864 0.7061 0.2949
CopyRNN 0.4706 0.3517 0.3611 0.4703 0.3523 0.3611
CatSeqD 0.3650 0.3910 0.3332 0.3515 0.4037 0.3271

BERT + BiLSTM-CRF 0.5221 0.4528 0.4850 0.5199 0.4681 0.4927
Russian

TF-IDF 0.0822 0.1086 0.0936 0.0817 0.1686 0.1101
TNT-KID 0.6896 0.5906 0.6363 0.6897 0.6196 0.6528

TNT-KID + TF-IDF 0.4329 0.6384 0.5160 0.2932 0.7468 0.4211
Latvian

TF-IDF 0.0518 0.1036 0.0690 0.0419 0.1417 0.0647
TNT-KID 0.3718 0.4120 0.3909 0.3715 0.4208 0.3946

TNT-KID + TF-IDF 0.1415 0.3417 0.2001 0.1230 0.5089 0.1982

the pre-approved keyword sets given to us by the media partners, since the manual inspection revealed
that the keyword sets given to us by the Express media contain some noise, such as grammatical mis-
takes and keywords of doubtful quality. On the other hand, a manual inspection of the Croatian keyword
set revealed no such problems.

Nevertheless, combining TNT-KID and TF-IDF does improves recall@5 and recall@10 on all datasets,
since the combination of the systems in a large majority of cases returns more keywords than the TNT-
KID itself. While the best recall@10 is achieved for Croatian (92.30%), considerable recall improvements
can also be observed for Russian (74.68%) and Estonian (70.61%). On the latter two datasets TNT-KID
achieves the best F1 scores, about 55% and about 65% for Estonian and Russian, respectively. On the
other hand, the combination of TNT-KID and TF-IDF returns uncompetitive F1 scores for all datasets.
This is not surprising, since the combination always returns 10 keywords, i.e., much more than the
average number of present gold standard keywords in the media partner datasets (see Table 4), which
badly affects the precision of the approach.

3.5 Conclusions on experiments on media partners’ datasets

In this section we have presented the evaluation of our TNT-KID on media partners’ dataset, adaptation
of the method (TNT-KID + TF-IDF) for improving recall, as well as several other evaluations of other
state-of-the-art systems. Given that keyword assignment represents one of the main needs and pos-
sibilities for actual deployment in the media partners’ settings, we remain focused on the monolingual
settings and achieving best results, however in future cross-lingual evaluation might be of interest as a
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scientific task.

4 TEXTA Hybrid keyword tagger
This section described the work by TEXTA, where the task was to develop a fast keyword classifier
on a dataset by a media company Õhtuleht Newspaper Dataset. The work was done in collaboration
with T6.2 and T6.3., as it is an integrated component of the Texta Toolkit part of the EMBEDDIA Media
Assistant (EMA). The work is therefore also referred in the Deliverables D6.7 and D6.8. The method and
experiments are in detail described in Vaik et al. (2020) (a paper that was published in the Industry track
of the LREC conference), which can be found in Appendix A of Deliverable D6.8. In contrast to TNT-
KID (Section 2) where the system considers all words in the article as a possible keyword, this section
addresses the setting, where possible keywords are limited to a predefined tagset. In this sense, the
task is similar to the TF-IDF extension of TNT-KID presented in Section 3 with the difference that in this
work the solution proposed is resulting from a classifier (distinguishing between tags assigned to similar
documents), and can therefore match also the keyword tags that are not present in the article.

The presented approach is a solution for multi-label classification with a massive label collection. The
proposed approach incorporates a large number of binary classification models with label pre-filtering
and employs methods and technologies shown to be applicable also in settings with limited high-end
computational hardware. The system is evaluated on an Estonian newspaper article dataset which
contains almost 2000 unique labels and has shown to perform over 80 times faster than applying all the
binary models of the entire label set without negative impact on prediction scores. From EMBEDDIA
partners, STT is having a similar setting, where they assign IPTC tags (from a tagset) to the articles.
This approach can therefore in future experiments tested on their data and compared to computationally
more demanding neural models.

4.1 Workflow of Hybrid Tagger

Hybrid Tagger (HT) incorporates a high number of binary classification models combined with unsuper-
vised label pre-filtering in order to achieve real-time predictions for thousands of labels. HT uses the
logistic regression classification algorithm from scikit-learn (Pedregosa et al., 2011), while the unsuper-
vised pre-filtering is achieved by using Elasticsearch15 engine’s document retrieval features.

Elasticsearch is used because of its stable and scalable platform for retrieving documents and perform-
ing document similarity queries for the label pre-filtering. Elasticsearch also allows to disregard complex
matrix computations and instead offers a fairly transparent way to filter labels based on the document
similarity they have been assigned to.

This section describes preprocessing (Section 4.1.1), training (Section 4.1.2) and prediction (Section
4.1.3).

4.1.1 Preprocessing

The preprocessing pipeline consists of tokenization, lemmatization, part of speech (POS) tagging, and
named entity recognition (NER). This is done by using TEXTA Multilingual Processor (MLP) which uses
NLTK (Bird et al., 2009) with Stanford models and EstNLTK (Orasmaa et al., 2016).

15https://www.elastic.co/elasticsearch
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4.1.2 Training

Binary classifiers used in HT can be trained on any text segment, e.g., title, content, author, etc. In our
experimental setup, models are usually trained using lemmatized content and also optional POS tags.
For vocabulary reduction, stop words are removed from all texts prior to training.

Training data is selected according to the pre-existing labelling. For each label, all existing positive
examples (texts annotated with the specific label) and the same amount of randomly selected negative
examples (texts not annotated with the specific label) are retrieved. Examples for all labels are then
randomly split into training and validation sets (default 80-20).

In real-life scenarios, the training process may result in thousands of classification models which have
a significant memory imprint when combined. To combat this problem, HashingVectorizer (Pedregosa
et al., 2011) is used to vectorize the training data. It has significantly smaller memory imprint than other
vectorizers supported by scikit-learn (e.g., commonly used TfIdfVectorizer).

For training models, 5-fold cross-validation and grid search are used to set the parameters, such as
minimum and maximum length of n-grams, choice between word or character n-grams, value of C
(inverse regularization parameter for logistic regression classifier). The best model from grid search is
then validated using the validation set.

4.1.3 Prediction

Instead of applying all possible binary models, in this approach first a subset of models which most likely
to provide the correct prediction are identified. This is done by finding n (default n=10) similar texts from
the training data indexed in Elasticsearch and finding m (default m=10) most frequent labels assigned to
the texts. Retrieving similar texts is done by using an Elasticsearch more like this query16 which calculates
top k words with the highest TF-IDF score per text and afterwards performs a disjunctive query using
the pre-existing labels to match similar texts.

The prediction pipeline is as follows:

• preprocess the input text (optional);

• find n similar texts indexed in Elasticsearch;

• find top m labels attached to the texts found in the previous step;

• apply named entity recognition on the input to identify l entity-related labels and remove these
binary models from the list of m models which will be used later for label prediction;

• retrieve all models for each of m-l top labels;

• apply models, retrieve and combine the list of predicted labels classified by the binary models and
the entity-related labels, and output the results.

4.2 Evaluation

The evaluation shows that Hybrid Tagger performs significantly faster than the baseline model without
negative impact on prediction scores. This is shown in detail in our paper (Vaik et al., 2020) available in
Appendix of D6.8. Here, we omit the analysis in terms of the applicability of Hybrid Tagger depending
on the available computation power and number of labels present in the dataset.

In this section we present the evaluation of the tagger in the case Study on Õhtuleht Newspaper Dataset.
Õhtuleht dataset contains newspaper articles spanning from years 2013 to 2019, covering a wide range
of topics (news, sports, entertainment, crime, etc). For evaluating HT, Õhtuleht dataset is split into train

16https://www.elastic.co/guide/en/elasticsearch/reference/current/query-dsl-mlt-query.html
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and test set (100 000 and 2450, respectively), and trained 1870 binary classifiers on lemmatized articles’
content using logistic regression as the predictor function. The minimum number of examples per each
label was set to 50, resulting in disqualifying 108 labels with a smaller number of examples.

The results are provided in terms of average prediction time, precision, recall, F1 score and the number
of predicted labels on the test data by applying:

1. Baseline model (BL) consisting of all binary classifiers;

2. Hybrid Tagger with the best detected parameter configuration (n label candidates = 10, n similar texts
= 10) with NER enabled (HT NER) and NER disabled (HT).

Table 6: Comparing Baseline with Hybrid Tagger

BL HT NER HT
n taggers 1870 10 10

n similar texts / 10 10
n cores 24 24 24

NER enabled no yes no
Time (s) 82.34 1.01 1.01

Precision 0.07 0.70 0.71
Recall 0.85 0.92 0.75

F1 score 0.12 0.76 0.67
n predicted labels 128.87 6.21 4.89

Table 6 gives an overview of Hybrid Tagger’s performance compared with the baseline model (BL).

BL model’s actual average prediction time is 82.34 seconds while HT labels one document on average
with 1.01 seconds resulting in an actual speedup pf 81.5. The experimental results prove that HT
performs significantly faster than the BL model.

Furthermore, BL’s F1 score is only 0.12 as a result of extreme over labelling causing a very low precision
of 0.07. HT’s recall without NER is 0.75 being slightly lower than BL’s average of 0.85. However, HT
with NER obtains even better recall than the BL model with an average score of 0.92. It is still important
to keep in mind that the applicability of NER is dataset-specific. r For more details the reader is referred
to the paper in Appendix A in deliverable D6.8.

4.3 Conclusion on TEXTA Hybrid Tagger

This section presented an industry-driven solution, Hybrid Tagger, for multi-label classification with a
large volume of keywords. The proposed system incorporates a high number of binary classification
models coupled with unsupervised label pre-filtering and named entity recognition to achieve real-time
predictions with thousands of labels. As the development of Hybrid Tagger was industry-driven, the time
aspect is the main focus of the evaluation (see paper in D6.8).

The evaluation of Hybrid Tagger on Õhtuleht newspaper dataset shows that Hybrid Tagger helps to
significantly improve both the prediction times and precision scores in comparison to executing all binary
classification models of the label set. In future, we plan to test the approach on STT tags using IPTC
classification (a standardised set of tags (keywords) used by news industry).

For now TEXTA Hybrid Tagger and TNT-KID were not compared, as they are applicable to different set-
tings: while TNT-KID was developed for standard keyword extraction task, where any word (or multi-word
expression) in the article can be a keyword, TEXTA Hybrid Tagger was applied in a special multi-label
classification setting (where an article gets assigned a keyword from cca. 2000 possible labels, where
there is no pre-condition that a label is also a word in the article). As the dataset used in experiments in
this section is external to EMBEDDIA, we also did not use it for more detailed investigation whether the
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labels correspond also to keywords in the article, which would allow for comparison of the approaches.
In future, we will analyse the EMBEDDIA Finnish press agency dataset (STT), which is a similar setting
to the one presented here, and in case the labels correspond to the words as used in the articles, we
will be able to compare the two systems.

5 Keyword and term alignment
Term alignment refers to the process of aligning terms between two candidate term lists in two (or
more) languages. The task originates from terminology and translation research fields. In the scope of
EMBEDDIA, we consider the same techniques for aligning tagsets of keywords (i.e. the predefined lists
from which journalist choose the keywords for their articles) in two different languages.

In previous deliverable D2.3, we described our replication study (published in Repar et al. (2019)) on
bilingual term-alignment approach by Aker et al. (2013) and its adaptation. In this study, the term
alignment is considered as a bilingual classification task: for each term pair, various features are created
based on word dictionaries (i.e. features based on Giza++ word alignements) and word similarities
(i.e. cognate-based features) across languages. In our replication study, we first showed that our
reimplementation results were drastically lower than the ones’ of original authors. However, after several
adaptations, we managed to achieve competitive results.

In this delvierable, we first present how we used the method for aligning the tagset of keywords for
Ekspress Meedia (ExM) (Section 5.1), and next how we adapted the method by considering features
derived from cross-lingual word embeddings (Section 5.2).

5.1 ExM keyword tagset alignment

We present the experiments of using the system from Repar et al. (2019) for aligning the tagset of
keywords in Russian and Estonian of ExM media partners. ExM have a large dataset of manually
assigned keywords in two languages: Estonian and Russian. The dataset is skewed towards Estonian,
but there is still a sizeable chunk of Russian keywords available for alignment. The dataset was split
into two parts based on script type and we assumed Latin script words were Estonian and Cyrillic script
words were Russian. Out of the total 65 830 keywords in the dataset, 59 632 were Estonian and 6 198
were Russian. The keywords in the two languages were not aligned and the task was as follows: for
every Russian keyword, try to find an equivalent keyword in Estonian. Having this functionality would
allow ExM to select a Russian or Estonian keyword and filter articles on the topic not just in the language
of the keyword, but also in the language of the equivalent keyword found by our algorithm.

The term alignment approach described in (Repar et al., 2019) requires the following resources to
work:

• an aligned list of terms (e.g., a bilingual dictionary)

• Giza++ word alignment dictionary or a large parallel corpus to calculate such word alignment
dictionaries

• transliteration rules for characters not appearing in the opposite language

Few bilingual resources exist for this language pair which meant that we had to be flexible in terms of
resources, even if they were not of the highest quality. For example, the Eurovoc dictionaries nor the
parallel DGT corpus or the derived Giza++ translation tables were not available for Russian, as Russian
is not one of the EU languages. Therefore, we used the following resources:

• Aligned list of terms: we used the General Multilingual Environmental Thesaurus17 (GEMET), since

17https://www.eionet.europa.eu/gemet/en/about/
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this was one of the few bilingual terminological resources that contained both Russian and Esto-
nian.

• Giza++ alignments: Giza++ word alignment dictionaries were calculated from the OpenSubtitles2018
corpus available at OPUS portal18.

• Transliteration: we used the transliterate Python package19 for transliteration from Latin to Cyrillic
scripts.

These resources were used for generating the features for training a machine-learning classification
model as in Repar et al. (2019).

The created machine-learning model was then applied to align the Russian and Estonian keywords from
the ExM tagset. The algorithm classified 4989 Estonian-Russian pairs as positive. A subset of 500 pairs
were manually evaluated by a domain expert from ExM, proficient in both languages, who found that
74% of the positively classified pairs were correct keyword pairs.

5.2 Term alignment with novel embeddings features

In this section, we present experiments on term alignment, where we take our reimplementation of
the bilingual term-alignment approach by Aker et al. (2013) as presented in (Repar et al., 2019) and
consider additional embeddings-based features. More specifically, we wanted to explore if embeddings-
based features can improve the overall performance of the term alignment algorithm as well as reduce
the reliance on bilingual resources which can be scarce for language pairs not involving English as seen
in Section 5.1. This work was done in collaboration between JSI and UL-CS.

As in the original experiments, we take the Eurovoc thesaurus (Steinberger et al., 2002) and in this
deliverable we focus only on English and Slovene language pair.

We used the VecMap tool by (Artetxe et al., 2018) to align FastText embeddings of words that appear
in the terms between the source and the target language and calculated cosine similarities between all
pairs of source and target words. Following the feature generation procedure in (Repar et al., 2019),
we generated the following new features (where instead of Giza++ features we use the embedding
alignment based features):

• isFirstWordFirstMatch,

• isLastWordFirstMatch,

• percentageOfFirstMatchWords,

• percentageOfNotFirstMatchWords,

• longestFirstMatchedUnitinPercentage,

where FirstMatch means that the target term word (i.e. the first word in the target term) is also the most
similar target word for a given source word based on cosine similarity of their FastText embeddings. For
example, for Slovenian term uničenje, top aligned English word embeddings (and their cosine distance)
are: destruction (0.761), damage (0.586), confiscation (0.576), and the top ranked word (destruction) is the
correct term translation.

Furthermore, we noticed that for a minority of source words, the target term word of a given source word
does not appear at the top of the list of most similar words according to FastText cosine similarity, but it
may appear in second or third place. To cover such cases, we generated 5 more features:

• isFirstWordTopNMatch,

• isLastWordTopNMatch,
18http://opus.nlpl.eu/OpenSubtitles-v2018.php
19https://pypi.org/project/transliterate/
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• percentageOfTopNMatchWords,

• percentageOfNotTopNMatchWords,

• longestTopNMatchUnitinPercentage,

where TopNMatch means that the target term word can be found in the list of top n similar target words
based on cosine similarity of their FastText embeddings (we selected n=3). For Slovenian term demo-
grafska analiza and the English demographic analysis, the feature isFirstWordFirstMatch is 0 (as the top three
3 embeddings alignments for demografska are demography (0.6665), economic (0.5933), demographic (0.59)),
however the feature isFirstWordTopNMatch is 1, as demographic occurs in the 3rd place.

In total, 20 new features were generated (10 for each language direction, i.e. source to target and target
to source). We added the new features to the training and test dataset and repeated the experiments
with configurations 5, 6, 7, 8 and 10 from Repar et al. (2019) (see Table 3). For configuration 5, we
simply added the new embedding features to the data sets20 to see whether the new features improve
the results while for the other 4 configurations, we also replaced the Giza++ features with embedding
features to evaluate if the FastText features can effectively replace them to reduce the reliance on large
parallel corpora.

Below is a brief explanation of the experiments from (Repar et al., 2019) that we reevaluated for this
deliverable:

• unbalanced train set: the ratio of positive and negative terms in the training set is 1:200 (Configur-
ation 5 in Repar et al. (2019))

• train set filtering 1: the train set is filtered according to a qualitative analysis of the features and
the positive/negative ratio is 1:1 (Configuration 6 in Repar et al. (2019))

• train set filtering 2: the train set is filtered according to a qualitative analysis of the features and
the positive/negative ratio is 1:10 (Configuration 7 in Repar et al. (2019))

• train set filtering 3: the train set is filtered according to a qualitative analysis of the features and
the positive/negative ratio is 1:200 (Configuration 8 in Repar et al. (2019))

• cognates: the train set is filtered according to a qualitative analysis of the features with a focus on
cognate term candidates and the positive/negative ratio is 1:200 (Configuration 10 in Repar et al.
(2019))

Results in Table 7 indicate that in the most initial setting (on unbalanced train set, Configuration nb. 5 in
our experiments in Repar et al. (2019)) adding the new embeddings features improve the performance:
it is clearly shown that adding embeddings features results in a significant improvement of precision
and F1 score at a cost of somewhat lower recall. However, in additional settings (using training set
filtering), the improvement is not straightforward and more investigation is needed to discover the best
feature combination. Configuration 10 looks promising because using just embeddings features (as well
as cognate features which also do not require large parallel corpora), we were able to achieve high
precision (overall the best precision of all the experiments).

In addition to FastText embeddings, we also performed experiments with ELMo contextual embeddings,
however the cross-lingual alignments were not of sufficient quality to be of use. In future, we plan
to evaluate the FastText features on the ExM keyword alignment experiments presented in Section
5.1.

20In total we have 28 features described in Repar et al. (2019) (Giza++ and cognate based)—13 dictionary-based, 5 cognate-
based features with transliteration rules (in these experiments these were calculated only for one direction, while cognate based
features without transliterations were not considered) and 10 combined features—and 20 novel embedding-based features).
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Config (config. number from Repar et al. (2019)) precision recall F1 score
unbalanced train set (nb. 5) giza 0.4299 0.7617 0.5496
unbalanced train set (nb. 5) combined 0.5375 0.6800 0.6004
train set filtering 1 (nb. 6) giza 0.5969 0.6417 0.6185
train set filtering 1 (nb. 6) embeddings 0.1845 0.5783 0.2798
train set filtering 1(nb. 6) combined 0.1583 0.7100 0.2589
train set filtering 2 (nb. 7) giza 0.9042 0.5350 0.6723
train set filtering 2 (nb. 7) embeddings 0.6487 0.3017 0.4118
train set filtering 2 (nb. 7) combined 0.5333 0.6400 0.5818
train set filtering 3 (nb. 8) giza 0.9342 0.4966 0.6485
train set filtering 3 (nb. 8) embeddings 0.9545 0.2450 0.3899
train set filtering 3 (nb. 8) combined 0.8170 0.5133 0.6305
cognates (nb. 10) giza 0.8732 0.5167 0.6492
cognates (nb. 10) embeddings 0.9618 0.3617 0.5242
cognates (nb. 10) combined 0.8991 0.5200 0.6589

Table 7: Results of additional experiments. giza lines contain results from the previous experiments described
in (Repar et al., 2019), embeddings lines contain results from experiments where we replaced Giza++
features with embeddings features, and combined lines contain results where we used both Giza++ and
FastText embeddings alignment features.

6 Additional experiments on term extraction
Already in the introduction, we have explained that the two domains (terminology and keyword extrac-
tion) are highly related and offer many opportunities for joint exploitation. While keywords are important
descriptors of single documents, terms usually refer to domain-specific expressions and are extracted
from a collection of documents. While in the previous section (Section 5) we have shown how methods
from terminology science can directly benefit the keyword matching task in media setting, in this sec-
tion we show how EMBEDDIA contextual embeddings and techniques can be applied to a terminology
extraction task (Section 6.1). Next, we describe a novel canonical form generator for Slovene (Section
6.2), which is needed for transforming terms as well as keywords to their canonical forms, which in
morphologically-rich Slavic languages differs from the lemmatised form. Finally, we describe a method
for extracting terminological semantic relations using intersections of embeddings (Section 6.3), which
has potential for finding lexical variation in natural language generation.

6.1 Term extraction using contextual embeddings

In this section, we present our first attempts in developing a term extraction system based on ELMo
contextual embeddings. This work was done in collaboration between JSI and UL-CS.

We believe that at its core, the issue of terminology extraction is one of context. Terms are linguistic rep-
resentations of domain-specific concepts implying that the same linguistic representation has a different
meaning and/or behaves differently in a domain-specific setting than it would in the general language.
For example, contrastive approaches to terminology extraction, such as the ones by Vintar (2010);
Pollak et al. (2012), are based on comparison of the frequencies between the domain and general
corpus.

In terms of representing context, a major research development in natural language processing has
been the introduction of contextual word embedding models (Peters et al., 2018a; Devlin et al., 2018) in
recent years. In contrast to the static word embedding models, e.g., (Mikolov et al., 2013), where during
training all senses of a given word contribute relevant information in proportion to their frequency in the
training corpus (which causes the final word embedding to be placed somewhere in the weighted middle
of all words’ meanings), the contextual embeddings generate a different vector for each context a word
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appears in, with this context typically being defined sentence-wise. Static embeddings can therefore
not handle well the representation of polysemous words, where for example, the word embedding of the
word "bank", would include (at least) two meanings: 1) a financial institution and 2) a river bank. On the
other hand, contextual word embedding models allow researchers to get word embeddings for words in
their (domain-)specific context which is what we aim to exploit further in our research of domain-specific
terminology. For more details on differences between static and contextual embeddings see deliverables
D1.2 and D1.3.

We have devised an initial term extraction approach utilizing contextual word embeddings by comparing
the term vectors in a general language corpus and a domain-specific corpus. In this regard, our research
follows other similar approaches comparing general and domain corpora (Vintar, 2010; Pollak et al.,
2012), but instead of comparing relative frequencies, we compare word embeddings, with the idea that
(single or multi-word) expressions with a large distance between the general domain and specific domain
vectors are the most likely to be terms. The system consists of four phases: 1) term candidate extraction
using traditional methods with part-of-speech patterns, 2) calculation of average lemma embeddings in
both corpora, 3) calculation of term embeddings in both corpora and 4) cosine similarity comparison of
term embeddings in general and domain corpus.

The experiments were performed on the following corpora: the Slovenian corpus of karstology (Vintar
et al., 2019), where we have previously evaluated term extraction methods (Pollak et al., 2019) and the
English corpus in the ACTER dataset (Terryn et al., 2019), which is one of the rare multilingual gold
standard corpora for terminology.

The approach was applied as follows:

Step 1: Term candidate extraction. We start by lemmatizing and tagging the domain-specific corpus
(Karst for Slovenian, ACTER for English) and then use a set of pre-defined part-of-speech patterns,
such as noun+noun or adjective+noun, to collect the initial term candidates. This step is similar to other
previous approaches.

Step 2: Calculation of average lemma embeddings in both corpora For the general domain corpus em-
beddings, we use the ELMo embeddings produced from the reference corpus of Slovenian language
Gigafida 2.0 (Krek et al., 2020), while for English, we used the models trained on the English Wikipe-
dia. The corpora are not lemmatized and the contextual embeddings are calculated for each word form
separately. To counter this, we calculate a lemma average of each word by lemmatizing all words, sum-
ming up all word form embeddings and dividing them by the number of different word forms21. Then we
pass all sentences in the domain-specific corpus one by one to the ELMo model to receive contextual
embeddings of each word in each sentence and calculate word averages. To follow the same approach
as for the general corpus, we don’t lemmatize the domain-specific corpus, but rather calculate lemma
averages as above.

Step 3 and 4: Calculation of term embeddings in domain and reference corpus and ranking of term candid-
ates by term embeddings comparison. For each term candidate from the initial list from step 1, we find its
average embedding, where single word terms correspond to average embeddings of the lemma in Step
2, while for multi-word terms, we calculate term embeddings as the average of all its constituent words
(lemmas). We calculate term embeddings in both (domain and general) corpora and calculate cosine
similarity between them and finally rank the terms according to the cosine similarity of their vectors,
where the terms with the least similar embeddings are ranked as top term candidates (based on the hy-
pothesis that the embeddings of terms in domain and reference corpus will differ, while representation
of non-terminological vocabulary will not differ to the same extent).

For evaluation, term candidates from the Slovenian corpus on karstology were first extracted and then
manually evaluated by a domain expert. We then calculated precision at various top N values and
compared the new embeddings-based extraction method to more traditional frequency-based method
(comparing frequencies of words in general and domain corpora, Pollak et al. (2012)). The results are
provided in Table 8. While the new method achieves slightly lower results in isolation, when combining

21Creating new Elmo embeddings with a lemmatized corpus was deemed to be computationally too intensive.

40 of 148



ICT-29-2018 D2.6: Final keyword extraction

the two methods by adding up their individual ranks and sorting from smallest to largest, the combined
method comes out on top.

top N frequency embeddings combined
top 100 0.75 0.53 0.85
top 200 0.70 0.59 0.74
top 400 0.63 0.64 0.69
top 800 0.58 0.52 0.58

Table 8: Precision at top N of term extraction experiments on a karstology corpus.

We repeated the experiments on the ACTER dataset, which comes with annotated terms (meaning
that we can evaluate recall as well). These results were less encouraging with F1 scores hovering
around 0.30 which is somewhat below the state-of-the-art results (F1 score of 0.46) achieved by the
winning system (Hazem et al., 2020) of the Termeval 2020 workshop (Rigouts Terryn et al., 2020). We
believe one of the reasons impacting the performance was that we used the entire English Wikipedia
as the general language corpus. We are currently investigating if Wikipedia may be too similar to
specific terminological domains and are planning to repeat the experiments with the British National
Corpus.

These experiments were not yet repeated on the news corpora. However, terminology is very closely
related to keywords: while keywords usually relate to a single document, terms relate to domain words
in a corpus of documents. For the tasks, where we aim to analyse and compare news corpora of, e.g.,
different genres or time periods, the task is closer to term extraction. These methods can therefore be
considered also in T4.3 for viewpoint analysis.

6.2 Canonical term form generation

In terminology and keyword extraction, term candidates are produced as they appear in the text or at
best in their lemmatized form. While this is not a significant issue for languages with little inflection,
such as English, it is much more prominent in highly inflectional languages, such as Slovene and other
EMBEDDIA languages.

To address this issue, we have developed a system (currently only for Slovene) for producing canonical
forms which can be described as "word forms as they would appear in the dictionary" (e.g., . We trained
the Lemmagen lemmatization algorithm (Juršič et al., 2010) on various forms in the nominative case
from the Slovene morphological lexicon Sloleks (Dobrovoljc et al., 2019).

lemma canonical form
strojen učenje strojno učenje
kraški polje kraško polje

Table 9: Examples of canonical forms

Thus we were able to recreate the canonical form of a term by canonizing each constituent word accord-
ing to predefined rules on canonization. For example, for an adjective+noun phrase, if the headword
noun is in the female gender, produce the female nominative form of the preceding adjective (and not
the nominative male form which is the form resulting from a lemmatization). For examples of differences
between lemmatized forms and cannonical forms for nouns of neutral gender, see Table 9.

6.3 Terminological semantic relations extraction

In this section, we present a study on the use of intersections of word embeddings for terminological
relation extraction. The paper was accepted and presented at conference TOTh (Terminology & Onto-
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logy: Theories and applications) (Grčić-Simeunović et al., 2020 (to apprear)) and will be published in
upcoming conference proceedings, a preprint is available in Appendix D). This work, partly related to
EMBEDDIA, presents an embeddings-based technique which can be potentially relevant also for ap-
plications in media context. For example, in keyword search the original query can be expended with
embeddings for finding similar lexical items which were not listed by the query of the user, and using
intersection of embeddings can be a promising technique. The method has also some potential for nat-
ural language generation in template variation, as discussed in Deliverable D2.4, where a similar study
(Vintar et al. (2020)) to the one presented here was introduced.

The study is conducted on the TermFrame corpus of karstology Vintar et al. (2019). We present a
method for extracting semantically related adjectives using intersections of word embeddings and a
detailed manual analysis of the extracted words. The results of the first stage show high variability in
precision between relations (ranging from 0.28 (for relation FUNCTION, Croatian) to 0.80 (for relation
COMPOSITION, Croatian), yet for three out of five target relations the method successfully extracts
numerous meaningful adjectives pertaining to the target semantic relation (FORM, COMPOSITION and
CAUSE). The analysis performed in the second stage reveals several nuances of semantic similarity
which we categorise into clusters. In most cases, members of a cluster share a surface linguistic
component such as a suffix, prefix or word stem. Some suffixes indeed contain a semantic component
pertaining to a specific relation (-genic -> CAUSE), and a shared word stem almost necessarily entails
a similarity in meaning. In other cases, word embeddings allow us to retrieve synonyms with no surface
similarity (podmorski – submarinski) only on the basis of their shared contexts.

This paper further analyses the approach described in Vintar et al. (2020) previously integrated in D2.4
(where we discuss how this could be useful also as a natural language generation strategy for relexic-
alization), while in the paper integrated here (Grčić-Simeunović et al., 2020 (to apprear)) a focus is on a
more detailed discussion on linguistic analysis of semantic relations expressed by adjectives. For more
details see the paper Grčić-Simeunović et al. (2020 (to apprear)) in Appendix D.

7 Term and keyword extraction for scientific literat-
ure mining

We also extended our work to extracting keywords and terms from scientific papers using word embed-
dings technology for supporting scientific discovery, which is a very timely application of EMBEDDIA
technology given the context of COVID-19 pandemics, which was marking the society in the second
period of the project. The work described in Section 7.1 utilises the EMBEDDIA keyword extractor
RaKUn (presented in Deliverable D2.3) as an underlying technology in development of the system for
fast search over COVID-19 papers. Next, the work in Sections 7.2 and 7.3 uses the embeddings-based
technology to support new scientific discovery (the published papers are provided in Appendices C and
D).

This work can be seen as part of EMBEDDIA exploitation activities, as JSI has received additional
national funding for COVID-19 research and the COVID-19 explorer using the EMBEDDIA result of
RaKUn keyword extractor was part of the project application.

7.1 Extending RaKUn with novel features and development of COVID-
19 explorer

In the previous deliverable D2.3, we have described our novel unsupervised keyword extraction method
RaKUn Škrlj et al. (2019). In summary, the main steps of RaKUn keyword extractor are as follows:

• construct a directed graph from text (vertices correspond to words, and edges to co-occurrence
frequencies),
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• meta vertex aggregation (aggregating vertices based on a defined similarity function),

• vertex ranking by Load centrality score, and

• multi-word keyword scoring.

The key novelty of this algorithm was the introduction of meta-vertices, i.e. vertices constructed from
multiple very similar words. In the first version of the algorithm, the distances were computed as Leven-
shtein distances, however, we extended the distance computation to Euclidean distances between token
embeddings. Here, we first compute a representation of each of the tokens, initially used to construct a
token graph. Next, based on the distances between the tokens, vertices (tokens) are joined. Note that
this type of vertex joining results in different token graphs, as the distances are no more of lexical, but
of semantic nature. Current version of RaKUn works with FastText embeddings (pre-trained for multiple
languages), and is freely available at the official repository of RaKUn.

The developed COVID-19 Explorer tool exploits RaKUn for the generation of collections of keywords
for more than 50,000 COVID-19-related scientific papers. The tool is able to query the document base
based on the keywords, as well as display all the documents in latent space (obtained by 2D projections
of document representations obtained with doc2vec), offering a fast and intuitive explorer of COVID-19-
related literature. The tool is freely available at http://covid19explorer.ijs.si/ and in Figures 9 and 10,
we present the welcome screen with user input fields and the visualisation of document embeddings,
respectively.

We are currently working on a publication together with an expert from pharmaceutical science on a use
case around COVID-19 Explorer. Moreover, the development of the COVID-19 Explorer is general, and
can easily be adapted to other domains, including news.

Figure 9: The COVID-19 Explorer’s welcome screen and user input fields. Relevant key sections of the online
tool are emphasized and numbered in red colour. Namely: 1. user keyword inspection and input field,
2. Boolean operators imposed on keywords, 3. selected keyword inspection window, 4. Dynamically
updating result field displaying semantically related peer-review articles, 5. specific article detail button
and 2D visualization of semantic space

7.2 Methods for term identification for novel scientific discovery us-
ing contextual embeddings

In this section, we briefly summarise our work on identifying terms for scientific discovery related to
COVID-19. Again, the motivation was the period of crisis that inspired the entire scientific community to
join the forces and contribute to the search of possible solutions by our knowledge and tools .
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Figure 10: Visualization of the document embeddings colored by the keyword “pneumonia”.

In our paper (Martinc, Škrlj, et al., 2020), we focus on Covid-19 and identification of terms for know-
ledge discovery. The abundance of literature related to the widespread COVID-19 pandemic is beyond
manual inspection of a single expert. Development of systems, capable of automatically processing tens
of thousands of scientific publications with the aim to enrich existing empirical evidence with literature-
based associations is challenging and relevant. We propose a system for contextualization of empirical
expression data by approximating relations between entities, for which representations were learned
from one of the largest COVID-19-related literature corpora. In order to exploit a larger scientific con-
text by transfer learning, we propose a novel embedding generation technique that leverages SciBERT
language model pretrained on a large multi-domain corpus of scientific publications and fine-tuned for
domain adaptation on the CORD-19 dataset22.

Next, we generate word representations for each word in the vocabulary, as illustrated in Figure 11.
From contextual embeddings (where word representation differs for each context), we get back to static
embeddings.

The main idea of our approach is to leverage semantic similarity in order to derive new scientific know-
ledge from an already existing one. For this to work, some initial seed concepts need to be acquired
and used as a starting point. We explore two possibilities for this: seed concepts recommended by the
expert and seed concepts found in the literature. Once seed concepts are acquired, we calculate their
embeddings and look for semantically similar concepts by finding the concepts that are the closest to
seed concepts according to the cosine distance between the embeddings. More specifically, we find a
set of closest candidate concepts for each gene/protein in each seed candidate set, and the acquired
candidates are ranked according to the cosine similarity. Finally, we calculate the average ranking for
each candidate (i.e. by averaging ranks for each seed concept in the set) and therefore obtain the
closest term candidates for each of the seed terms.

The conducted manual evaluation by the medical expert and the quantitative evaluation based on ther-
apy targets identified in the related work suggest that the proposed method can be successfully em-
ployed for COVID-19 therapy target discovery and that it outperforms the baseline FastText static em-
beddings method by a large margin.

22https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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This work showcases the role of terms and keywords also in the domain of scientific discovery, and
could potentially be applicable for new methods for investigative journalism.

Figure 11: Extraction of word usage embeddings from BERT. Note that only the last 4 out of 12 BERT encoder
layers are used for the embedding generation. This was done in accordance with the previous studies
that suggested that the last four layers carry the bulk of the semantic information obtained by the model
(Martinc, Kralj Novak, & Pollak, 2020).

7.3 Methods for term identification for novel bisociative scientific
discovery using term analogies

Bisociative knowledge discovery is a challenging task motivated by a trend of over-specialization in
research and development, which usually results in deep and relatively isolated silos of knowledge.
Scientific literature too often remains closed and cited only in professional sub-communities. The in-
formation that is related across different contexts is difficult to identify using associative approaches, like
the standard association rule learning (Agrawal et al., 1996) known from the data mining and machine
learning literature. Therefore, the ability of literature mining methods and software tools to support the
experts in their knowledge discovery processes—especially in searching for yet unexplored connec-
tions between terms of different domains—is becoming increasingly important. The field of bisociative
literature-based discovery therefore aims at mining scientific literature to reveal yet uncovered connec-
tions between different fields of specialization.

In our paper (Lavrač et al., 2020a), we present the lessons learnt on bisociative knowledge discovery
and extend it in our paper (Lavrač et al., 2020) (presented in Appendix B), where one of the main
contributions is theoretical and experimental research on new knowledge discovery using analogies of
embeddings, more specifically by analogies of terms from two different domains. This work is therefore
an application of technologies developed within the project, namely embeddings and keyword extraction,
to a new domain - i.e. scientific discovery.

Koestler (1964) argued that the essence of creativity lies in “perceiving of a situation or idea . . .
in two self-consistent but habitually incompatible frames of reference”, and introduced the expression
bisociation to characterize this creative act.

Starting from Koestler’s concept of bisociation, concrete bisociative patterns that are searched for in
bisociative knowledge discovery include: bridging concepts, bridging graphs, and bridging by structural
similarity (Kötter & Berthold, 2012):

45 of 148



ICT-29-2018 D2.6: Final keyword extraction

Bridging concepts. This is the most natural type of bisociation: a concept connecting two domains. In
practice, different literatures from different domains are explored, and some terms connecting the
two are found. This is the kind of pattern originally explored by Swanson. These connecting terms
allow us to corroborate hypotheses linking the two domains. Bridging concept in the intersection
of two domains A and C is illustrated in Figure 12.

Bridging graphs. More complex bisociations are modeled by bridging graphs, in a network-representation.
This is similar to bridging concepts, but in this case, what connects two different domains is a sub-
set of related concepts.

Bridging by structural similarity. This is the most complex kind of bisociation, whereby, again in a net-
work representation, subsets of concepts in each domain share structural similarities, illustrated
in Figure 13.

Bisociations based on structural similarity are represented by relations and/or sub-graphs of two differ-
ent, structurally-similar domains (Kötter & Berthold, 2012), illustrated in Figure 13. This type of biso-
ciation is according to Kötter & Berthold (2012) the most abstract pattern with the potential for new
cross-domain discoveries, which e.g., vertex similarity methods can identify.

Figure 12: Bridging concept in the intersection of two literature domains A and C .

Figure 13: Bridging by graph similarity (Kötter & Berthold, 2012).

The scientific question addressed in our research is whether embeddings can be used as means for
discovering relational bisociations, a special case of bridging by structural similarity. This new concept is
illustrated in Figure 14.

Bridging by relational bisociation. We propose a particular bridging by relational bisociation setting, illus-
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Figure 14: Concept of bridging by relational bisociation, newly introduced in our work (Lavrač et al., 2020).

trated in Figure 14, where we are interested if for a specific relation between two given concepts
a1 and a2 in the first domain A one could bisociatively discover an analogous relation between con-
cepts x and c in the second domain C , where c is a given concept (term) and x is a new concept
(term) that we are trying to find. More formally, this can be written in a form of a bisociation, i.e.
an analogy between two separate domains, A and C as follows:

a1 rel a2 == x rel c

In the embedding space, this analogy translates to the following equation between embeddings:

x = emb(a1) + emb(a2) - emb(c)

Finally, once x is calculated, we need to find a set of concepts from the second domain C that have an
embedding representation most similar to x according to some predefined distance measure.

Methodology of bridging by relational bisociation. Proposed embedding-based bisociative literature-based
discovery (LBD) methodology for creative discovery of bisociated relationships between two do-
mains A and C consists of the following steps:

1. Select two domains A and C , i.e. two document corpora such as circadian rhythm and plant
defense, respectively.

2. Train separate word embedding models for A and C to get emb(A) and emb(C).

3. Perform alignment of emb(A) and emb(C) embedding vector spaces.

4. Determine the relationships of interest in a given domain A between concepts a1 and a2

defined by the domain expert, e.g., biologist.

5. Perform the embedding-based relational LBD with a known seed concept c in C by leveraging
the ability of the embedding representations to model analogy relations.

6. Evaluate a list of best ranked relational bisociations.

We present experiments conducted on the circadian rhythm and plant defense domains in collaboration
with experts from biological domain. Our main goal was to identify potentially interesting new daily reg-
ulated mechanisms that are responsible for plant defence. Circadian rhythm in plants causes that some
of their genes are expressed differently during the course of the day. Consequently, plants respond
differently to disease-causing infection if they are infected at different times of the day (e.g., morning,
noon, evening). Therefore, one of the goals of our study was to identify new gene sets that are dif-
ferently expressed in different parts of the day and are important for the defense of plants against the
pathogen.
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After obtaining 10,494 documents from PubMed containing article titles and abstracts (4,346 from
plant defence and 6,148 from circadian rhythm), we replaced gene names with synonyms gathered
in previous research projects (22,265 gene names mapped into 7,863 synonyms). In addition, we pre-
processed the documents to keep only gene-related terms (included in synonym list and from the gene
dictionary containing additional 6,083 gene names), which resulted in a substantial reduction of the in-
put document corpus named genesOnly dataset. On each of the two selected domains, we trained a
separate FastText embeddings model (Bojanowski et al., 2017), and then aligned them into a common
vector space. We opted for a supervised alignment approach, which relies on a training dictionary of
identical words from both domains that are used as anchor points to learn a mapping from the source to
the target space with a Procrustes alignment (Conneau et al., 2017). Next, we asked a biology expert
to identify a list of genes and other terms closely related to the circadian rhythm domain and the input
list of terms consisted of 15 terms.

According to our methodology, we tried to identify a list of terms (genes) related to the concept of
plant defense in the similar way the genes from the above list are related to the concept of circadian
rhythm. First, we calculated embedding x according to the following equation: x = emb(a1) + emb(a2) -
emb(c), where a1 is a concept circadian rhythm, a2 is a gene from the above list and c is a concept plant
defense.

Finally, once x was calculated for each of the genes from the above list, we searched for a set of
concepts from the plant defense domain that have an embeddings representation most similar to x ac-
cording to the cosine similarity. In order to limit the results only to genes or gene related concepts, the
concepts from the second domain were considered only if they appeared in the reduced genesOnly
dataset. 10 genes or gene related concepts with the representation most similar to each of the calcu-
lated x’s were identified and given to the biology expert for the evaluation (who was given instructions to
manually classify the relatedness between a candidate and the plant defense domain into the following
four categories: NO, NOT AT ALL; NOT REALLY; MAYBE; YES.) Details on methodology and the results
can be read in out paper Lavrač et al. (2020) in Appendix B. As one of the interesting results, the best
ranked candidate obtained for the c term inputs CCA1 and LHY (two central genes of the circadian clock
rhythm) was DMR1 (a susceptibility gene, mutation of this gene results in a higher resistance), that is a
hot topic of a plant resistance research lately, showing high potential of our approach.

This research is an example of exploitation of embeddings approaches to other domains (scientific dis-
covery), showing generality of our technologies. In addition, in future we can consider if bisociative
discovery methods could be of interest for social science analysis of media text or investigative journal-
ism.

8 Conclusions and further work
In this report we presented the work performed during the second year in the scope of Task 2.2. The
main contribution is TNT-KID (Martinc, Škrlj, & Pollak, 2020), a supervised keyword extraction system.
It is a novel transformer based neural tagger, which has shown a robust performance across a variety
of public datasets with manually labelled keywords, as well as on EMBEDDIA media partners’ datasets,
with F1@10 scores between around 40% and 65% depending on the language (Croatian, Estonian,
Russian and Latvian). The paper describing the method and the evaluation on public datasets is cur-
rently in revision in Natural Language Engineering journal. The deliverable also shows how a combined
TNT-KID keyword extraction and TF-IDF based tagset matching have been developed in order to satisfy
the need of media partners to improve the recall and get a higher number of keyword candidates. Task
2.2 is completed with this deliverable, but TNT-KID keyword extraction can further serve different tasks
in WP4 and was also integrated to EMBEDDIA Media assistant (WP6). In future, we will consider a
cross-lingual setting — in the scope of this task, the focus was on monolingual keyword extraction, as
this was identified as a probable real application, and all involved media partners’ had the training sets
available. In terms of keyword related work, we have also presented the work on TEXTA Hybrid tagger,
which is framed as a classification task (this work was done in collaboration between task T2.2 and

48 of 148



ICT-29-2018 D2.6: Final keyword extraction

WP6, as more focus is on evaluation in industrial setting).

We have also presented advances in term extraction, a field that is closely related to keyword extrac-
tion, but more focused on extraction of domain terms from specialised document collections (and not
from single documents). We report on comparison of contextual embeddings between a domain and
a reference corpus, where initial results are promising. We continued our work (Repar et al., 2019) on
term alignment, where our initial approach was applied to media partners’ datasets, more specifically
to Estonian and Russian tagset, where the goal was to match the tags between languages. The per-
formance lagged behind the initial experiments on EU languages, but it was still satisfactory. Lower
performance is due to the fact that for this language pair no large enough high quality parallel data
required for dictionary induction was available. In the next step, we have investigated a possibility of
using word embeddings alignment instead of dictionaries on large parallel data, and results show that
in some of the settings, the precision can even be improved, while in others the results are lower than
with dictionaries from parallel corpora, but with less required resources. In the reported experiments,
the results were evaluated on the Eurovoc thesaurus; however, in future work, we plan to evaluate the
method also in the ExM tagset alignment use case. We also report on a terminological study on ad-
jectives, where given the semantic relation an adjective expresses, embeddings are used to find other
adjectives expressing the same relation.

Finally, we presented how our unsupervised keyword extraction method RaKUn (Škrlj et al., 2019) was
used to develop COVID-19 Explorer (http://covid19explorer.ijs.si/), a tool for fast and interactive
literature prioritization. RaKUn served for computing keyphrases based on whole texts, offering seam-
less exploration and ranking of biomedical documents related to COVID-19 domain. The work shows
usefulness of the developed keyword extraction tool beyond the media settings, and adaptation to the
specific time that the project faced during the second year (COVID-19 pandemics). In similar line, we
performed work partly related to EMBEDDIA, focusing on identifying terms for scientific discovery in two
different settings. In the first one, the approach for bisociative knowledge discovery based on relational
bisociation identification was presented and supported with experiments in biological domain (Lavrač
et al., 2020) and in second, a contextual-embeddings-based method was proposed for discovering new
knowledge in COVID-19 domain (Martinc, Škrlj, et al., 2020).

9 Associated outputs
The work described in this deliverable has resulted in the following resources:

Description URL Availability
Code for RaKUn (updated since D2.3) https://github.com/EMBEDDIA/RaKUn Public (GPL3)

Code for TNT-KID (updated since D2.3) https://github.com/EMBEDDIA/TNT_KID Public(MIT)
Code for Estonian keyword extraction https://gitlab.com/matej.martinc/tnt_kid_app Public(MIT)
Code for Latvian keyword extraction https://gitlab.com/boshko.koloski/tnt_kid_app_lv Public(MIT)
Code for Croatian keyword extraction https://gitlab.com/boshko.koloski/tnt_kid_app_hr Public(MIT)

Covid explorer http://covid19explorer.ijs.si/ Public (n.a.)

Parts of this work are also described in detail in the following publications, which are attached to this
deliverable as appendices:
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Citation Status Appendix
Martinc, M., Škrlj, B., Pollak, S. (2020). TNT-KID: Transformer-based
Neural Tagger for Keyword Identification. Submitted to Natural Lan-
guage Engineering

Submitted Appendix A

Lavrač, N., Martinc, M., Pollak, S., Pompe Novak, M., Cestnik, B.
(2020). Bisociative Literature-Based Discovery: Lessons Learned and
New Word Embedding Approach. New Generation Computing 38,
773-800.

Published Appendix B

Martinc, M., Škrlj, B., Pirkmajer, S., Lavrač, N., Cestnik, B., Marz-
idovšek, M., Pollak, S. (2020). COVID-19 Therapy Target Discovery
with Context-Aware Literature Mining. In Proceedings of the 23rd
International Conference on Discovery Science (DS 2020), pp:109-123.

Published Appendix C

Grčić Simeunović, L., Martinc, M., Vintar, Š. (2020). A bilingual
approach to specialised adjectives through word embeddings in the
karstology domain. In Proceedings of TOTH 2020.

Accepted Appendix D
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Abstract
With growing amounts of available textual data, development of algorithms capable of automatic analysis,
categorization and summarization of these data has become a necessity. In this research we present a
novel algorithm for keyword identification, i.e., an extraction of one or multi-word phrases representing
key aspects of a given document, called Transformer-based Neural Tagger for Keyword IDentification
(TNT-KID). By adapting the transformer architecture for a specific task at hand and leveraging language
model pretraining on a domain specific corpus, the model is capable of overcoming deficiencies of both
supervised and unsupervised state-of-the-art approaches to keyword extraction by offering competitive and
robust performance on a variety of different datasets while requiring only a fraction of manually labeled
data required by the best performing systems. This study also offers thorough error analysis with valuable
insights into the inner workings of the model and an ablation study measuring the influence of specific
components of the keyword identification workflow on the overall performance.

1. Introduction
With the exponential growth in amount of available textual resources, organization, categorization
and summarization of these data presents a challenge, the extent of which becomes even more
apparent when it is taken into the account that a majority of these resources do not contain any
adequate meta information. Manual categorization and tagging of documents is unfeasible due
to a large amount of data, therefore development of algorithms capable of tackling these tasks
automatically and efficiently has become a necessity (Firoozeh et al. 2020).

One of the crucial tasks for organization of textual resources is keyword identification, which
deals with automatic extraction of words that represent crucial semantic aspects of the text and
summarize its content. First automated solutions to keyword extraction have been proposed more
than a decade ago (Witten et al. 2005; Mihalcea & Tarau 2004) and the task is currently again
gaining traction, with several new algorithms proposed in the recent years. Novel unsupervised
approaches, such as RaKUn (Škrlj et al. 2019) and YAKE (Campos et al. 2018b), work fairly well
and have some advantages over supervised approaches, as they are language and genre independ-
ent, do not require any training and are computationally undemanding. On the other hand, they
also have a couple of crucial deficiencies:
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Appendix A: TNT-KID: Transformer-based Neural Tag-
ger for Keyword Identification
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• Term frequency - inverse document frequency (TfIdf) and graph based features, such as
PageRank, used by these systems to detect the importance of each word in the document,
are based only on simple statistics like word occurrence and co-occurrence, and are therefore
unable to grasp the entire semantic information of the text.

• Since these systems cannot be trained, they can not be adapted to the specifics of the syntax,
semantics, content, genre and keyword assignment regime of a specific text (e.g., a variance
in a number of keywords).

These deficiencies result in a much worse performance when compared to the state-of-the-art
supervised algorithms (see Table 2), which have a direct access to the gold standard keyword set
for each text during the training phase, enabling more efficient adaptation. The newest supervised
neural algorithms (Meng et al. 2019; Yuan et al. 2019) therefore achieve excellent performance
under satisfactory training conditions and can model semantic relations much more efficiently
than algorithms based on simpler word frequency statistics. On the other hand, these algorithms
are resource demanding, require vast amount of domain specific data for training and can therefore
not be used in domains and languages that lack manually labeled resources of sufficient size.

In this research we propose Transformer-based Neural Tagger for Keyword IDentification
(TNT-KID)a that is capable of overcoming the aforementioned deficiencies of supervised and
unsupervised approaches. We show that, while requiring only a fraction of manually labeled data
required by other neural approaches, the proposed approach achieves performance comparable to
the state-of-the-art supervised approaches on test sets for which a lot of manually labeled training
data is available. On the other hand, if training data that is sufficiently similar to the test data is
scarce, our model outperforms state-of-the-art approaches by a large margin. This is achieved by
leveraging the transfer learning technique, where a keyword tagger is first trained in an unsuper-
vised way as a language model on a large corpus and then fine-tuned on a (usually) small-sized
corpus with manually labeled keywords. By conducting experiments on two different domains,
computer science articles and news, we show that the language model pretraining allows the al-
gorithm to successfully adapt to a specific domain and grasp the semantic information of the text,
which drastically reduces the needed amount of labeled data for training the keyword detector.

The transfer learning technique (Peters et al. 2018a; Howard & Ruder 2018), which has re-
cently become a well established procedure in the field of natural language processing (NLP), in
a large majority of cases relies on very large unlabeled textual resources used for language model
pretraining. For example, a well known English BERT model (Devlin et al. 2018) was pretrained
on the Google Books Corpus (Goldberg & Orwant 2013) (800 million tokens) and Wikipedia
(2,500 million tokens). On the other hand, we show that smaller unlabeled domain specific cor-
pora (87 million tokens for computer science and 232 million tokens for news domain) can be
successfully used for unsupervised pretraining, which makes the proposed approach easily trans-
ferable to languages with less textual resources and also makes training more feasible in terms of
time and computer resources available.

Unlike most other proposed state-of-the-art neural keyword extractors (Meng et al. 2017 2019;
Yuan et al. 2019), we do not employ recurrent neural networks but instead opt for a transformer ar-
chitecture (Vaswani et al. 2017), which has not been widely employed for the task at hand. In fact,
the study by Sahrawat et al. (2020) is the only study we are aware of that employs transformers for
the keyword extraction task. Another difference between our approach and most very recent state-
of-the-art approaches from the related work is also task formulation. While Meng et al. (2017
2019) and Yuan et al. (2019) formulate a keyword extraction task as a sequence-to-sequence gen-
eration task, where the classifier is trained to generate an output sequence of keyword tokens step
by step according to the input sequence and the previous generated output tokens, we formulate

aCode is available under the MIT license at https://gitlab.com/matej.martinc/tnt_kid/.
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a keyword extraction task as a sequence labeling task, similar as in Gollapalli et al. (2017), Luan
et al. (2017) and Sahrawat et al. (2020).

Besides presenting a novel keyword extraction procedure, the study also offers an extensive
error analysis, in which the visualization of transformer attention heads is used to gain insights
into inner workings of the model and in which we pinpoint key factors responsible for the differ-
ences in performance of TNT-KID and other state-of-the-art approaches. Finally, this study also
offers a systematic evaluation of several building blocks and techniques used in a keyword ex-
traction workflow in a form of an ablation study. Besides determining the extent to which transfer
learning affects the performance of the keyword extractor, we also compare two different pre-
training objectives, autoregressive language modelling and masked language modelling (Devlin
et al. 2018), and measure the influence of transformer architecture adaptations, a choice of input
encoding scheme and the addition of part-of-speech (POS) tags information on the performance
of the model.

The paper is structured as follows. Section 2 addresses the related work on keyword identific-
ation and covers several supervised and unsupervised approaches to the task at hand. Section 3
describes the methodology of our approach, while in Section 4 we present the datasets, conducted
experiments and results. Section 5 covers error analysis, Section 6 presents the conducted ablation
study, while the conclusions and directions for further work are addressed in Section 7.

2. Related work
This section overviews selected methods for keyword extraction, supervised in Section 2.1 and
unsupervised in Section 2.2. The related work is somewhat focused on the newest keyword ex-
traction methods, therefore for a more comprehensive survey of slightly older methods, we refer
the reader to Hasan & Ng (2014).

2.1 Supervised keyword extraction methods
Traditional supervised approaches to keyword extraction considered the task as a two step process
(the same is true for unsupervised approaches). First, a number of syntactic and lexical features are
used to extract keyword candidates from the text. Secondly, the extracted candidates are ranked
according to different heuristics and the top n candidates are selected as keywords (Yuan et al.
2019). One of the first supervised approaches to keyword extraction was proposed by Witten
et al. (2005), whose algorithm named KEA uses only TfIdf and the term’s position in the text as
features for term identification. These features are fed to the Naive Bayes classifier, which is used
to determine for each word or phrase in the text if it is a keyword or not. Medelyan et al. (2009)
managed to build on the KEA approach and proposed the Maui algorithm, which also relies on the
Naive Bayes classifier for candidate selection but employs additional semantic features, such as
e.g., node degree, which quantifies the semantic relatedness of a candidate to other candidates, and
Wikipedia-based keyphraseness, which is the likelihood of a phrase being a link in the Wikipedia.

A more recent supervised approach is a so-called sequence labelling approach to keyword ex-
traction by Gollapalli et al. (2017), where the idea is to train a keyword tagger using token-based
linguistic, syntactic and structural features. The approach relies on a trained Conditional Random
Field (CRF) tagger and the authors demonstrated that this approach is capable of working on-
par with slightly older state-of-the-art systems that rely on information from the Wikipedia and
citation networks, even if only within-document features are used. Another sequence labeling ap-
proach proposed by Luan et al. (2017) builds a sophisticated neural network by combing an input
layer comprising a concatenation of word, character and part-of-speech embeddings, a bidirec-
tional Long Short-Term Memory (BiLSTM) layer and a CRF tagging layer. They also propose a
new semi-supervised graph based training regime for training the network.
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Some of the most recent state-of-the-art approaches to keyword detection consider the problem
as a sequence-to-sequence generation task. The first research leveraging this tactic was proposed
by Meng et al. (2017), employing a generative model for keyword prediction with a recurrent
encoder-decoder framework with an attention mechanism capable of detecting keywords in the
input text sequence and also potentially finding keywords that do not appear in the text. Since
finding absent keywords involves a very hard problem of finding a correct class in a set of usually
thousands of unbalanced classes, their model also employs a copying mechanism (Gu et al. 2016)
based on positional information, in order to allow the model to find important keywords present
in the text, which is a much easier problem.

Very recently, the model proposed by Meng et al. (2017) has been somewhat improved by in-
vestigating different ways in which the target keywords can be fed to a classifier during the training
phase. While the original system used a so-called one-to-one approach, where a training example
consists of an input text and a single keyword, the improved model (Meng et al. 2019) now em-
ploys a one-to-seq approach, where an input text is matched with a concatenated sequence made
of all the keywords for a specific text. The study also shows that the order of the keywords in the
text matters. The best performing model from Meng et al. (2019), named CopyRNN, is used in our
experiments for the comparison with the state-of-the-art (see Section 4). A one-to-seq approach
has been even further improved by Yuan et al. (2019), who incorporated two diversity mechan-
isms into the model. The mechanisms (called semantic coverage and orthogonal regularization)
constrain the over-all inner representation of a generated keyword sequence to be semantically
similar to the overall meaning of the source text and therefore force the model to produce diverse
keywords. The resulting model leveraging these mechanisms has been named CatSeqD and is also
used in our experiments for the comparison between TNT-KID and the state-of-the-art.

A further improvement of the generative approach towards keyword detection has been pro-
posed by Chan et al. (2019), who integrated a reinforcement learning (RL) objective into the
keyphrase generation approach proposed by Yuan et al. (2019). This is done by introducing an
adaptive reward function that encourages the model to generate sufficient amount of accurate
keyphrases. They also propose a new Wikipedia based evaluation method that can more ro-
bustly evaluate the quality of the predicted keyphrases by also considering name variations of
the ground-truth keyphrases.

We are aware of one study that tackled keyword detection with transformers. Sahrawat et al.
(2020) fed contextual embeddings generated using several transformer and recurrent architectures
(BERT (Devlin et al. 2018), RoBERTa (Liu et al. 2019), GPT-2 (Radford et al. 2019), ELMo
(Peters et al. 2018b), etc.) into two distinct neural architectures, a bidirectional Long short-term
memory network (BiLSTM) and a BiLSTM network with an additional Conditional random fields
layer (BiLSTM-CRF). Same as in Gollapalli et al. (2017), they formulate a keyword extraction
task as a sequence labelling approach, in which each word in the document is assigned one of the
three possible labels: kb denotes that the word is the first word in a keyphrase, ki means that the
word is inside a keyphrase, and ko indicates that the word is not part of a keyphrase.

The study shows that contextual embeddings generated by transformer architectures gener-
ally perform better than static (e.g., FastText embeddings (Bojanowski et al. 2017)) and among
them BERT showcases the best performance. Since all of the keyword detection experiments
are conducted on scientific articles, they also test SciBERT (Beltagy et al. 2019), a version of
BERT pretrained on a large multi-domain corpus of scientific publications containing 1.14M pa-
pers sampled from Semantic Scholar. They observe that this genre specific pretraining on texts
of the same genre as the texts in the keyword datasets, slightly improves the performance of the
model. They also report significant gains in performance when the BiLSTM-CRF architecture is
used instead of BiLSTM.

The neural sequence-to-sequence models are capable of outperforming all older supervised
and unsupervised models by a large margin but do require a very large training corpora with
tens of thousands of documents for successful training. This means that their use is limited only to
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languages (and genres) in which large corpora with manually labeled keywords exist. On the other
hand, the study by Sahrawat et al. (2020) indicates that the employment of contextual embeddings
reduces the need for a large dataset with manually labeled keywords. These models can therefore
be deployed directly on smaller datasets by leveraging semantic information already encoded in
contextual embeddings.

2.2 Unsupervised keyword extraction methods
The previous section discussed recently emerged methods for keyword extraction that operate in a
supervised learning setting and can be data-intensive and time consuming. Unsupervised keyword
detectors can tackle these two problems, yet at the cost of the reduced overall performance.

Unsupervised approaches need no training and can be applied directly without relying on a
gold standard document collection. They can be divided into statistical and graph-based methods:

• Statistical methods, such as KP-MINER (El-Beltagy & Rafea 2009), RAKE (Rose et al.
2010) and YAKE (Campos et al. 2018ab), use statistical characteristics of the texts to capture
keywords.

• Graph-based methods, such as TextRank (Mihalcea & Tarau 2004), Single Rank (Wan &
Xiao 2008), TopicRank (Bougouin et al. 2013), Topical PageRank (Sterckx et al. 2015) and
RaKUn (Škrlj et al. 2019) build graphs to rank words based on their position in the graph.

Among the statistical approaches, the state-of-the-art keyword extraction algorithm is YAKE
(Campos et al. 2018ab). It defines a set of features capturing keyword characteristics which are
heuristically combined to assign a single score to every keyword. These features include casing,
position, frequency, relatedness to context and dispersion of a specific term.

One of the first graph-based methods for keyword detection is TextRank (Mihalcea & Tarau
2004), which first extracts a lexical graph from text documents and then leverages Google’s
PageRank algorithm to rank vertices in the graph according to their importance inside a graph.
This approach was somewhat upgraded by TopicRank (Bougouin et al. 2013), where candidate
keywords are additionally clustered into topics and used as vertices in the graph. Keywords are de-
tected by selecting a candidate from each of the top-ranked topics. The most recent graph-based
keyword detector is RaKUn (Škrlj et al. 2019) that employs several new techniques for graph
construction and vertice ranking. First, initial lexical graph is expanded and adapted with the in-
troduction of meta-vertices, i.e., aggregates of existing vertices. Second, for keyword detection
and ranking, a graph-theoretic load centrality measure is used along with the implemented graph
redundancy filters.

3. Methodology
This section presents the methodology of our approach. Section 3.1 presents the architecture of
the neural model, Section 3.2 covers the transfer learning techniques used, Section 3.3 explains
how the final fine-tuning phase of the keyword detection workflow is conducted and Section 3.4
covers evaluation of the model.

3.1 Architecture
The model follows an architectural design of an original transformer encoder (Vaswani et al.
2017) and is presented in Figure 1a. Same as in the GPT-2 architecture (Radford et al. 2019), the
encoder consists of a normalization layer that is followed by a multi-head attention mechanism.
A residual connection is employed around the attention mechanism, which is followed by another
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Figure 1: TNT-KID’s architecture overview.

layer normalization. This is followed by the fully connected feed-forward and dropout layers,
around which another residual connection is employed.

For two distinct training phases, language model pretraining and fine-tuning, two distinct
“heads” are added on top of the encoder, which is identical for both phases and therefore al-
lows for the transfer of weights from the pretraining phase to the fine-tuning phase. The language
model head predicts the probability for each word in the vocabulary that it appears at a specific
position in the sequence and consists of a dropout layer and a feed forward layer of size SL ∗ |V |,
where SL stands for sequence length (i.e., a number of words in the input text) and |V | stands
for the vocabulary size. This is followed by the adaptive softmax layer (Grave et al. 2017) (see
description below).

During fine-tuning, the language model head is replaced with a token classification head, in
which we apply ReLu non-linearity and dropout to the encoder output, and then feed the output to
the feed forward classification layer of size SL ∗NC, where NC stands for the number of classes
(in our case 2, since we model keyword extraction as a binary classification task, see Section 3.3
for more details). Finally, a softmax layer is added in order to obtain probabilities for each class.

We also propose some significant modifications of the original GPT-2 architecture. First, we
propose a re-parametrization of the attention mechanism that allows to model the relation between
a token and its position (see Figure 1b). Note that standard scaled dot-product attention (Vaswani
et al. 2017) requires three inputs, a so-called query, key, value matrix representations of the embed-
ded input sequence and its positional information (i.e., element wise addition of input embeddings
and positional embeddings) and the idea is to obtain attention scores (in a shape of an attention
matrix) for each relation between tokens inside these inputs by first multiplying query (Q) and
transposed key (K) matrix representations, applying scaling and softmax functions, and finally
multiplying the resulting normalized matrix with the value (V ) matrix, or more formally,
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Attention(Q, K,V ) = softmax
(

QKT
√

dk

)
V

where dk represents the scaling factor, usually corresponding to the first dimension of the key
matrix. On the other hand, we propose to add an additional positional input representation matrix
Kposition and model attention with the following equation:

Attention(Q, K,V, Kpos) = softmax
(QKT + QKT

position√
dk

)
V

The reason behind this modification is connected with the hypothesis, that token position is
important in the keyword identification task and with this re-parametrization the model is capable
of directly modelling the importance of relation between each token and each position. Note that
we use relative positional embeddings for representing the positional information, same as in Dai
et al. (2019), where the main idea is to only encode the relative positional information in the
hidden states instead of the absolute.

Second, besides the text input, we also experiment with the additional part-of-speech (POS)
tag sequence as an input. This sequence is first embedded and then added to the word embedding
matrix. Note that this additional input is optional and is not included in the model for which the
results are presented in Section 4.3 due to marginal effect on the performance of the model in the
proposed experimental setting (see Section 6).

While the modifications presented above affect both training phases (i.e., the language model
pretraining and the token classification fine-tuning), the third modification only affects the lan-
guage model pretraining (see Section 3.2) and involves replacing the standard input embedding
layer and softmax function with adaptive input representations (Baevski & Auli 2018) and an ad-
aptive softmax (Grave et al. 2017). The main idea is to exploit the unbalanced word distribution to
form word clusters containing words with similar appearance probabilities. The entire vocabulary
is split into a smaller cluster containing about 10 percent of words that appear most frequently, a
second slightly bigger cluster that contains words that appear less frequently and a third cluster
that contains all the other words that appear rarely in the corpus. During language model training,
instead of predicting an entire vocabulary distribution at each time step, the model first tries to
predict a cluster in which a target word appears in and after that predicts a vocabulary distribution
just for the words in that cluster. Since in a large majority of cases the target word belongs to
the smallest cluster containing most frequent words, the model in most cases only needs to gen-
erate probability distribution for a tenth of a vocabulary, which drastically reduces the memory
requirements and time complexity of the model at the expense of a marginal drop in performance.

We also present the modification, which only affects the fine-tuning token classification phase
(see Section 3.3). During this phase, a two layer randomly initialised encoder, consisting of
dropout and two bidirectional Long short-term memory (BiLSTM) layers, is added (with element-
wise summation) to the output of the transformer encoder. The initial motivation behind this
adaptation is connected with findings from the related work which suggest that recurrent layers
are quite successful at modelling positional importance of tokens in the keyword detection task
(Meng et al. 2017; Yuan et al. 2019) and by the study of Sahrawat et al. (2020), who also repor-
ted good results when a BiLSTM classifier and contextual embeddings generated by transformer
architectures were employed for keyword detection. Also, the results of the initial experiments
suggested that some performance gains can in fact be achieved by employing this modification.

In terms of computational complexity, a self-attention layer complexity is O(n2 ∗ d) and the
complexity of the recurrent layer is O(n ∗ d2), where n is the sequence length and d is the
embedding size (Vaswani et al. 2017). The standard TNT-KID model employs sequence size
of 256, embedding size of 512 and 8 attention layers. The complexity of the model without
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recurrent encoder is therefore 2562 ∗ 512 ∗ 8 = 268435456. By adding the recurrent encoder
with two recurrent bidirectional layers (which is the same as adding 4 recurrent layers, since
each bidirectional layer contains two unidirectional LSTM layers), the complexity increases by
256 ∗ 5122 ∗ 4 = 268435456, which means that the model with the additional recurrent encoder
conducts token classification roughly two times slower than the model without the encoder. Note
that this addition does not affect the language model pretraining, which tends to be the more time
demanding task due to larger corpora involved.

Finally, we also experiment with an employment of the BiLSTM-CRF classification head
on top of the transformer encoder, in order to compare our proposed approach to the approach
proposed by Sahrawat et al. (2020) (see Section 6 for more details about the results of this
experiment). For this experiment, during the fine-tuning token classification phase, the token clas-
sification head described above is replaced with a BiLSTM-CRF classification head proposed by
Sahrawat et al. (2020), containing one BiLSTM layer and a CRF (Lafferty et al. 2001) layer.b

Outputs of the BiLSTM f = f1, ..., fn are fed as inputs to a CRF layer, which returns the output
score s( f , y) for each possible label sequence according to the following equation:

s( f , y) =
n

∑
t=1

τyt−1,yt + ft,yt

τyt−1,yt is a transition matrix representing the transition score from class yt−1 to yt . The final
probability of each label sequence score is generated by exponentiating the scores and normalizing
over all possible output label sequences:

p(y| f ) = exp(s( f , y))
∑y′ exp(s( f ′, y′))

To find the optimal sequence of labels efficiently, the CRF layer uses the Viterbi algorithm
(Forney 1973).

3.2 Transfer learning
Our approach relies on a transfer learning technique (Howard & Ruder 2018; Devlin et al. 2018),
where a neural model is first pretrained as a language model on a large corpus. This model is
then fine-tuned for each specific keyword detection task on each specific manually labeled corpus
by adding and training the token classification head described in the previous section. With this
approach, the syntactic and semantic knowledge of the pretrained language model is transferred
and leveraged in the keyword detection task, improving the detection on datasets that are too small
for the successful semantic and syntactic generalization of the neural model.

In the transfer learning scenario, two distinct pretraining objectives can be considered. First
is the autoregressive language modelling where the task can be formally defined as predicting a
probability distribution of words from the fixed size vocabulary V , for word wt, given the historical
sequence w1:t-1 = [w1, ..., wt−1]. This pretraining regime was used in the GPT-2 model (Radford
et al. 2019) that we modified. Since in the standard transformer architecture self-attention is ap-
plied to an entire surrounding context of a specific word (i.e., the words that appear after a specific
word in each input sequence are also used in the self-attention calculation), we employ obfusca-
tion masking to the right context of each word when the autoregressive language model objective
is used, in order to restrict the information only to the prior words in the sentence (plus the word
itself) and prevent target leakage (see Radford et al. (2019) for details on the masking procedure).

bNote that in the experiments in which we employ BiLSTM-CRF, we do not add an additional two layer BiLSTM encoder
described above to the output of the transformer encoder.
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Another option is a masked language modelling objective, first proposed by Devlin et al.
(2018). Here, a percentage of words from the input sequence is masked in advance, and the ob-
jective is to predict these masked words from an unmasked context. This allows the model to
leverage both left and right context, or more formally, the token wt is also determined by sequence
of tokens wt+1:n = [wt+1, ..., wt+n]. We follow the masking procedure described in the original pa-
per by Devlin et al. (2018), where 15 percent of words are randomly designated as targets for
prediction, out of which 80 percent are replaced by a masked token (< mask >), 10 percent are
replaced by a random word and 10 percent remain intact.

The final output of the model is a softmax probability distribution calculated over the entire
vocabulary, containing the predicted probabilities of appearance (P) for each word given its left
(and in case of the masked language modelling objective also right) context. Training therefore
consists of the minimization of the negative log-loss (NLL) on the batches of training corpus word
sequences by backpropagation through time:

NLL =−
n

∑
i=1

log P(wi|w1:i-1) (1)

While the masked language modelling objective might outperform autoregressive language
modelling objective in a setting where a large pretraining corpus is available (Devlin et al. 2018)
due to the inclusion of the right context, these two training objectives have at least to our know-
ledge never been compared in a setting where only a relatively small domain specific corpus is
available for the pretraining phase. For more details about the performance comparison of these
two pretraining objectives, see Section 6.

3.3 Keyword identification
Since each word in the sequence can either be a keyword (or at least part of the keyphrase) or
not, the keyword tagging task can be modeled as a binary classification task, where the model is
trained to predict if a word in the sequence is a keyword or not.c Figure 2 shows an example of
how an input text is first transformed into a numerical sequence that is used as an input of the
model, which is then trained to produce a sequence of zeroes and ones, where the positions of
ones indicate the positions of keywords in the input text.

Since a large majority of words in the sequence are not keywords, the usage of a standard NLL
function (see equation 1), which would simply calculate a sum of log probabilities that a word is
either a keyword or not for every input word sequence, would badly affect the recall of the model
since the majority negative class would prevail. To solve this problem and maximize the recall of
the system, we propose a custom classification loss function, where probabilities for each word
in the sequence are first aggregated into two distinct sets, one for each class. For example, text
“The advantage of this is to include distributed interactions between the UDDI clients.” in Figure 2
would be split into two sets, first one containing probabilities for all the words in the input example
which are not keywords (The, advantage, of, this, is, to, include, between, the, clients, .), and the
other containing probabilities for all the words in the input example that are keywords or part of
keyphrases (distributed, interactions, UDDI). Two NLLs are calculated, one for each probability
set, and both are normalized with the size of the set. Finally, the NLLs are summed. More formally,
the loss is computed as follows. Let W = {wi}n

i=1 represent an enumerated sequence of tokens for
which predictions are obtained. Let pi represent the predicted probabilities for the i-th token that
it either belongs or does not belong to the ground truth class. The oi represents the output weight
vector of the neural network for token i and j corresponds to the number of classes (two in our

cNote that this differs from the sequence labelling approach proposed by Sahrawat et al. (2020), where each word in the
document is assigned one of three possible labels (see Section 2 for details).
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Input text

The advantage of this is to introduce distributed interactions between the UDDI clients .

Input (X)

1    123     12  43   4  8   1011       12027       8300         74    1  7237   412  32                 

Target (Y)

0  0  0  0  0  0  0  1  1 0  0  1 0  0

Figure 2: Encoding of the input text “The advantage of this is to introduce distributed interactions
between the UDDI clients.” with keywords distributed interactions and UDDI. In the first step,
the text is converted into a numerical sequence, which is used as an input to the model. The model
is trained to convert this numerical sequence into a sequence of zeroes and ones, where the ones
indicate the position of a keyword.

case as the word can be a keyword or not). Predictions are in this work obtained via a log-softmax
transform (lso), defined as follows (for the i-th token):

pi = lso(oi) = log
exp(oi)

∑ j exp(o j)
.

The loss function is comprised from two main parts. Let K+ ⊆W represent tokens that are
keywords and K− ⊆W the set of tokens that are not keywords. Note that |K− ∪K+|= n, i.e., the
two sets cover all considered tokens for which predictions are obtained. During loss computation,
only the probabilities of the ground truth class are considered. We mark them with p+i or p−i . Then
the loss is computed as

L+ =− 1
|K+| ∑

wi∈K+

p+i and L− =− 1
|K−| ∑

wi∈K−
p−i .

The final loss is finally computed as:

Loss = L+ + L−.

Note that even though all predictions are given as an argument, the two parts of the loss address
different token indices (i).

In order to produce final set of keywords for each document, tagged words are extracted from
the text and duplicates are removed. Note that a sequence of ones is always interpreted as a multi-
word keyphrase and not as a combination of one-worded keywords (e.g., distributed interactions
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from Figure 2 is considered as a single multi-word keyphrase and not as two distinct one word
keywords). After that, the following filtering is conducted:

• If a keyphrase is longer than four words, it is discarded.
• Keywords containing punctuation (with the exception of dashes and apostrophes) are

removed.
• The detected keyphrases are ranked and arranged according to the softmax probability

assigned by the model in a descending order.

3.4 Evaluation
To asses the performance of the model, we measure F1@k score, a harmonic mean between
Precision@k and Recall@k.

In a ranking task, we are interested in precision at rank k. This means that only the keywords
ranked equal to or better than k are considered and the rest are disregarded. Precision is the ratio
of the number of correct keywords returned by the system divided by the number of all keywords
returned by the system, or more formally:

precision =
|correct returned keywords@k|

|returned keywords|
Recall@k is the ratio of the number of correct keywords returned by the system and ranked

equal to or better than k divided by the number of correct ground truth keywords:

recall =
|correct returned keywords@k|

|correct keywords|
Due to the high variance of a number of ground truth keywords, this type of recall becomes

problematic if k is smaller than the number of ground truth keywords, since it becomes impossible
for the system to achieve a perfect recall. (Similar can happen to precision@k, if the number of
keywords in a gold standard is lower than k, and returned number of keywords is fixed at k.) We
shall discuss how this affects different keyword detection systems in Section 7.

Finally, we formally define F1@k as a harmonic mean between Precision@k and Recall@k:

F1@k = 2 ∗ P@k ∗ R@k
P@k + R@k

In order to compare the results of our approach to other state-of-the-art approaches, we use the
same evaluation methodology as Yuan et al. (2019) and Meng et al. (2019), and measure F1@k
with k being either 5 or 10. Note that F1@k is calculated as a harmonic mean of macro-averaged
precision and recall, meaning that precision and recall scores for each document are averaged
and the F1 score is calculated from these averages. Same as in the related work, lowercasing
and stemming are performed on both the gold standard and the generated keywords (keyphrases)
during the evaluation. Only keywords that appear in the text of the documents (present keywords)d

were used as a gold standard and the documents containing no present keywords were removed,
in order to make the results of the conducted experiments comparable with the reported results
from the related work.

dNote that scientific and news articles often list keywords that do not appear in the text of the article. For example, an NLP
paper would often list “Text mining” as a keyword of the paper, even though the actual phrase does not appear in the text of
the paper.
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4. Experiments
We first present the datasets used in the experiments. This is followed by the experimental design
and the results achieved by TNT-KID in comparison to the state-of-the-art.

4.1 Keyword extraction datasets
Experiments were conducted on seven datasets from two distinct genres, scientific papers about
computer science and news. The following datasets from the computer science domain are used:

• KP20k (Meng et al. 2017): This dataset contains titles, abstracts, and keyphrases of 570,000
scientific articles from the field of computer science. The dataset is split into train set
(530,000), validation set (20,000) and test set (20,000).

• Inspec (Hulth 2003): The dataset contains 2,000 abstracts of scientific journal papers in com-
puter science collected between 1998 and 2002. Two sets of keywords are assigned to each
document, the controlled keywords that appear in the Inspec thesaurus, and the uncontrolled
keywords, which are assigned by the editors. Only uncontrolled keywords are used in the
evaluation, same as by Meng et al. (2017), and the dataset is split into 500 test papers and
1500 train papers.

• Krapivin (Krapivin et al. 2009): This dataset contains 2,304 full scientific papers from
computer science domain published by ACM between 2003 and 2005 with author-assigned
keyphrases. 460 papers from the dataset are used as a test set and the others are used for
training. Only titles and abstracts are used in our experiments.

• NUS (Nguyen & Kan 2007): The dataset contains titles and abstracts of 211 scientific con-
ference papers from the computer science domain and contains a set of keywords assigned by
student volunters and a set of author assigned keywords, which are both used in evaluation.

• SemEval (Kim et al. 2010): The dataset used in the SemEval-2010 Task 5, Automatic
Keyphrase Extraction from Scientific Articles, contains 244 articles from the computer sci-
ence domain collected from the ACM Digital Library. 100 articles are used for testing and
the rest are used for training. Again, only titles and abstracts are used in our experiments, the
article’s content was discarded.

From the news domain, three datasets with manually labeled gold standard keywords are used:

• KPTimes (Gallina et al. 2019): The corpus contains 279,923 news articles containing editor
assigned keywords that were collected by crawling New York Times news websitee. After
that, the dataset was randomly divided into training (92.8 percent), development (3.6 percent)
and test (3.6 percent) sets.

• JPTimes (Gallina et al. 2019): Similar as KPTimes, the corpus was collected by crawling
Japan Times online news portalf. The corpus only contains 10,000 English news articles and
is used in our experiments as a test set for the classifiers trained on the KPTimes dataset.

• DUC (Wan & Xiao 2008): The dataset consists of 308 English news articles and contains
2,488 hand labeled keyphrases.

The statistics about the datasets that are used for training and testing of our models are
presented in Table 1. Note that there is a big variation in dataset sizes in terms of number of
documents (column No. docs), and in an average number of keywords (column Avg. kw.) and
present keywords per document (columns Avg. present kw.), ranging from 2.35 present keywords
per document in KPTimes-valid to 7.79 in DUC-test.

ehttps://www.nytimes.com
fhttps://www.japantimes.co.jp
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Table 1. : Datasets used for empirical evaluation of keyword extraction algorithms. No.docs stands
for number of documents, Avg. doc. length stands for average document length in the corpus, Avg.
kw. stands for average number of keywords per document in the corpus, % present kw. stands for
the percentage of keywords that appear in the corpus (i.e., percentage of document’s keywords
that appear in the text of the document) and Avg. present kw. stands for the average number of
keywords per document that actually appear in the text of the specific document.

Dataset No. docs Avg. doc. length Avg. kw. % present kw. Avg. present kw.

Computer science papers

KP20k-train 530,000 156.34 5.27 62.43 3.29

KP20k-valid 20,000 156.55 5.26 62.30 3.28

KP20k-test 20,000 156.52 5.26 62.55 3.29

Inspec-valid 1500 125.21 9.57 76.92 7.36

Inspec-test 500 121.82 9.83 78.14 7.68

Krapivin-valid 1844 156.65 5.24 54.34 2.85

Krapivin-test 460 157.76 5.74 55.66 3.20

NUS-test 211 164.80 11.66 50.47 5.89

SemEval-valid 144 166.86 15.67 45.43 7.12

SemEval-test 100 183.71 15.07 44.53 6.71

News articles

KPTimes-train 259,923 783.32 5.03 47.30 2.38

KPTimes-valid 10,000 784.65 5.02 46.78 2.35

KPTimes-test 10,000 783.47 5.04 47.59 2.40

JPTimes-test 10,000 503.00 5.03 76.73 3.86

DUC-test 308 683.14 8.06 96.62 7.79

4.2 Experimental design
We conducted experiments on the datasets described in Section 4.1. First, we lowercased and
tokenized all datasets. We experimented with two tokenization schemes, word tokenization and
Sentencepiece (Kudo & Richardson 2018) byte-pair encoding (see Section 6 for more details on
how these two tokenization schemes affect the overall performance). During both tokenization
schemes, a special < eos > token is used to indicate the end of each sentence. For the best per-
forming model, for which the results are presented in Section 4.3, byte-pair encoding was used.
For generating the additional POS tag sequence input described in Section 3.1, which was not
used in the best performing model, Averaged Perceptron Tagger from the NLTK library (Loper &
Bird 2002) was used. The neural architecture was implemented in PyTorch (Paszke et al. 2019).

In the pretraining phase, two language models were trained for up to ten epochs, one on the
concatenation of all the texts from the computer science domain and the other on the concatenation
of all the texts from the news domain. Overall the language model train set for computer science
domain contained around 87 million tokens and the news train set about 232 million tokens. These
small sizes of the language model train sets enable relatively fast training and smaller model sizes
(in terms of number of parameters) due to the reduced vocabulary.

After the pretraining phase, the trained language models were fine-tuned on each dataset’s
validation sets (see Table 1), which were randomly split into 80 percent of documents used for
training and 20 percent of documents used for validation. The documents containing more than
256 tokens are truncated, while the documents containing less than 256 tokens are padded with a
special < pad > token at the end. Each model was fine-tuned for a maximum of 10 epochs and
after each epoch the trained model was tested on the documents chosen for validation. The model
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that showed the best performance on this set of validation documents (in terms of F@10 score)
was used for keyword detection on the test set. Validation sets were also used to determine the
best hyperparameters of the model and all combinations of the following hyperparameter values
were tested before choosing the best combination, which is written in bold in the list below and
on average worked best for all the datasets in both domainsg:

• Learning rates: 0.00005, 0.0001, 0.0003, 0.0005, 0.001
• Embedding size: 256, 512
• Number of attention heads: 4, 8, 12
• Sequence length: 128, 256
• Number of attention layers: 4, 8, 12

Note that in our experiments, we use the same splits as in related work (Meng et al. 2019 2017;
Gallina et al. 2019) for all datasets with predefined splits (see Table 1). The exceptions are NUS,
DUC and JPTimes datasets with no available predefined validation-test splits. For NUS and DUC,
10-fold cross-validation is used and the model used for keyword detection on the JPTimes-test
dataset was fine-tuned on the KPTimes-valid dataset. Another thing to consider is that in the re-
lated work by Yuan et al. (2019), Meng et al. (2017) and Gallina et al. (2019), to which we are
comparing, large datasets KPTimes-train and KP20k-train with 530,000 documents and 260,00
documents, respectively, are used for the classification model training and these trained models are
applied on all test sets from the matching domain. On the other hand, we do not train our classific-
ation models on these two large train sets but instead use smaller KPTimes-valid and KP20k-valid
datasets for training, since we argue that, due to language model pretraining, fine-tuning the model
on a relatively small labeled dataset is sufficient for the model to achieve competitive performance.
We do however conduct the language model pretraining on the concatenation of all the texts from
the computer science domain and the news domain as explained above, and these two corpora also
contain texts from KPTimes-train and KP20k-train datasets.

4.3 Keyword extraction results and comparison to the state-of-the-art
In Table 2, we present the results achieved by TNT-KID and a number of algorithms from the
related work on the datasets presented in Table 1. Evaluation measures were presented in Section
3.4. Only keywords which appear in a text (present keywords) were used as a gold standard in
order to make the results of the conducted experiments comparable with reported results from the
related work. Note that TfIdf, TextRank, YAKE and RaKUn algorithms are unsupervised and do
not require any training, KEA, Maui, GPT-2, GPT-2 + BiLSTM-CRF and TNT-KID were trained
on the different validation set for each of the datasets, and CopyRNN and CatSeqD were trained
on the large KP20k-train dataset for keyword detection on computer science domain, and on the
KPTimes-train dataset for keyword detection on the news domain, since they require a large train
set for competitive performance.

For RaKUn (Škrlj et al. 2019) and YAKE (Campos et al. 2020) we report results for default hy-
perparameter settings, since the authors of RaKUn, as well as YAKE’s authors claim that a single
hyperparameter set can offer sufficient performance across multiple datasets. We used the author’s
official github implementationsh in the experiments. For KEA and Maui we do not conduct addi-
tional testing on corpora for which results are not available in the related work (KPTimes, JPTimes
and DUC corpus) due to bad performance of the algorithms on all the corpora for which results
are available. Finally, for TfIdf and TextRank we report results from the related work where avail-
able (Yuan et al. 2019) and use the implementation of the algorithms from the Python Keyphrase

gNote that the same set of hyperparameters are also used in the pretraining phase.
hhttps://github.com/SkBlaz/rakun and https://github.com/LIAAD/yake
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Extraction (PKE) libraryi to generate unavailable results. Same as for RaKUn and YAKE, default
hyperparameters are used.

For KEA, Maui, CopyRNN and CatSeqD, we report results for the computer science domain
published in Yuan et al. (2019) and for the news domain we report results for CopyRNN published
in Gallina et al. (2019). The results that were not reported in the related work are results for
CatSeqD on KPTimes, JPTimes and DUC, since this model was originally not tested on these three
datasets, and the F1@5 score results for CopyRNN on KPTimes and JPTimes. Again, author’s
official github implementationsj were used for training and testing of both models. The models
were trained and tested on the large KPTimes-train dataset with a help of a script supplied by the
authors of the papers. Same hyperparameters that were used for KP20k training in the original
papers (Yuan et al. 2019; Meng et al. 2019) were used.

We also report results for the unmodified pretrained GPT-2 (Radford et al. 2019) model with
a standard feed forward token classification head, and a pretrained GPT-2 with a BiLSTM-CRF
token classification head, as proposed in Sahrawat et al. (2020) and described in Section 3.1k. For
these two models, we apply the same fine-tuning regime as for TNT-KID, i.e. we fine-tune the
models for up to 10 epoch on each dataset’s validation sets (see Table 1), which were randomly
split into 80 percent of documents used for training and 20 percent of documents used for valida-
tion. The model that showed the best performance on this set of validation documents (in terms of
F@10 score) was used for keyword detection on the test set. We use the default hyperparameters
for both models and the original GPT-2 tokenization regime.

Overall, supervised neural network approaches drastically outperform all other approaches.
Among them, TNT-KID performs the best on all eight datasets in terms of F1@10 but is outper-
formed by CatSeqD (on four datasets) or GPT-2+ BiLSTM-CRF (on two datasets) on six out of
eight datasets in terms of F1@5. In terms of F1@10, CatSeqD performs competitively on KP20k,
Krapivin, NUS, SemEval and KPTimes datasets but is outperformed by a large margin on three
other datasets by both GPT-2 + BiLSTM-CRF and TNT-KID. To be more specific, in terms of
F1@10, TNT-KID outperforms the CatSeqD approach by almost 20 percentage points on the
Inspec dataset, on the DUC dataset, it outperforms CatSeqD by about 25 percentage points, and
on JPTimes it outperforms CatSeqD by about 12 percentage points.

While the results of CopyRNN are in a large majority of cases very consistent with CatSeqD
(CopyRNN performs slightly better than CatSeqD on DUC and JPTimes, and slightly worse on the
other six datasets), results of TNT-KID are very similar to the results of GPT-2 + BiLSTM-CRF. In
the majority of cases TNT-KID outperforms GPT-2 + BiLSTM-CRF by a small margin according
to both criteria, the exceptions being Inspec and JPTimes, where GPT-2 + BiLSTM-CRF performs
the best out of all approaches according to F1@5. Another exception is the SemEval dataset,
where the GPT-2 + BiLSTM-CRF is outperformed by TNT-KID by a large margin of about 12
percentage points. On the other hand, a GPT-2 model with a standard token classification head
does not perform competitively on most datasets.

When it comes to the F1@5 measure, TNT-KID performs competitively on all the datasets. It
outperforms all other algorithms on two datasets (KPTimes and DUC) and on average still per-
forms the best out of all algorithms (see row average). Nevertheless, the performance in terms of
F1@5 is still noticeably worse than in terms of F1@10. The difference between TNT-KID and
CatSeqD, which performs the best on four out of eight datasets in terms of F1@5, can be par-
tially explained by the difference in training regimes and the fact that our system was designed to
maximize recall (see Section 3). Since our system generally detects more keywords than CatSeqD
and CopyRNN, it tends to achieve better recall, which offers a better performance when up to

ihttps://github.com/boudinfl/pke
jhttps://github.com/memray/OpenNMT-kpg-release
kWe use the implementation of GPT-2 from the Transformers library (https://github.com/huggingface/

transformers) and use the Pytorch-crf library (https://pytorch-crf.readthedocs.io/en/stable/) for the im-
plementation of the BiLSTM-CRF token classification head.
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Table 2. : Empirical evaluation of state-of-the-art keyword extractors. Results marked with * were
obtained by our implementation or reimplementation of the algorithm and results without * were
reported in the related work.

Unsupervised approaches Supervised approaches

TfIdf TextRank YAKE RaKUn KEA Maui CopyRNN CatSeqD GPT-2
GPT-2 +

BiLSTM-CRF
TNT-KID

KP20k

F1@5 0.072 0.181 0.141* 0.177* 0.046 0.005 0.317 0.348 0.252* 0.339* 0.342*

F1@10 0.094 0.151 0.146* 0.160* 0.044 0.005 0.273 0.298 0.256* 0.342* 0.346*

Inspec

F1@5 0.160 0.286 0.204* 0.101* 0.022 0.035 0.244 0.276 0.293* 0.467* 0.447*

F1@10 0.244 0.339 0.223* 0.108* 0.022 0.046 0.289 0.333 0.335* 0.525* 0.525*

Krapivin

F1@5 0.067 0.185 0.215* 0.127* 0.018 0.005 0.305 0.325 0.210* 0.280* 0.301*

F1@10 0.093 0.160 0.196* 0.106* 0.017 0.007 0.266 0.285 0.214* 0.283* 0.307*

NUS

F1@5 0.112 0.230 0.159* 0.224* 0.073 0.004 0.376 0.374 0.274* 0.311* 0.350*

F1@10 0.140 0.216 0.196* 0.193* 0.071 0.006 0.352 0.366 0.305* 0.332* 0.369*

SemEval

F1@5 0.088 0.217 0.151* 0.167* 0.068 0.011 0.318 0.327 0.261* 0.214 0.291*

F1@10 0.147 0.226 0.212* 0.159* 0.065 0.014 0.318 0.352 0.295* 0.232 0.355*

KPTimes

F1@5 0.179* 0.022* 0.105* 0.168* * * 0.406* 0.424* 0.353* 0.439* 0.469*

F1@10 0.151* 0.030* 0.118* 0.139* * * 0.393 0.424* 0.354* 0.440* 0.469*

JPTimes

F1@5 0.266* 0.012* 0.109* 0.225* * * 0.256* 0.238* 0.258* 0.344* 0.337*

F1@10 0.229* 0.026* 0.135* 0.185* * * 0.246 0.238* 0.267* 0.346* 0.360*

DUC

F1@5 0.098* 0.120* 0.106* 0.189* * * 0.083 0.063* 0.247* 0.281* 0.312*

F1@10 0.120* 0.181* 0.132* 0.172* * * 0.105 0.063* 0.277* 0.321* 0.355*

Average

F1@5 0.130 0.157 0.149 0.172 * * 0.288 0.297 0.269* 0.334* 0.356*

F1@10 0.152 0.166 0.170 0.153 * * 0.280 0.295 0.288* 0.353* 0.386*

10 keywords need to be predicted. On the other hand, a more conservative system that generally
predicts less keywords tends to achieve a better precision, which positively affects the F1 score in
a setting where only up to 5 keywords need to be predicted. This phenomenon will be analysed in
more detail in Section 5, where we also discuss the very low results achieved by CopyRNN and
CatSeqD on the DUC dataset.

When it comes to two other supervised approaches, KEA and Maui, they perform badly on
all datasets they have been tested on and are outperformed by a large margin even by all un-
supervised approaches. When we compare just unsupervised approaches, TextRank achieves by
far the best results according to both measures on the Inspec dataset. This is the dataset with
the on average shortest documents. On the other hand, TextRank performs uncompetitively in
comparison to other unsupervised approaches on two datasets with much longer documents,
KPTimes and JPTimes, where RaKUn and TfIdf are the best unsupervised approaches, respect-
ively. Interestingly, it achieves the highest F@10 score out of all unsupervised keyword detectors
on the DUC dataset, which also contains long documents. Perhaps this could be explained by
the average number of present keywords, which is much higher for DUC-test (7.79) than for
KPTimes-test (2.4) and JPTimes-test (3.86) datasets.

Overall (see row average), TNT-KID offers the most robust performance on the test datasets
and is closely followed by GPT-2 + BiLSTM. CopyRNN and CatSeqD are very close to each
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other according to both criteria. Out of unsupervised approaches, on average all of them offer
surprisingly similar performance. According to the F@10 score, YAKE on average works slightly
better than the second ranked TextRank and also in general offers more steady performance, since
it gives the most consistent results on a variety of different datasets. Similar could be said for
RaKUn, the best ranked unsupervised algorithm according to the F@5 score.

Examples of the TNT-KID keyword detection are presented in the Appendix.

5. Error analysis
In this Section we first analyse the reasons, why transformer based TNT-KID is capable of out-
performing other state-of-the-art neural keyword detectors, which employ a generative model, by
a large margin on some of the datasets. Secondly, we gather some insights into the inner workings
of the TNT-KID by a visual analysis of the attention mechanism.

5.1 Comparison between TNT-KID and CatSeqD
As was observed in Section 4.3, transformer based TNT-KID and GPT-2 + BiLSTM-CRF out-
perform generative models CatSeqD and CopyRNN by a large margin on the Inspec, JPTimes
and DUC datasets. Here, we try to explain this discrepancy by focusing on the difference in per-
formance between the best transformer based model, TNT-KID, and the best generative model,
CatSeqD. The first hypothesis is connected with the statistical properties of the datasets used for
training and testing, or more specifically, with the average number of keywords per document for
each dataset. Note that CatSeqD is trained on the KP20k-train, when employed on the computer
science domain, and on the KPTimes-train dataset, when employed on news. Table 1 shows that
both of these datasets do not contain many present keywords per document (KP20k-train 3.28 and
KPTimes-train 2.38), therefore training the model on these datasets conditions it to be conservat-
ive in its predictions and to assign less keywords to each document than a more liberal TNT-KID.
This gives the TNT-KID a competitive advantage on the datasets with more present keywords per
document.

Figure 3 shows a correlation between the average number of present keywords per document
for each dataset and the difference in performance in terms of F@10, measured as a difference
between an F@10 score achieved by TNT-KID and an F@10 score achieved by CatSeqD. The
difference in performance is the biggest for the DUC dataset (about 30 percentage points) that on
average has the most keywords per document, 7.79, and second biggest for Inspec, in which an
average document has 7.68 present keywords.

The above hypothesis explains why CatSeqD offers competitive performance on the KP20k-
test, Krapivin-test, NUS-test and KPTimes-test datasets with similar number of keywords per
document than its two train sets but does not explain the competitive performance of CatSeqD
on the SemEval test set that has 6.71 present keywords per document. Even more importantly,
it does not explain the large difference in performance between TNT-KID and CatSeqD on the
JPTimes-test. This suggests that there is another factor influencing the performance of some
keyword detectors.

The second hypothesis suggests that the difference in performance could be explained by the
difference in training regimes and the different tactics used for keyword detection by the two
systems. While TNT-KID is fine-tuned on each of the datasets, no fine-tuning is conducted for
CatSeqD that needs to rely only on the information obtained during training on the large KP20k-
train and KPTimes-train datasets. This information seems sufficient when CatSeqD is tested on
datasets that contain similar keywords than the train sets. On the other hand, this training regime
does not work for datasets that have less overlapping keywords.

ICT-29-2018 D2.6: Final keyword extraction

72 of 148



18 Natural Language Engineering

Figure 4 supports this hypothesis by showing strong correlation between the difference in per-
formance in terms of F@10 and the percentage of keywords that appear both in the CatSeqD
train sets (KP20k-train and KPTimes-train for computer science and news domain, respectively)
and the test datasets. DUC and Inspec datasets have the smallest overlap, with only 17 percent of
keywords in DUC appearing in the KPTimes-train and with 48 percent of keywords in Inspec ap-
pearing in the KP20k-train set. On the other hand, Krapivin, NUS, KP20k and KPTimes, the test
sets on which CatSeqD performs more competitively, are the datasets with the biggest overlap,
reaching up to 95 percent for KPTimes-test.

Figure 4 also explains a relatively bad performance of CatSeqD on the JPTimes corpus (see
Table 2) despite the smaller average number of keywords per document. Interestingly, despite the
fact that no dataset specific fine-tuning for TNT-KID is conducted on the JPTimes corpus (since
there is no validation set available, fine-tuning is conducted on the KPTimes-valid), TNT-KID
manages to outperform CatSeqD on this dataset by about 12 percentage points. This suggests that
a smaller keyword overlap between train and test sets has less of an influence on the TNT-KID and
could be explained with the fact, that CatSeqD considers keyword extraction as a generation task
and tries to generate a correct keyword sequence, while TNT-KID only needs to tag an already
existing word sequence, which is an easier problem that perhaps requires less specific information
gained during training.

According to the Figure 4, the SemEval test set is again somewhat of an outlier. Despite the
keyword overlap that is quite similar to the one in the JPTimes test set and despite having a
relatively large set of present keywords per document, CatSeqD still performs competitively on
this corpus. This points to a hypothesis that there might be another unidentified factor, either
negatively influencing the performance of TNT-KID and positively influencing the performance
of CatSeqD, or the other way around.

Figure 3: Relation between the average number of present keywords per document for each test
dataset and the difference in performance (F@10TNT-KID − F@10CatSeqD).
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Figure 4: Relation between the percentage of keywords that appear in the train set for each test
dataset and the difference in performance (F@10TNT-KID − F@10CatSeqD).

5.2 CatSeqD fine-tuning
According to the results in Section 4.3, supervised approaches to the keyword extraction task tend
to outperform unsupervised approaches, most likely due to their ability to adapt to the specifics of
the syntax, semantics and keyword labeling regime of the specific corpus. On the other hand, the
main disadvantage of most supervised approaches is that they require a large dataset with labeled
keywords for training, which are scarce at least in some languages. In this paper we argue, that the
main advantage of the proposed TNT-KID approach is, that due to its language model pretraining,
the model only requires a small labeled dataset in order to fine-tune the language model for the
keyword classification task. This fine-tuning allows the model to adapt to each dataset and leads
to a better performance of TNT-KID in comparison to CatSeqD, for which no fine-tuning was
conducted.

Even though no fine-tuning was conducted in the original CatSeqD study (Yuan et al. 2019),
one might hypothesise that the performance of CatSeqD could be further improved if the model
would be fine-tuned on each dataset, same as TNT-KID. To test this hypothesis, we take the
CatSeqD model trained on KP20k, conduct additional training on the SemEval, Krapivin and
Inspec validation sets (i.e., all datasets besides KP20k and KPTimes with a validation set), and
test these fine-tuned models on the corresponding test sets. Fine-tuning was conducted for up to
100.000 train stepsl and the results are presented in Figure 5.

Only on one of the three datasets, the Inspec test set, the performance can be improved by
additional fine-tuning. Though the improvement on the Inspec test set of about 10 percentage
points (from 33.5% to 44%) in terms of F1@10 is quite substantial, the model still performs worse
than TNT-KID, which achieves F1@10 of 52.5%. The improvement is most likely connected with
the fact that the Inspec test set contains more keywords that do not appear in the KP20k than

lSame hyperparameters that were used for KP20k training in the original paper (Yuan et al. 2019) were used for fine-tuning.
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Figure 5: Performance of the KP20k trained CatSeqD model fine-tuned on SemEval, Krapivin and
Inspec validation sets and tested on the corresponding test sets, in correlation with the length of
the fine tuning in terms of number of train steps. Zero train steps means that the model was not
fine-tuned.

SemEval and Krapivin test sets (see Figure 4). Inspec test set also contains more keywords per
document than the other two test sets (7.68 present keyword on average, in comparison to 6.71
present keywords per document in the SemEval test set and 3.2 in the Krapivin test set). Since the
KP20k train set on average contains only 3.29 present keywords per document, the fine-tuning on
the Inspec dataset most likely also adapts the classifier to a more liberal keyword labeling regime.

On the other hand, fine-tuning does not improve the performance on the Krapivin and SemEval
datasets. While there is no difference between the fine-tuned and original model on the Krapivin
test set, fine-tuning negatively affects the performance of the model on the SemEval dataset. The
F1@10 score drops from about 35% to about 30% after 20.000 train steps. Further fine-tuning
does not have any effect on the performance. The hypothesis is, that this drop in performance
is somewhat correlated with the size of the SemEval validation set, which is much smaller (it
contains only 144 documents) than Inspec and Krapivin validation sets (containing 1500 and 1844
documents, respectively), and this causes the model to overfit. Further tests would however need
to be conducted to confirm or deny this hypothesis.

Overall, 20.000 train steps seem to be enough for model adaptation in each case, since the
results show that additional fine-tuning does not have any influence on the performance.

5.3 Dissecting the attention space
One of the advantages of the transformer architecture is its employment of the attention mech-
anism, that can be analysed and visualized, offering valuable insights into inner workings of the
system and enabling interpretation of how the neural net tackles the keyword identification task.
The TNT-KID attention mechanism consists of multiple attention heads (Vaswani et al. 2017) –
square matrices linking pairs of tokens within a given text – and we explored how this (activated)
weight space can be further inspected via visualization and used for interpretation.

While square attention matrices show importance of the correlations between all tokens in the
document for a keyword identification task, we focused only on the diagonals of the matrices,
which indicate how much attention the model pays to the “correlation” a specific word has with
itself, i.e., how important is a specific word for the classification of a specific token as either being
a keyword or not. We extracted these diagonal attention scores for eight attention heads of the
last out of eight encoders, for each of the documents in the SemEval-test and averaged the scores
across an entire dataset by summing together scores belonging to the same position in each head
and dividing this sum with the number of documents. Figure 6 shows the average attention score
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of each of the eight attention heads for each token position. While there are distinct differences
between heads, a distinct peak at the beginning of the attention graph can be observed for all
heads but one (head 4), which means that heads generally pay more attention to the tokens at the
beginning of the document. This suggests that the system has learned that tokens appearing at the

Figure 6: Average attention for each token position in the SemEval corpus across eight attention
heads. Distinct peaks can be observed for tokens appearing at the beginning of the document in
all but one out of eight attention heads.

Figure 7: Number of keywords for each token position in the SemEval corpus. Distinct peaks can
be observed for positions at the beginning of the document.
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beginning of the document are more likely to be keywords (Figure 7 shows the actual keyword
count for each position in the SemEval corpus) and once again shows the importance of positional
information for the task of keyword identification.

Another insight into how the system works can be gained by analysing how much attention
was paid to each individual token in each document. Figure 8 displays attentions for individual
tokens, as well as marks them based on predictions for an example document from the SemEval-
test. Green tokens were correctly identified as keywords, red tokens were incorrectly identified
as keywords and less transparency (more colour) indicates that a specific token received more
attention from the classifier.

Figure 8 shows that, at least for this specific document, tokens that were either correctly or
incorrectly classified as keywords did receive more attention than an average token. There are also
some tokens that received a lot of attention and were not classified as keywords, e.g., eos (end of
sentence signs) and pad (padding) signs, and also words like of, is, we, etc.. Another interesting
thing to notice is the fact, that the amount of attention associated with individual tokens that appear
more than once in the document varies and is somewhat dependent on the position of the token. m

mNote that Figure 8 is just a motivating example. A more thorough statistical analysis of much more than just one docu-
ment would be required in order to draw proper conclusions about the behavior of the attention mechanism during keyword
identification.

Figure 8: Attention-colored tokens. Green ones were correctly identified as keywords, red ones
were incorrectly identified as keywords and less transparency indicates stronger attention for the
token. Underlined words in italic were identified as keywords by the system.
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6. Ablation study
In this section we explore the influence of several technique choices and building blocks of the
keyword extraction workflow on the overall performance of the model:

• Language model pretraining; assessment whether pretraining positively affects the per-
formance of the keyword extraction and if the improvements are dataset or domain
specific.

• Choice of pretraining regime; comparison of two pretraining objectives, autoregressive
language modelling and masked language modelling described in Section 3.2.

• Choice of input tokenization scheme; comparison of two tokenization schemes, word
tokenization and Sentencepiece (Kudo & Richardson 2018) byte-pair encoding.

• Part-of-speech(POS) tags; assessment whether adding POS tags as an additional input
improves the performance of the model.

• Transformer architecture adaptations; as was explained in Section 3.1, in the fine-tuning
stage we add an additional BiLSTM encoder to the output of the transformer encoder. We
also experiment with the addition of the BiLSTM+CRF token classification head on top of
the model, as was proposed in Sahrawat et al. (2020) and described in Section 3.1. Here we
assess the influence of these additions on the performance of the model.

Table 3 presents results on all datasets for several versions of the model, a model with no
language model pretraining (nolm), a model pretrained with an autoregressive language model
objective (lm), a model pretrained with a masked language model objective (maskedlm), a model
pretrained with an autoregressive language model objective and leveraging byte-pair encoding
tokenization scheme (lm+bpe), a model pretrained with an autoregressive language model ob-
jective and leveraging additional POS tag sequence input (lm+pos), a model pretrained with an
autoregressive language model objective and a BiLSTM encoder (lm+rnn), a model pretrained
with an autoregressive language model objective leveraging byte-pair encoding tokenization
scheme and a BiLSTM encoder (lm+bpe+rnn), and a model pretrained with an autoregressive lan-
guage model objective leveraging byte-pair encoding tokenization scheme and a BiLSTM+CRF
token classification head (lm+bpe+crf ) .

On average (see last two rows in Table 3), by far the biggest boost in performance is gained
by employing the autoregressive language model pretraining (column lm), improving the F@5
score by about 10 percentage points and the F@10 score by 11 percentage points in comparison
to no language model pretraining (column nolm). As expected, the improvements are substantial
on three smallest corpora, which by themselves do not contain enough text for the model to obtain
sufficient syntactic and semantic knowledge. The largest gains are achieved on the NUS test set,
where almost an 84 percent improvement in terms of the F@10 score can be observed, and on the
SemEval test set, where the improvement of 78 percent in terms of F@5 can be observed. We also
observe about a 47 percent improvement in terms of F@10 on the DUC test set. Not surprisingly,
for the KP20k dataset, which has a relatively large validation set used for fine-tuning, we can
observe a much smaller improvement of about 23 percent in terms of F@10. On the other hand,
we observe a substantial improvement of roughly 50 percent in terms of both F@5 and F@10 on
the KPTimes test set, even though the KPTimes validation set used for fine-tuning is the same size
as KP20k validation set. This means that in the language modelling phase the model still manages
to obtain knowledge that is not reachable in the fine-tuning phase and can perhaps be partially
explained by the fact that all documents are truncated into 256 tokens long sequences in the fine-
tuning phase. The KPTimes-valid dataset, used both for language modelling and fine-tuning, has
on average 784.65 tokens per document, which means that more than half of the document’s text
is discarded during the fine-tuning phase. This is not the case in the language modelling phase,
where all of the text is leveraged.
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Table 3. : Results of the ablation study. Column lm+bpe+rnn represents the results for the model
that was used for comparison with other methods from the related work in Section 4.3.

nolm lm maskedlm lm+bpe lm+pos lm+rnn lm+bpe+rnn lm+bpe+crf

KP20k

F1@5 0.2544 0.2922 0.2476 0.2958 0.3003 0.3349 0.3418 0.3478

F1@10 0.2304 0.2836 0.2313 0.2941 0.2986 0.3382 0.3457 0.3521

Inspec

F1@5 0.2868 0.4099 0.2875 0.4255 0.4136 0.4506 0.4471 0.4463

F1@10 0.3636 0.4994 0.3704 0.4871 0.5012 0.5253 0.5252 0.5147

Krapivin

F1@5 0.1919 0.2277 0.2046 0.2879 0.2494 0.3088 0.3009 0.3142

F1@10 0.1904 0.2314 0.2029 0.2884 0.2555 0.3164 0.3070 0.3178

NUS

F1@5 0.1909 0.3319 0.2372 0.3352 0.3339 0.3419 0.3502 0.3371

F1@10 0.1902 0.3492 0.2552 0.3586 0.3518 0.3626 0.3686 0.3658

SemEval

F1@5 0.1671 0.3070 0.1842 0.2462 0.2780 0.2696 0.2921 0.2524

F1@10 0.1950 0.3469 0.2528 0.2913 0.3426 0.3303 0.3552 0.3007

KPTimes

F1@5 0.2864 0.4242 0.3052 0.4211 0.4306 0.4627 0.4691 0.4408

F1@10 0.2760 0.4208 0.3017 0.4208 0.4300 0.4609 0.4693 0.4413

JPTimes

F1@5 0.2490 0.3305 0.2644 0.3341 0.3359 0.3790 0.3570 0.3357

F1@10 0.2478 0.3344 0.2705 0.3373 0.3402 0.3823 0.3596 0.3372

DUC

F1@5 0.1951 0.2848 0.1523 0.2759 0.2918 0.3003 0.3115 0.2943

F1@10 0.2265 0.3340 0.1979 0.3213 0.3386 0.3432 0.3551 0.3342

Average

F@5 0.2277 0.3260 0.2354 0.3277 0.3292 0.3560 0.3587 0.3461

F@10 0.2400 0.3500 0.2603 0.3499 0.3573 0.3824 0.3857 0.3705

On the other hand, using the masked language modelling pretraining (column maskedlm) ob-
jective on average yields only a somewhat negligible improvement of about 0.8 percentage point
in terms of F@5 score and a slightly bigger improvement of about 2 percentage points in terms
of F@10 score in comparison to no language model pretraining. It does however improve the per-
formance on the two smallest datasets, NUS (by about 6.5 percentage points in terms of F1@10)
and SemEval (by about 6 percentage points in terms of F1@10). The large discrepancy in perform-
ance between the two different language model objectives can be partially explained by the sizes
of the pretraining corpora. By using autoregressive language modelling, the model learns to pre-
dict the next word probability distribution for each sequence in the corpus. By using the masked
language modelling objective, 15 percent of the words in the corpus are randomly masked and
used as targets for which the word probability distributions need to be predicted from the sur-
rounding context. Even though each training epoch a different set of words is randomly masked,
it is quite possible, that some words are never masked due to small sizes of the corpora and since
we only train the model for up to 10 epochs.
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Results show that adding POS tags as an additional input (column lm+pos) leads to only mar-
ginal performance improvements. Some previous studies suggest that transformer based models
that employ transfer learning already capture sufficient amount of syntactic and other information
about the composition of the text (Jawahar et al. 2019). Our results therefore support the hypo-
thesis that additional POS tag inputs are somewhat unnecessary in the transfer learning setting
but additional experiments would be needed to determine whether this is task/language specific or
not.

Another adaptation that does not lead to any significant improvements when compared to the
column lm is the usage of the byte-pair encoding scheme (column lm+bpe). The initial hypothesis
that motivated the usage of byte-pair encoding was that it might help the model’s performance
by introducing some knowledge about the word composition and by enabling the model to better
understand that different forms of the word can represent the same meaning. However, the usage of
byte-pair encoding might on the other hand also negatively affect the performance, since splitting
up words inside a specific keyphrase would make these keyphrases longer in terms of number of
words and detecting a longer continuous word sequence as a keyword might represent a harder
problem for the model than detecting a shorter one. Nevertheless, usage of byte-pair encoding
does have an additional positive effect of drastically reducing the vocabulary of the model (e.g.,
for computer science articles, this means a reduction from about 250.000 tokens to about 30.000)
and with it also the number of parameters in the model (from about 290 million to about 70
million).

Adding an additional BiLSTM encoder in the fine-tuning stage of a pretrained model (column
lm+rnn) leads to consistent improvements on almost all datasets and to an average improvement
of about 3 percentage points in terms of both F@5 and F@10 scores. This confirms the findings
from the related work that recurrent neural networks work well for the keyword detection task
and also explains why a majority of state-of-the-art keyword detection systems leverage recurrent
layers.

We also present results for a model in which we employed autoregressive language model
pretraining, used byte-pair encoding scheme and added a BiLSTM encoder (column lm+bpe+rnn)
that was used for comparison with other methods from the related work in Section 4.3, and results
for the approach proposed by Sahrawat et al. (2020), where a BiLSTM+CRF token classification
head is added on top of the transformer encoder, that employs byte-pair encoding scheme and
autoregressive language model pretraining (column lm+bpe+crf ). The BiLSTM+CRF performs
quite well, outperforming all other configurations on two (KP20k and Krapivin) datasets. On
average it however still performs by more than 1 percentage point worse than both configurations
employing an added BiLSTM encoder.

7. Conclusion and future work
In this research we have presented TNT-KID, a novel transformer based neural tagger for keyword
identification that leverages a transfer learning approach to enable robust keyword identification
on a number of datasets. The presented results show that the proposed model offers a robust
performance across a variety of datasets with manually labeled keywords from two different do-
mains. By exploring the differences in performance between our model and the best performing
generative model from the related work, CatSeqD by Yuan et al. (2019), we manage to pinpoint
strengths and weaknesses of each model and therefore enable a potential user to choose the ap-
proach most suitable for the task at hand. By visualizing the attention mechanism of the model, we
try to interpret classification decisions of the neural network and show that efficient modelling of
positional information is essential in the keyword detection task. Finally, we propose an ablation
study which shows how specific components of the keyword extraction workflow influence the
overall performance of the model.
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The biggest advantage of supervised approaches to keyword extraction task is their ability to
adapt to the specifics of the syntax, semantics, content, genre and keyword tagging regime of the
specific corpus. Our results show that this offers a significant performance boost and state-of-the-
art supervised approaches outperform state-of-the-art unsupervised approaches on the majority of
datasets. On the other hand, the ability of the supervised models to adapt might become limited in
cases when the train dataset is not sufficiently similar to the dataset on which keyword detection
needs to be performed. This can clearly be seen on the DUC dataset, in which only about 17 per-
cent of keywords also appear in the KPTimes train set, used for training the generative CopyRNN
and CatSeqD models. Here, these two state-of-the-art models perform the worst of all the mod-
els tested and as is shown in Section 5.2, this keywordinees generalization problem can not be
overcome by simply fine-tuning these state-of-the-art systems on each specific dataset.

On the other hand, TNT-KID bypasses the generalization problem by allowing fine-tuning on
very small datasets. Nevertheless, the results on the JPTimes corpus suggest that it also generalizes
better than CopyRNN and CatSeqD. Even though all three algorithms are trained on the KPTimes
dataset (since JPTimes corpus does not have a validation set)n, TNT-KID manages to outperform
the other two by about 10 percentage points according to the F1@10 and F1@5 criteria despite
the discrepancy between train and test set keywords. As already mentioned in Section 5.1, this
can be partially explained by the difference in approaches used by the models and the fact that
keyword generation is a much harder task than keyword tagging. For keyword generation task to
be successful, seeing a sequence that needs to be generated in advance, during training, is perhaps
more important, than for a much simpler task of keyword tagging, where a model only needs to
decide if a word is a keyword or not. Even though the keyword generators try to ease the task
by employing a copying mechanism (Gu et al. 2016), the experiments suggest that generalizing
keywordinees to unseen word sequences still represent a bigger challenge for these models than
for TNT-KID.

While the conducted experiments suggest that TNT-KID works better than other neural net-
works in a setting where previously unseen keywords (i.e., keywords not present in the training
set) need to be detected, further experiments need to be devised to evaluate the competitiveness
of TNT-KID in a cross-domain setting when compared to unsupervised approaches. Therefore, in
order to determine if the model’s internal representation of keywordiness is general enough to be
transferable across different domains, in the future we also plan to conduct some cross-domain
experiments.

Another aspect worth mentioning is the evaluation regime and how it affects the comparison
between the models. By fine-tuning the model on each dataset, the TNT-KID model learns the
optimal number of keywords to predict for each specific dataset. This number is in general slightly
above the average number of present keywords in the dataset, since the loss function was adapted
to maximize recall (see Section 3). On the other hand, CatSeqD and CopyRNN are only trained
on the KP20k-train and KPTimes-train datasets that have less present keywords than a majority
of test datasets. This means our system on average predicts more keywords per document than
these two systems, which negatively affects the precision of the proposed system in comparison
to CatSeqD and CopyRNN, especially at smaller k values. On the other hand, predicting less
keywords hurts recall, especially on datasets where documents have on average more keywords.
As already mentioned in Section 6, this explains why our model compares better to other systems
in terms of F@10 than in terms of F@5 and also raises a question how biased these measures of
performance actually are. Therefore, in the future we plan to use other performance measures to
compare our model to others.

Overall, the differences in training and prediction regimes between TNT-KID and other neural
models imply that the choice of a network is somewhat dependent on the use-case. If a large
training dataset of an appropriate genre with manually labeled keywords is available and if the

nNote that TNT-KID is trained on the validation set, while CopyRNN and CatSeqD are trained on the much larger train set.
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system does not need to predict many keywords, then CatSeqD is most likely the best choice,
even though TNT-KID shows competitive performance on a large majority of datasets. On the
other hand, if only a relatively small train set is available and it is preferable to predict a larger
number of keywords, then the results of this study suggest that TNT-KID is most likely a better
choice.

The conducted study also indicates that the adaptation of the transformer architecture and the
training regime for the task at hand can lead to improvements in keyword detection. Both TNT-
KID and a pretrained GPT-2 model with a BiLSTM + CRF token classification head manage to
outperform the unmodified GPT-2 with a default token classification head by a large margin. Even
more, TNT-KID manages to outperform both, the pretrained GPT-2 and the GPT-2 with BiLSTM
+ CRF, even though it employs only 8 attention layers, 8 attention heads and an embedding size
of 512 instead of the standard 12 attention layers, 12 attention heads and an embeddings size of
768, which the pretrained GPT-2 employs. The model on the other hand does employ an additional
BiLSTM encoder during the classification phase, which makes it slower than the unmodified GPT-
2 but still faster than the GPT-2 with the BiLSTM + CRF token classification head that employs a
computationally demanding CRF layer.

The ablation study clearly shows that the employment of transfer learning is by far the biggest
contributor to the overall performance of the system. Surprisingly, there is a very noticeable
difference between performances of two distinct pretraining regimes, autoregressive language
modelling and masked language modelling in the proposed setting with limited textual resources.
Perhaps a masked language modelling objective regime could be somewhat improved by a more
sophisticated masking strategy that would not just randomly mask 15 percent of the words but
would employ a more fine-grained entity-level masking and phrase-level masking, similar as in
Sun et al. (2019). This and other pretraining learning objectives will be explored in future work.

In the future we also plan to expand the set of experiments in order to also cover other languages
and domains. Since TNT-KID does not require a lot of manually labeled data for fine-tuning
and only a relatively small domain specific corpus for pretraining, the system is already fairly
transferable to other languages and domains, even to low resource ones. Deploying the system to
a morphologically richer language than English and conducting an ablation study in that setting
would also allow us to see, whether byte-pair encoding and the additional POS tag sequence input
would lead to bigger performance boosts on languages other than English.

Finally, another line of research we plan to investigate is a cross-lingual keyword detection.
The idea is to pretrain the model on a multilingual corpus, fine-tune it on one language and then
conduct zero-shot cross-lingual testing of the model on the second language. Achieving a satis-
factory performance in this setting would make the model transferable even to languages with no
manually labeled resources.
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Jawahar, Ganesh, Sagot, Benoı̂t, & Seddah, Djamé. 2019. What does BERT learn about the structure of language?
Kim, Su Nam, Medelyan, Olena, Kan, Min-Yen, & Baldwin, Timothy. 2010. SemEval-2010 Task 5: Automatic Keyphrase

Extraction from Scientific Articles. Pages 21–26 of: Proceedings of the 5th International Workshop on Semantic
Evaluation. SemEval ’10. Stroudsburg, PA, USA: Association for Computational Linguistics.

Krapivin, Mikalai, Autaeu, Aliaksandr, & Marchese, Maurizio. 2009. Large dataset for keyphrases extraction. Tech. rept.
University of Trento.

Kudo, Taku, & Richardson, John. 2018. Sentencepiece: A simple and language independent subword tokenizer and
detokenizer for neural text processing. arXiv preprint arXiv:1808.06226.

Lafferty, John, McCallum, Andrew, & Pereira, Fernando CN. 2001. Conditional random fields: Probabilistic models for
segmenting and labeling sequence data.

Liu, Yinhan, Ott, Myle, Goyal, Naman, Du, Jingfei, Joshi, Mandar, Chen, Danqi, Levy, Omer, Lewis, Mike,
Zettlemoyer, Luke, & Stoyanov, Veselin. 2019. Roberta: A robustly optimized bert pretraining approach. arXiv preprint
arXiv:1907.11692.

Loper, Edward, & Bird, Steven. 2002. NLTK: The Natural Language Toolkit. In: Proceedings of the ACL-02 Workshop on
Effective Tools and Methodologies for Teaching Natural Language Processing and Computational Linguistics.

Luan, Yi, Ostendorf, Mari, & Hajishirzi, Hannaneh. 2017. Scientific information extraction with semi-supervised neural
tagging. arXiv preprint arXiv:1708.06075.

Medelyan, Olena, Frank, Eibe, & Witten, Ian H. 2009. Human-competitive tagging using automatic keyphrase extraction.
Pages 1318–1327 of: Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing: Volume
3-Volume 3. Association for Computational Linguistics.

ICT-29-2018 D2.6: Final keyword extraction

83 of 148



29

Meng, Rui, Zhao, Sanqiang, Han, Shuguang, He, Daqing, Brusilovsky, Peter, & Chi, Yu. 2017. Deep keyphrase generation.
arXiv preprint arXiv:1704.06879.

Meng, Rui, Yuan, Xingdi, Wang, Tong, Brusilovsky, Peter, Trischler, Adam, & He, Daqing. 2019. Does Order Matter? An
Empirical Study on Generating Multiple Keyphrases as a Sequence. arXiv preprint arXiv:1909.03590.

Mihalcea, Rada, & Tarau, Paul. 2004. Textrank: Bringing order into text. Pages 404–411 of: Proceedings of the 2004
conference on empirical methods in natural language processing.

Nguyen, Thuy Dung, & Kan, Min-Yen. 2007. Keyphrase extraction in scientific publications. Pages 317–326 of: International
conference on Asian digital libraries. Springer.

Paszke, Adam, Gross, Sam, Massa, Francisco, Lerer, Adam, Bradbury, James, Chanan, Gregory, Killeen, Trevor, Lin, Zeming,
Gimelshein, Natalia, Antiga, Luca, et al. 2019. PyTorch: An imperative style, high-performance deep learning library.
Pages 8024–8035 of: Advances in Neural Information Processing Systems.

Peters, Matthew E., Neumann, Mark, Iyyer, Mohit, Gardner, Matt, Clark, Christopher, Lee, Kenton, & Zettlemoyer, Luke.
2018a. Deep contextualized word representations. In: Proc. of NAACL.

Peters, Matthew E, Neumann, Mark, Iyyer, Mohit, Gardner, Matt, Clark, Christopher, Lee, Kenton, & Zettlemoyer, Luke.
2018b. Deep contextualized word representations. arXiv preprint arXiv:1802.05365.

Radford, Alec, Wu, Jeffrey, Child, Rewon, Luan, David, Amodei, Dario, & Sutskever, Ilya. 2019. Language models are
unsupervised multitask learners. OpenAI Blog, 1(8).

Rose, Stuart, Engel, Dave, Cramer, Nick, & Cowley, Wendy. 2010. Automatic keyword extraction from individual documents.
Text mining: applications and theory, 1–20.

Sahrawat, Dhruva, Mahata, Debanjan, Kulkarni, Mayank, Zhang, Haimin, Gosangi, Rakesh, Stent, Amanda, Sharma,
Agniv, Kumar, Yaman, Shah, Rajiv Ratn, & Zimmermann, Roger. 2020. Keyphrase Extraction from Scholarly Articles
as Sequence Labeling using Contextualized Embeddings. Pages 328–335 of: Proceedings of European Conference on
Information Retrieval (ECIR 2020).
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Appendix: examples of keyword identification
Document 1:
Quantum market games. We propose a quantum-like description of markets and economics. The
approach has roots in the recently developed quantum game theory”

Predicted keywords: markets, quantum market games, quantum game theory, economics,
quantum like description

True keywords: economics, quantum market games, quantum game theory

Document 2:
Revenue Analysis of a Family of Ranking Rules for Keyword Auctions. Keyword auctions lie at
the core of the business models of today’s leading search engines. Advertisers bid for placement
alongside search results, and are charged for clicks on their ads. Advertisers are typically ranked
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according to a score that takes into account their bids and potential clickthrough rates. We consider
a family of ranking rules that contains those typically used to model Yahoo! and Google’s auction
designs as special cases. We find that in general neither of these is necessarily revenue-optimal
in equilibrium, and that the choice of ranking rule can be guided by considering the correlation
between bidders’ values and click-through rates. We propose a simple approach to determine a
revenue-optimal ranking rule within our family, taking into account effects on advertiser satis-
faction and user experience. We illustrate the approach using Monte-Carlo simulations based on
distributions fitted to Yahoo! bid and click-through rate data for a high-volume keyword.

Predicted keywords: ranked, auction, clicks, keyword auctions, keyword, revenue, click-
through, ranking rules, click through rates, bids

True keywords: revenue optimal ranking, ranking rule, revenue, advertisement, keyword
auction, search engine

Document 3:
Profile-driven instruction level parallel scheduling with application to super blocks. Code schedul-
ing to exploit instruction level parallelism (ILP) is a critical problem in compiler optimization
research in light of the increased use of long-instruction-word machines. Unfortunately optimum
scheduling is computationally intractable, and one must resort to carefully crafted heuristics in
practice. If the scope of application of a scheduling heuristic is limited to basic blocks, consid-
erable performance loss may be incurred at block boundaries. To overcome this obstacle, basic
blocks can be coalesced across branches to form larger regions such as super blocks. In the lit-
erature, these regions are typically scheduled using algorithms that are either oblivious to profile
information (under the assumption that the process of forming the region has fully utilized the pro-
file information), or use the profile information as an addendum to classical scheduling techniques.
We believe that even for the simple case of linear code regions such as super blocks, additional
performance improvement can be gained by utilizing the profile information in scheduling as well.
We propose a general paradigm for converting any profile-insensitive list scheduler to a profile-
sensitive scheduler. Our technique is developed via a theoretical analysis of a simplified abstract
model of the general problem of profile-driven scheduling over any acyclic code region, yielding
a scoring measure for ranking branch instructions.

Predicted keywords: scheduling;instruction level parallel scheduling;instruction level par-
allelism;profile;list scheduler;code scheduling;long instruction word machines;profile driven
scheduling

True keywords: long instruction word machines, scheduling heuristic, compiler optimization,
optimum scheduling, abstract model, ranking branch instructions, profile driven instruction
level parallel scheduling, profile sensitive scheduler, linear code regions, code scheduling

Document 4:
40 Years After War, Israel Weighs Remaining Risks. JERUSALEM It was 1 p.m. on Saturday, Oct.
6, 1973, the day of Yom Kippur, the holiest in the Jewish calendar, and Israel’s military intelligence
chief, Maj. Gen. Eli Zeira, had called in the country’s top military journalists for an urgent briefing.
He told us that war would break out at sundown, about 6 p.m., said Nachman Shai, who was
then the military affairs correspondent for Israel’s public television channel and is now a Labor
member of Parliament. Forty minutes later he was handed a note and said, Gentlemen, the war
broke out, and he left the room. Moments before that note arrived, according to someone else who
was at that meeting, General Zeira had been carefully peeling almonds in a bowl of ice water. The
coordinated attack by Egypt and Syria, which were bent on regaining strategic territories and pride
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lost to Israel in the 1967 war, surprised and traumatized Israel. For months, its leaders misread the
signals and wrongly assumed that Israel’s enemies were not ready to attack. Even in those final
hours, when the signs were unmistakable that a conflict was imminent, Israel was misled by false
intelligence about when it would start. As the country’s military hurriedly called up its reserves
and struggled for days to contain, then repel, the joint assault, a sense of doom spread through the
country. Many feared a catastrophe. Forty years later, Israel is again marking Yom Kippur, which
falls on Saturday, the anniversary of the 1973 war according to the Hebrew calendar. This year the
holy day comes in the shadow of new regional tensions and a decision by the United States to opt,
at least for now, for a diplomatic agreement rather than a military strike against Syria in response
to a deadly chemical weapons attack in the Damascus suburbs on Aug. 21. Israeli newspapers
and television and radio programs have been filled with recollections of the 1973 war, even as the
country’s leaders have insisted that the probability of any new Israeli entanglement remains low
and that the population should carry on as normal. For some people here, though, the echoes of the
past have stirred latent questions about the reliability of intelligence assessments and the risks of
another surprise attack. Any Israeli with a 40-year perspective will have doubts,said Mr. Shai, who
was the military’s chief spokesman during the Persian Gulf War of 1991, when Israelis huddled
in sealed rooms and donned gas masks, shocked once again as Iraqi Scud missiles slammed into
the heart of Tel Aviv. Coming after the euphoria of Israel’s victory in the 1967 war, when six days
of fighting against the Egyptian, Jordanian and Syrian Armies left Israel in control of the Sinai
Peninsula, the West Bank, Gaza, East Jerusalem and the Golan Heights, the conflicts of 1973,
1991 and later years have scarred the national psyche. But several former security officials and
analysts said that while the risks now may be similar to those of past years in some respects,
there are also major differences. In 1991, for example, the United States responded to the Iraqi
attack by hastily redeploying some Patriot antimissile batteries to Israel from Europe, but the
batteries failed to intercept a single Iraqi Scud, tracking them instead and following them to the
ground with a thud. Since then, Israel and the United States have invested billions of dollars in
Israel’s air defenses, with the Arrow, Patriot and Iron Dome systems now honed to intercept short-
, medium- and longer-range rockets and missiles. Israelis, conditioned by subsequent conflicts
with Hezbollah in Lebanon and Hamas in Gaza and by numerous domestic drills, have become
accustomed to the wail of sirens and the idea of rocket attacks. But the country is less prepared
for a major chemical attack, even though chemical weapons were used across its northern frontier,
in Syria, less than a month ago, which led to a run on gas masks at distribution centers here. In
what some people see as a new sign of government complacency at best and downright failure
at worst, officials say there are enough protective kits for only 60 percent of the population, and
supplies are dwindling fast. Israeli security assessments rate the probability of any attack on Israel
as low, and the chances of a chemical attack as next to zero. In 1973, the failure of intelligence
assessments about Egypt and Syria was twofold. They misjudged the countries’ intentions and
miscalculated their military capabilities. Our coverage of human intelligence, signals intelligence
and other sorts was second to none, said Efraim Halevy, a former chief of Mossad, Israel’s national
intelligence agency. We thought we could initially contain any attack or repulse it within a couple
of days. We wrongly assessed the capabilities of the Egyptians and the Syrians. In my opinion, that
was the crucial failure. Israel is in a different situation today, Mr. Halevy said. The Syrian armed
forces are depleted and focused on fighting their domestic battles, he said. The Egyptian Army
is busy dealing with its internal turmoil, including a campaign against Islamic militants in Sinai.
Hezbollah, the Lebanese militant group, is heavily involved in aiding President Bashar al-Assad
of Syria, while the Iranians, Mr. Halevy said, are not likely to want to give Israel a reason to strike
them, not as the aggressor but as a victim of an Iranian attack. Israel is also much less likely to
suffer such a colossal failure in assessment, Mr. Halevy said. We have plurality in the intelligence
community, and people have learned to speak up, he said. The danger of a mistaken concept is
still there, because we are human. But it is much more remote than before. Many analysts have
attributed the failure of 1973 to arrogance. There was a disregarding of intelligence, said Shlomo
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Avineri, a political scientist at Hebrew University and a director general of Israel’s Ministry of
Foreign Affairs in the mid-1970s. War is a maximization of uncertainties, he said, adding that
things never happen the same way twice, and that wars never end the way they are expected to.
Like most countries, Israel has been surprised by many events in recent years. The two Palestinian
uprisings broke out unexpectedly, as did the Arab Spring and the two revolutions in Egypt. In
1973, logic said that Egypt and Syria would not attack, and for good reasons, said Ephraim Kam,
a strategic intelligence expert at the Institute for National Security Studies at Tel Aviv University
who served for more than 20 years in military intelligence. But there are always things we do not
know. Intelligence is always partial, Mr. Kam said, its gaps filled by logic and assessment. The
problem, he said, is that you cannot guarantee that the logic will fit with reality. In his recently
published diaries from 1973, Uzi Eilam, a retired general, recalled the sounding of sirens at 2 p.m.
on Yom Kippur and his rushing to the war headquarters. Eli Zeira passed me, pale-faced, he wrote,
referring to the military intelligence chief, and he said: So it is starting after all. They are putting
up planes. A fleeting glance told me that this was no longer the Eli Zeira who was so self-assured.

Predicted keywords: israel, syria, egypt, military, jerusalem

True keywords: israel, yom kippur, egypt, syria, military, arab spring

Document 5:
Abe’s 15-month reversal budget fudges cost of swapping people and butter for concrete and guns.
The government of Shinzo Abe has just unveiled its budget for fiscal 2013 starting in April. Abe’s
stated intention was to radically reset spending priorities. He is indeed a man of his word. For this
is a budget that is truly awesome for its radical step backward into the past a past where every
public spending project would do wonders to boost economic growth. It is also a past where a
cheaper yen would bring unmitigated benefits to Japan’s exporting industries. None of it is really
true anymore. Public works do indeed do wonders in boosting growth when there is nothing there
to begin with. But in a mature and well-developed economy like ours, which is already so well
equipped with all the necessities of modern life, they can at best have only a one-off effect in cre-
ating jobs and demand. And in this globalized day and age, an exporting industry imports almost
as much as it exports. No longer do we live in a world where a carmaker makes everything within
the borderlines of its nationality. Abe’s radical reset has just as much to do with philosophy as
with timelines. Three phrases come to mind as I try to put this budget in a nutshell. They are:
from people to concrete,from the regions to the center and from butter to guns. The previous gov-
ernment led by the Democratic Party of Japan declared that it would put people before concrete.
No more building of ever-empty concert halls and useless multiple amenity centers where nothing
ever happens. More money would be spent on helping people escape their economic difficulties.
They would give more power to the regions so they could decide for themselves what was really
good and worked for the local community. Guns would most certainly not take precedence over
butter. Or rather over the low-fat butter alternatives popular in these more health-conscious times.
All of this has been completely reversed in Abe’s fiscal 2013 budget. Public works spending is
scheduled to go up by more than 15 percent while subsistence payments for people on welfare will
be thrashed to the tune of more than 7 percent. If implemented, this will be the largest cut ever
in welfare assistance. The previous government set aside a lump sum to be transferred from the
central government’s coffers to regional municipalities to be spent at their own discretion on local
projects. This sum will now be clawed back into the central government’s own public works pro-
gram. The planned increase in spending on guns is admittedly small: a 0.8 percent increase over
the fiscal 2012 initial budget. It is nonetheless the first increase of its kind in 11 years. And given
the thrashing being dealt to welfare spending, the shift in emphasis from butter to guns is clearly
apparent. One of the Abe government’s boasts is that it will manage to hold down the overall size
of the budget in comparison with fiscal 2012. The other one is that it will raise more revenues
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from taxes rather than borrowing. True enough on the face of it. But one has to remember the very
big supplementary budget that the government intends to push through for the remainder of fiscal
2012. The money for that program will come mostly from borrowing. Since the government is
talking about a 15-month budget that seamlessly links up the fiscal 2012 supplementary and fiscal
2013 initial budgets, they should talk in the same vein about the size of their spending and the
borrowing needed to accommodate the whole 15-month package. It will not do to smother the big
reset with a big coverup.

Predicted keywords: shinzo abe, japan, budget

True keywords: shinzo abe, budget
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Abstract
The field of bisociative literature-based discovery aims at mining scientific literature 
to reveal yet uncovered connections between different fields of specialization. This 
paper outlines several outlier-based literature mining approaches to bridging term 
detection and the lessons learned from selected biomedical literature-based discov-
ery applications. The paper addresses also new prospects in bisociative literature-
based discovery, proposing an advanced embeddings-based technology for cross-
domain literature mining.
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Introduction

Growing amounts of available knowledge and data exceed human analytic capa-
bilities. Therefore, new technologies that help analyzing and extracting useful 
information from large amounts of data need to be developed and used for ana-
lytic purposes. Understanding complex phenomena and solving difficult problems 
often require knowledge from different domains to be combined and cross-domain 
associations to be considered. While the concept of association is at the heart of 
several information technologies, including information retrieval and data min-
ing, and in particular association rule learning [2], scientific discovery requires 
creative thinking to connect seemingly unrelated information, for example, using 
metaphors or analogies between concepts from different domains. These kinds of 
context crossing associations, called bisociations [19], are often needed for inno-
vative discoveries.

This paper addresses a computational creativity task of bisociative knowledge 
discovery from scientific literature that we name bisociative literature-based dis-
covery. This task is at the intersection of two research areas: literature-based dis-
covery [6] and bisociative knowledge discovery [3], which are briefly introduced 
below.

In literature-based discovery (LBD) [6]—and in particular in cross-domain lit-
erature mining that addresses knowledge discovery from two (or more) initially 
separate document corpora—a crucial step is the identification of interesting 
bridging terms (b-terms) or links (b-links) that carry the potential of explicitly 
revealing the connections between the separate domains. Swanson and Smal-
heiser [37, 40] developed early LBD approaches to detecting interesting b-terms 
to uncover the possible cross-domain relations among previously unrelated 
concepts. Their approach, known as the ‘ABC model of knowledge discovery’, 
addresses the so-called closed discoverysetting [43], where two initially separate 
domains A and C are specified by the user at the beginning of the discovery pro-
cess, and the goal is to search for bridging concepts (b-terms) in B to validate the 
hypothesized connection between A and C.

Similarly, bisociative knowledge discovery [3] addresses a data mining task 
where two (or more) domains of interest are searched for bridging concepts 
(bridging terms or links). Using either the same representation of different 
domains or different representations of the same domain, bridging concepts can 
be detected either as nodes bridging different graphs, as subgraphs linking dif-
ferent graphs, as bridging links in terms of graph similarity, or as bridging terms 
appearing in separate document corpora, which is referred to as bridging term 
discovery in this paper.

Until recently, literature-based discovery and bisociative knowledge discov-
ery approaches to cross-domain literature mining used conventional bag of words 
(BoW) vector representation of text, using term frequency inverse document 
frequency (TF-IDF) word weighting heuristics. Recent text-mining approaches 
started exploiting neural networks-based text representations, using text embed-
ding methods that use large corpora of documents to extract numeric vector 
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representations for words, sentences, and/or documents. In this paper, we exploit 
the power of word embeddings [25, 27], which refer to vector representations of 
words, where each word is assigned a vector of several hundred dimensions in the 
transformed n-dimensional numeric vector space. Embedding approaches have 
started emerging also in the area of computational creativity [1, 10] and litera-
ture-based discovery [24].

The contributions of this paper are many-fold. The paper first reflects on the les-
sons learned from our past research in cross-domain literature mining,1 focusing on 
outlier document detection as means for more effectively searching for novel bridg-
ing terms. Second, we propose an embedding-inspired conceptual framework for 
creative bisociative LBD, based on a novel concept of bridging by relational bisocia-
tion. Third, we propose a new bisociative LBD methodology, using word embed-
dings for relational bisociation discovery. Finally, we show-case the potential util-
ity of this approach on a new biological research problem of finding connections 
between circadian rhythm and plant defense domains, where the results of this proof 
of concept evaluation indicate that the new methodology is very relevant for LBD 
research.

The paper is structured as follows. “Background and related work” presents the 
related work in literature-based discovery (LBD) and bisociative knowledge dis-
covery, including the previously published relationship between the two [21, 31]. 
It presents also the related work in representation learning using the embedding 
technology. “Past LBD results and lessons learned” outlines selected approaches to 
cross-domain literature mining via outlier document detection and exploration [31, 
36], together with the lessons learned from this research. “Towards creative embed-
dings-based bisociative LBD” proposes a novel creative discovery research direction 
based on the recent word embedding technology, with a proof of concept experiment 
in a biological domain, together with the lessons learned from this LBD application. 
Finally, “Conclusions and further work” concludes with a summary and plans for 
further research.

Background and Related Work

This section presents the related work. “Literature-based discovery” introduces liter-
ature-based discovery (LBD), which is the main topic of this research. “Bisociative 
knowledge discovery” presents the area of computational creativity named bisocia-
tive knowledge discovery and the connection between bisociative knowledge dis-
covery and LBD, as published in our past research [21, 31]. Finally, “Embeddings” 
briefly introduces embeddings, the contemporary representation learning technol-
ogy resulting from recent research in neural networks, which is the enabler for the 
proposed embedding-based bisociative LBD methodology introduced in “Towards 
creative embeddings-based bisociative LBD”.

1  These lessons have been published also in the ICCC-2020 paper by Lavrač et al. [22].
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Literature‑Based Discovery

In literature-based discovery (LBD) [6]—and in particular in cross-domain litera-
ture mining, which addresses knowledge discovery in two (several) initially sepa-
rate document corpora—a crucial step is the identification of interesting bridging 
terms (b-terms) that carry the potential of revealing the links connecting the sepa-
rate domains.

Early work in LBD [37, 40] developed approaches to assist the user in literature-
based discovery by detecting interesting cross-domain terms with a goal to uncover 
the possible relations between previously unrelated concepts. The ARROWSMITH 
online system, developed by Smalheiser and Swanson [37], takes as input two sets 
of titles of scientific papers from disjoint domains (disjoint document corpora) A 
and C, and lists terms that are common to A and C; the resulting bridging terms 
(b-terms) are further investigated by the user for their potential to generate new 
scientific hypotheses.2 Their approach, known as the ‘ABC model of knowledge 
discovery’, addresses several settings, including the closed discovery setting [43], 
where two initially separate domains A and C are specified by the user at the begin-
ning of the discovery process, and the goal is to search for bridging concept (term) 
b in B to support the validation of the hypothesized connection between A and C. 
The closed discovery setting, which is the most frequently addressed LBD setting, is 
illustrated in Fig. 1.

Swanson’s seminal work has shown that databases such as PubMed can serve as 
a rich source of yet hidden relations between usually unrelated topics, potentially 
leading to novel insights and discoveries. By studying two separate literatures, i.e., 
the literature on migraine headache and the articles on magnesium, Swanson [39] 
discovered ‘Eleven neglected connections’, all of them supportive for the hypoth-
esis that magnesium deficiency might cause migraine headache. Figure 2 illustrates 
the closed discovery setting on the Swanson’s task of finding the terms linking the 
‘migraine’ and ‘magnesium’ domains. Swanson’s literature mining results have been 
later confirmed by laboratory and clinical investigations. This well-known example 

Fig. 1   Closed discovery process 
defined by Weeber et al. [43]

2  In the ABC model, uppercase letter symbols A, B, and C are used to represent concepts (or sets of 
terms), and lowercase symbols a, b, and c to represent single terms.
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has become the gold standard in the literature mining field and has been used as a 
benchmark in several studies [17, 23, 38, 43].

Inspired by this early work, literature mining approaches were further developed 
and successfully applied to different problems, such as finding associations between 
genes and diseases [16], diseases and chemicals [44], and others. Supporting the 
user in effectively searching for bridging terms (b-terms) provided a motivation 
for developing the CrossBee approach to bridging term detection applicable in the 
closed discovery setting [17], implemented through ensemble-based term ranking, 
where an ensemble heuristic composed of six elementary heuristics was constructed 
for term evaluation.

The work of Kastrin et al. [18] is complementary to other LBD approaches, as it 
uses different similarity measures (such as common neighbors, Jaccard index, and 
preferential attachment) for link prediction of implicit relationships in the Semantic 
MEDLINE network. Holzinger et al. [15] describe several web-based tools for the 
analysis of biomedical literature, which include the analysis of terms (biomedical 
entities such as disease, drugs, genes, proteins, and organs) and provide concepts 
associated with a given term. A comprehensive survey of modern literature-based 
discovery approaches in biomedical domain can be found in [13, 33].

Our past research [31, 36] suggests that bridging terms are more frequent in doc-
uments that are in some sense different from the majority of documents in a given 
domain. For example, Sluban et al. [36] have shown that such documents, consid-
ered being outlier documents of their own domain, contain a substantially larger 
amount of bridging/linking terms than the regular non-outlier documents. This 
approach, using the OntoGen tool [12], is described in some detail in “Past LBD 
results and lessons learned”.

Bisociative Knowledge Discovery

Bisociative knowledge discovery is a challenging task motivated by a trend of over-
specialization in the research and development, which usually results in deep and 
relatively isolated silos of knowledge. Scientific literature too often remains closed 
and cited only in professional subcommunities. The information that is related 
across different contexts is difficult to identify using associative approaches, like 

Fig. 2   Closed discovery when exploring migraine and magnesium documents, with b-terms identified by 
Swanson et al. [41]
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the standard association rule learning [2] known from the data mining and machine 
learning literature. Therefore, the ability of literature mining methods and software 
tools to support the experts in their knowledge discovery processes—especially in 
searching for yet unexplored connections between different domains—is becoming 
increasingly important.

Arthur Koestler [19] argued that the essence of creativity lies in “perceiving of a 
situation or idea . . . in two self-consistent but habitually incompatible frames of ref-
erence”, and introduced the expression bisociation to characterize this creative act. 
More specifically, Koestler’s notion of bisociation was originally defined as follows.

“The pattern ... is the perceiving of a situation or idea, L, in two self-consist-
ent but habitually incompatible frames of reference, M1 and M2 . The event L, 
in which the two intersect, is made to vibrate simultaneously on two differ-
ent wavelengths, as it were. While this unusual situation lasts, L is not merely 
linked to one associative context but bisociated with two.”

Koestler found bisociation to be the basis for human creativity in seemingly diverse 
human endeavors, such as humor, science, and arts. The concept of bisociation is 
illustrated in Fig. 3. It should be noted that context crossing is subjective, since the 
user has to move from his ‘normal’ context (frame of reference) to an habitually 
incompatible context to find the bisociative link. In Koestler’s terms (Fig. 3), a habit-
ual frame of reference (plane M1 ) corresponds to the domain defined by the user. 
Other domains represents different, habitually incompatible contexts (in general, 
there may be several planes M2 ), where the creative act is to find links that lead ‘out-
of-the-plane’ via intermediate, bridging concepts. Thus, contextualization and link 
discovery are two of the fundamental mechanisms in bisociative reasoning.

In summary, according to Koestler [19], bisociative thinking occurs when a prob-
lem, idea, event, or situation is perceived simultaneously in two or more ‘matrices 
of thought’ or domains. When two matrices of thought interact with each other, the 
result is either their fusion in a novel intellectual synthesis or their confrontation in a 
new aesthetic experience. Koestler regarded many different mental phenomena that 
are based on comparison (such as analogies, metaphors, jokes, identification, and 
anthropomorphism) as special cases of bisociation.

More recently, this work was followed by the researchers interested in the so-
called bisociative knowledge discovery, where—according to [3]—two concepts are 

Fig. 3   Koestler’s schema of 
bisociative discovery in science 
[19, p. 107], illustrating the 
creative act of finding links 
(from S to target T) that lead 
‘out-of-the-plane’ via intermedi-
ate, bridging concepts (L)
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bisociated if there is no direct, obvious evidence linking them and if one has to cross 
different domains to find the link, where a new link must provide some novel insight 
into the problem addressed. Bisociative knowledge discovery has become a topic of 
extensive research, addressing the discovery of bridging links or bridging concepts 
crossing between different domains and representations.

In conclusion, let us summarize the previously published [21, 31] relationship 
between bisociative knowledge discovery and Swanson’s ABC model for literature-
based discovery, where the particular focus of interest is the relationship between 
Koestler’s bisociative link discovery framework and Weeber’s closed discovery 
framework, as summarized in Table 1. Similar to a bisociation, which is according 
to Koestler a result of processes of mind when making new associations between 
concepts S and T from usually separated contexts (illustrated in Fig. 3), literature-
based discoveries in Swanson’s ABC model are a result of uncovering links between 
concepts a and c from disjoint literatures A and C (illustrated in Fig. 1). In terms of 
Koestler’s model, the two domains A and C, investigated in the closed literature-
based discovery framework, correspond to the two habitually incompatible frames 
of reference, M1 and M2 . Moreover, the bridging terms b1, b2,… , bn that are com-
mon to literature A and C clearly correspond to Koestler’s notion of a situation or 
idea, L, which is not merely linked to one associative context, but bisociated with 
two contexts M1 and M2.

Embeddings

In terms of representation learning, our past LBD research that led to the lessons 
learned described in “Past LBD results and lessons learned” was based on using 
the standard TF-IDF weighted BoW vector representations of text documents [7, 
17, 31, 36]. On the other hand, the novel LBD methodology proposed in this paper 
in “Towards creative embeddings-based bisociative LBD” exploits contemporary 
representations of text documents using embeddings, given that current research in 
natural language processing demonstrates that representation learning using embed-
dings is much more effective than using the standard TF-IDF BoW vector repre-
sentation. The embedding approach to representation learning can be defined as 
follows. 

Embeddings	� Given input data of a given data type and format, find a tabular 
representation of the data, where each row represents a single data 

Table 1   Unifying Koestler’s and Swanson’s models of creative knowledge discovery [21, 31]

Koestler’s model Swanson’s model

Bisociative link discovery process Closed discovery process
Frames of reference (contexts) M

1
 and M

2
Domains of interest A and C

Bisociative cross-context link L ∈ M
1
∩M

2
Bridging term b ∈ terms(A) ∩ terms (C)
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instance, and each column represents one of the dimensions in the 
d-dimensional numeric vector space ℝd.

The embedding technology is a prominent side effect of the recent revival of neu-
ral networks (NN), in which the information is represented by activation patterns 
in interconnected networks of primitive units (neurons). This enables concepts to 
be gradually learned by an NN from the observed data by modifying the connec-
tion weights between the hierarchically organized units. These weights that can be 
extracted from neural networks can be used as a spatial representation that trans-
forms relations between observed entities (data instances) into distances.

Recently, the embedding approach became a prevalent way to build represen-
tations for many different types of entities, e.g., graphs, electronic health records, 
images, relations, recommendations, as well as texts (documents, sentences and/or 
words). Word embeddings [25, 27], which are in the focus of our research described 
in “Towards creative embeddings-based bisociative LBD”, use large corpora of doc-
uments to extract vector representations of words, assigning each word a vector of 
several hundred dimensions. The first neural word embeddings like word2vec [25] 
produced one vector for each word, irrespective of its polysemy (e.g., for a polyse-
mous word like bank, word2vec produces a single representation vector, and ignores 
the fact that bank can present both a financial institution and a land sloping down to 
a water mass). Recent developments like ELMo [30] and BERT [9] take a context of 
a sentence into account and produce different word vectors for different contexts of 
each word. A further improvement of neural word embeddings for texts uses multi-
task prediction (inclusion of several related textual prediction tasks).

Past LBD Results and Lessons Learned

Outliers, characterized by their properties of being infrequent or unusual, may rep-
resent unexpected events, entities, items, or documents. Early research in LBD has 
focused on the identification and exploration of outlier documents, since they fre-
quently embody new information that is often hard to explain in the context of exist-
ing mainstream knowledge. The LBD research by Petrič et al. [31] and Sluban et al. 
[36] suggests that bridging terms are more frequent in documents that are in some 
sense different from the majority of documents in a given domain.

The outlier-based approach to LBD proposed by Petrič et al. [31] uses document 
clustering to find outlier documents. The approach consists of two steps. In the first 
step, the OntoGen clustering algorithm by Fortuna et al. [12] is applied to cluster the 
merged document set A ∪ C, consisting of documents from two domains A and C. 
The result of unsupervised clustering is two document clusters: A ′ = Classified as 
A (i.e., documents from A ∪ C classified as A), and C ′ = Classified as C (i.e., docu-
ments from A ∪ C classified as C). In the second step of outlier detection, clusters 
A ′ and C ′ are further separated, each into two clusters, based on the documents’ 
original labels A and C. As a result, a two-level tree hierarchy of clusters is gener-
ated, as illustrated in Fig. 4. 
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Lesson Learned 1: Potential 	  
of outlier documents	� The hypothesis that outlier documents have the 

potential to improve the effectiveness of bridging 
term detection was tested on the migraine–magne-
sium [41] and autism–calcineurin [32] domain pair 
datasets, which have lists of concept bridging terms 
(b-terms) confirmed by the medical experts. The 
experimental results obtained using OntoGen con-
firm the hypothesis that most bridging terms appear 
in outlier documents and that by considering only 
outlier documents, the search space for b-term identi-
fication can be largely reduced.

This lesson—that outlier documents have the potential for improving the effec-
tiveness of bridging term detection—was reconfirmed in the work of Sluban et al. 
[36], exploring a classification filtering approach to outlier detection, which was 
tested on the same domain pair data sets, migraine–magnesium [41] and autism–cal-
cineurin [32] domain, which have lists of bridging terms (b-terms) confirmed by 
the medical experts. Sluban et al. [36] proposed to detect outlier documents using 

Fig. 4   Target domain documents from literatures A and C, clustered according to the OntoGen’s two-
step approach, first using unsupervised and then supervised clustering to obtain outlier documents O(A) 
and O(C) of literatures A and C, respectively. The figure illustrates the outlier detection approach imple-
mented using OntoGen, addressing the outlier detection framework that is conceptually explained in 
Fig. 5
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classification algorithms for classification noise filtering, first suggested by Brodley 
and Friedl [5]. Having documents from two domains of interest A and C, Sluban 
et al. [36] first trained an ensemble classifier that distinguishes between the docu-
ments of these domains, and use the ensemble classifier to classify all the docu-
ments. The miss-classified documents were declared as outliers, since—according 
to the classification model—they do not belong to their domain (class label) of ori-
gin. These outliers can be interpreted as borderline documents as they were con-
sidered by the model to be more similar to the other domain than to their original 
domain, and can be regarded as bridging documents between the two domains. In 
other words, if an instance of class A is classified in the opposite class C, it is con-
sidered an outlier of domain A, and vice versa. The two sets of outlier documents 
were denoted with O(A) and O(C), as illustrated in Fig. 5.

The experimental results obtained by Sluban et al. [36] showed that the sets of 
detected outlier documents are relatively small—including less than 5% of the entire 
datasets—and that they contain a great majority of bridging terms previously identi-
fied by medical experts, which was significantly higher than in same-sized random 
document subsets. These results are summarized in Fig. 6.

These experimental results indicate that it is justified that the search for b-terms 
can be focused on outlier documents, which contain a large majority of b-terms. 
Consequently, by focusing the exploration on outlier documents, the effort needed 
for finding cross-domain links is substantially reduced, as it requires to explore a 

Fig. 5   Detecting outliers of 
a domain pair dataset A ∪ C, 
using a document classification 
approach by Sluban et al. [36]

Fig. 6   Presence of b-terms in the detected outlier sets of two domain pair datasets
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much smaller subset of documents, where a great majority of b-terms are present 
and more frequent.

When applying OntoGen on the documents of the new application domain using 
the Alzheimer’s disease–gut microbiome domain pair [7], the OntoGen method uses 
domains A and C, and builds a joint document set A ∪ C . With this intention, two 
individual sets of documents (e.g., titles, abstracts, or full texts of scientific articles), 
one for each domain under research (namely, literature A on Alzheimer’s disease 
and literature C on gut microbiome), were automatically retrieved from the PubMed 
database. A cluster hierarchy was constructed from the dataset of 17,863 papers with 
OntoGen. Two first-level clusters are labeled with the OntoGen suggested keywords 
ad, abeta, cognitive, and microbiota, gut, and intestine. Four second-level subclus-
ters separate documents according to their original search keywords for Alzheimer’s 
disease and gut microbiome, as illustrated in Fig. 7. 

Lesson Learned 2: Excluding 	  
intersecting documents	� In Alzheimer’s disease–gut microbiome LBD appli-

cation, the initial document set A ∪ C consisted of 
some documents, which were in the intersection 
of A and C, meaning that a few documents were 
retrieved from PubMed by both of the two separate 
queries for domain A (i.e., Alzheimer and C (i.e., 
(gut OR intestinal) AND (microbiota OR bacte-
ria)), which was surprising. After carefully inspect-
ing these documents (as these documents could 
contain the b-terms representing a solution to the 
problem, which proved not to be the case), it was 
realized that keeping them in the A ∪ C document 
set was problematic. As a result, the documents that 
were retrieved by both queries were eliminated,3 

Fig. 7   Two-level cluster hierarchy constructed with ontoGen from the dataset of 17,863 papers in the 
Alzheimer’s disease–gut microbiome domain pair

3  Their inclusion in the document set would have violated the assumption of literature-based discovery 
and bisociative knowledge discovery frameworks, which assume that the explored literature domains A 
and C are disjoint; if this assumption was violated, the methodology would fail due to biased heuristics 
calculations.
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resulting in 17,863 documents kept in the A ∪ C 
document set used for further exploration.

Lesson Learned 3: Selecting 	  
only outlier documents	� The hypothesis that the search for bridging terms 

can be reduced to manageable subsets of docu-
ments was confirmed in our experiments. In the 
Alzheimer’s disease–gut microbiome LBD applica-
tion using OntoGen for outlier document detection, 
the space of documents used for b-term exploration 
was further reduced from the set of 17,863 docu-
ments to two subsets of outlier documents, i.e., to 
only 154 gut microbiome papers and 428 Alzhei-
mer’s disease related papers, considered as outli-
ers in their own domain, leading to the selection of 
only 582 documents for further inspection.

Lesson Learned 4: Expert 	  
revision of b-terms list	� The hypothesis that b-terms selected from out-

lier documents can be further reduced with expert 
knowledge was confirmed in our experiments. By 
processing the remaining 582 outlier documents, 
we used CrossBee [17] to extract 4723 terms as 
potential b-terms connecting the two domains. In 
b-term exploration, all the terms were considered 
and not just the medical ones, except that a list of 
523 English stop words was used to filter out mean-
ingless words, and English Porter stemming was 
applied. Even though the list of potential bridging 
terms was ordered according to the ensemble-heu-
ristics estimated bridging terms potential, browsing 
and analyzing the terms from the list still presented 
a substantial burden for the domain expert. To fur-
ther reduce the size of the potential b-term list, the 
collaborating domain expert4 prepared a list of 289 
domain terms of her own research interest. This list 
included common terms and specific molecular fac-
tors and pathways, which were manually identified 
in titles, abstracts, and keywords from 42 papers 
obtained from PubMed search query (gut AND 
Alzheimer), 55 of which appeared also among the 
4723 terms extracted by CrossBee. During the eval-
uation phase, the relevant papers for each b-term 
candidate were reviewed and searched for poten-
tial clues justifying further investigation, resulting 

4  Elsa Fabretti.
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from relevant b-term discoveries confirmed by the 
domain expert [7].

	� Compared to outlier document detection using OntoGen, an upgraded 
methodology proposed by Cestnik et al. [7] was implemented in a reus-
able outlier-based LBD methodology in a web-based text-mining platform 
TextFlows5 [29] that allowed us to construct and execute advanced text-
mining workflows. The workflow shown in Fig. 8 consists of seven steps 
implemented as subprocesses. The connections between subprocesses 
represent the flow of documents from one subprocess to another. In over-
view, steps 1–3 represent the outlier detection part, and steps 4–7 repre-
sent cross-domain exploration for b-term detection.

Lesson Learned 5: TextFlows 	  
workflow helping experts	� In the experiments using the TextFlows work-

flow, the NoiseRank ensemble-based outlier 
detection approach [35] implemented in Text-
Flows was used. The goal of the first three steps 
(using first three workflow widgets) of the meth-
odology is to effectively extract a set of outlier 
documents from the whole corpus of input docu-
ments. Consequently, by decreasing the size of 
the input set of documents, the second phase 
becomes more focused, efficient, and effective. In 
the last four steps of the workflow in Fig. 8, com-
ponents that constitute the CrossBee HCI inter-
face [17] are executed to conduct expert-guided 
b-term analysis. Here, the goal is to further pre-
pare the input documents for b-term visualization 
and exploration. Note that in this step, the role of 
the domain expert is crucial.

Towards Creative Embeddings‑Based Bisociative LBD

In this section, we first formally define bisociation and the specific bisociative pat-
terns that are searched for bisociative knowledge discovery (i.e., bridging concepts, 
bridging graphs, and bridging by structural similarity), including the novel concept 
of bridging by relational bisociation in “Formal framework for creative bisociative 
LBD”. The potential of the embeddings technology for creative knowledge discov-
ery is explained in “Word embeddings potential for creative knowledge discovery”. 
“Novel embeddings-based bisociative LBD methodology” presents the proposed 
word embeddings-based bisociative LBD methodology, and explores the creativity 

5  http://textflows.org.

ICT-29-2018 D2.6: Final keyword extraction

101 of 148



786	 New Generation Computing (2020) 38:773–800

123

potential of word embeddings in an LBD closed discovery setting, assuming an 
expert-defined relationship of interest between two terms a1 and a2 in domain A 
and an unknown relationship to be discovered for a given seed concept c and an 
unknown/yet to be discovered term x in domain C. “Embeddings-based relational 
LBD experiment conducted on thecircadian rhythm and plant defense domains” 
briefly outlines the experimental setting of the experiments conducted on the cir-
cadian rhythm–plant defense domain pair, where a proof-of-concept result evalua-
tion is given in “Results”. This section concludes by a summary and lessons learned 
from these experiments in “Summary and lesson learned from these experiments”.

Formal Framework for Creative Bisociative LBD

Bisociation is essentially a creative endeavor. To connect pieces of information from 
previously unrelated domains, a person must activate some form of creative mecha-
nism. This creative aspect is what allows one to go beyond one-dimensional asso-
ciations. This has been recognized in several psycho-cognitive theories related to 
creativity, which share the principle that a strong connection exists between creative 
activity and the ability to establish relations between seemingly unrelated domains.

Divergent reasoning can be achieved—to a certain degree—by means of cross-
domain exploration in multi-domain databases. Such a model must provide mecha-
nisms for mapping concepts and transferring meanings. According to Koestler [19], 
in addition to metaphor, the well-known examples of mechanisms that can be used 
in cross-domain knowledge transfer are analogy and bisociation. Before addressing 
bisociative computational creativity, we continue with the presentation of a formal 
definition of bisociation, as formulated by Dubitzky [11].

Definition 1  (Domain theory) A domain theory Di defines a set of concepts (knowl-
edge units) that are associated with a particular domain i.

Definition 2  (Knowledge base) A knowledge base Ki is defined as a subset of a 
domain theory Di ; that is, Ki ⊆ Di.

Fig. 8   A top-level workflow of the LBD methodology in TextFlows [29]
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Di denotes a domain theory which represents the total knowledge within 
a domain. The union of all domains then represents the universe of discourse: 
∪iDi = U . Many domain theories overlap: ∃i, j ∶ Di ∩ Dj ≠ � . Let U denote the 
universe of discourse, which consists of all concepts. Let c ∈ U denote a concept 
in U. Within U, a problem, idea, situation, or event � is associated with concepts 
X ⊂ U . Typically, a subset P ⊂ X is used to reason about �.

Let R denote a reference system or intelligent agent which possesses exactly 
one knowledge base (empty or non-empty) per domain theory Di . KR

i
∈ Di 

denotes the knowledge base with respect to R and Di.
KR = ∪iK

R
i
 denotes the entire set of K incorporated in the reference system of 

R. KR represents the total knowledge that R has in all the domains. For example, R 
may have non-empty knowledge bases for chess, but an empty one for geometry.

Definition 3  (Association) Let � denote a concrete problem, situation of event and 
let X ⊂ U denote the concepts associated with � . Furthermore, let KR

i
 denote an 

agent-specific knowledge base. Association occurs when elements of X are active or 
perceived in KR

i
 at time t only.

For example, at time t, the concepts A = {c1, c2, c3} may be active in KR
i
 only. 

In this case, we say that the concepts in A are associated.

Definition 4  (Habitually incompatible knowledge bases) Two agent-specific knowl-
edge bases KR

i
 and KR

j
 ( i ≠ j ) are habitually incompatible if, at a given point in time 

t, there is no concept c ∶ c ∈ KR
i
∧ c ∈ KR

j
 that is active or perceived simultaneously 

in KR
i
 and KR

j
.

Definition 5  (Bisociation) Let � denote a concrete problem, situation or event, and 
let X ⊂ U denote the concepts associated with � . Furthermore, let KR

i
 and KR

j
 be 

such that i ≠ j . Bisociation occurs when elements of X are active or perceived simul-
taneously in both KR

i
 and KR

j
 at a given point in time i.

For example, at time t, the concepts B = {c1, c2, c3} may be active or perceived 
simultaneously in KR

i
 and KR

j
 . In this case, the concepts in B are bisociated.

Bisociation cannot be equated with creativity in general. It is instead a spe-
cial case of combinatorial creativity, which refers to novel combinations of famil-
iar ideas: the creative aspect here is in the discovery of previously non-existing 
connections between domains, especially if each of the domains, or the elements 
repurposed from each, are very familiar. As put by Koestler [19],  “the more 
familiar the parts, the more striking the new whole”. This is so because creation 
is never really a de novo nor random activity; it requires meaningful combination 
of elements.

Starting from Kostler’s [19] concept of bisociation, concrete bisociative patterns 
that are searched for in bisociative knowledge discovery include: bridging concepts, 
bridging graphs, and bridging by structural similarity [20]: 
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Bridging concepts	� This is the most natural type of bisociation: a 
concept connecting two domains. In practice, 
different literatures from different domains are 
explored, and some terms connecting the two 
are found. This is the kind of pattern originally 
explored by Swanson. These connecting terms 
allow us to corroborate hypotheses linking the 
two domains. Bridging concept in the intersec-
tion of two domains A and C is illustrated in 
Fig. 9.

Bridging graphs	� More complex bisociations are modeled by 
bridging graphs, in a network representation. 
This is similar to bridging concepts, but in this 
case, what connects two different domains is a 
subset of related concepts.

Bridging by structural similarity	� This is the most complex kind of bisociation, 
whereby, again in a network representation, sub-
sets of concepts in each domain share structural 
similarities, illustrated in Fig. 10.

Bisociations based on structural similarity are represented by relations and/
or subgraphs of two different, structurally similar domains [20], as illustrated in 
Fig. 10. This type of bisociation is according to [20] the most abstract pattern with 
the potential for new cross-domain discoveries, which, e.g., vertex similarity meth-
ods can identify.

A special case of bridging by structural similarity is the concept of bridging by 
relational bisociation, as illustrated in Fig.  11, which will be explained and used 
in the novel methodology proposed in “Novel embeddings-based bisociative LBD 
methodology”.

Word Embedding Potential for Creative Knowledge Discovery

Note that in this research, we neither use the TF-IDF representation of documents 
nor do we use document embeddings; instead, we focus on word embeddings. Word 
embeddings are vector representations of words: each word is assigned a vector of 
several hundred dimensions. These are usually obtained via training algorithms such 
as word2vec [25], GloVe [28], or FastText [4], which characterize the word based on 
the lexical context in which it appears. These representations improve performance 
in a wide range of automated text processing tasks, partly because they capture a 
degree of semantics. They can also capture regularities beyond simple relatedness, 
such as analogies [27]. A well-known example, illustrating this notion, is that word 
embeddings may explicitly find relations between words, as well as discover analo-
gies between word pairs, such as that, e.g., the relation between Madrid and Spain 
is very similar to that between Paris and France in the embedded vector space (see 
Fig. 12).
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Note that the analogies can be discovered within a single domain, as illustrated 
in Fig. 12. On the other hand, research in cross-lingual embeddings [8] has dem-
onstrated the ability of aligning embeddings spaces across languages, which can be 
used as a basis for finding analogies across corpora in different languages [42], as 
investigated in the current EMBEDDIA EU project.6

In this paper, we propose a novel methodology, based on the idea of translating 
the cross-lingual setting to a cross-domain setting: instead of considering two differ-
ent languages, we consider two separated domains A and C, use contemporary align-
ment methods [8] to align related concepts in the two domains, and finally perform 
analogy detection across the two domains [42]. In this way, we find bisociations by 
implementing the idea of bridging by relational bisociation.

Novel Embedding‑Based Bisociative LBD Methodology

Most important for this paper is the property of word embeddings that they can cap-
ture regularities beyond simple relatedness, such as analogies [27], illustrated in 
Fig. 12. In the particular closed literature-based discovery setting of interest to this 
research, we implement the concept of bridging by relational bisociation. 

Bridging by relational bisociation	� We propose a particular setting of bridging by 
relational bisociation, illustrated in Fig.  11, 
where we are interested whether given a spe-
cific relation between two concepts a1 and a2 

Fig. 9   Bridging concept in the 
intersection of two literature 
domains A and C 

Fig. 10   Bridging by structural similarity of graphs [20]

6  www.embeddia.eu, see details in Acknowledgements.
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in first domain A, one can bisociatively discover 
an analogous relation between concepts x and 
c in second domain C, where c is a given con-
cept and x is a new concept that we are trying 
to find. More formally, this can be written in the 
form of an analogy (i.e., bisociation) between 
two separate domains A and C as follows: 

 In the embeddings space, this analogy translates to the following equation between 
embeddings:

Finally, once x is calculated, we need to find a set of concepts from the second 
domain C that have an embeddings representation most similar to x according to 
some predefined distance measure (e.g., the cosine similarity). 

Methodology of bridging by�  
relational bisociation	� Proposed embedding-based bisociative LBD 

methodology for creative discovery of bisociated 
relationships between two domains A and C con-
sists of the following steps:

1.	� Select two domains A and C, i.e., two document corpora such as circadian 
rhythm and plant defense, respectively.

2.	� Train separate word embeddings models for A and C to get emb(A) and 
emb(C).

3.	 Perform alignment of emb(A) and emb(C) embeddings vector spaces.
4.	� Determine the relationships of interest in a given domain A between concepts 

a1 and a2 defined by the biology expert.
5.	� Perform the embeddings-based relational LBD with a known seed concept c in 

C by leveraging the ability of the embeddings representations to model anal-
ogy relations.

6.	 Evaluate a list of best-ranked relational bisociations.

�� ��� ��== � ��� �.

�= ���(��) + ���(��) − ���(�).

Fig. 11   Bridging by relational bisociation, the concept newly introduced in this paper
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Embeddings‑Based Relational LBD Experiment Conducted on the Circadian 
Rhythm and Plant Defense Domains

In this section, we report in detail on the experiments conducted on the circadian 
rhythm and plant defense domains. Our main goal was to identify potentially inter-
esting new daily regulated mechanisms that are responsible for plant defence. Cir-
cadian rhythm in plants causes that some of their genes are expressed differently 
during the course of the day. Consequently, plants respond differently to disease-
causing infection if they are infected at different times of the day (e.g., morning, 
noon, and evening). Therefore, one of the goals of our study was to identify new 
gene sets that are differently expressed in different parts of the day and are important 
for the defense of plants against the pathogen.

After obtaining 10,494 documents from PubMed containing article titles and 
abstracts (4346 from plant defence and 6148 from circadian rhythm), we replaced 
gene names with synonyms gathered in previous research projects (22,265 gene 
names mapped into 7863 synonyms). In addition, we pre-processed the docu-
ments to keep only gene-related terms (included in synonym list and from the 
gene dictionary containing additional 6083 gene names), which resulted in a sub-
stantial reduction of the input document corpus, which we called the genesOnly 
dataset. The experiments that were conducted following the methodology pro-
posed in “Novel embeddings-based bisociative LBD methodology” served as a 
proof of concept to show that the new proposed embeddings-based methodology 
can be used for LBD.

Fig. 12   Two-dimensional projection of embeddings illustrating capital–country relations. Picture taken 
from Mikolov [26]
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On each of the two selected domains, circadian rhythm and plant defense, we 
trained a separate FastText embedding model [4]. FastText embeddings were chosen 
due to their ability to leverage both semantic and morphological information by rep-
resenting each word as an average of its character n grams. This is useful in a setting 
with a relatively small domain corpora containing less semantic information, since 
morphological similarity in many cases translates to semantic relatedness. We used 
a skip-gram model with an embedding dimension of 100.

The resulting embedding models trained for each domain were in the next step 
aligned into a common vector space. We opted for a supervised alignment approach, 
which relies on a training dictionary of identical words from both domains that are 
used as anchor points to learn a mapping from the source to the target space with 
a Procrustes alignment [8]. Train and test dictionaries were constructed by tak-
ing 5000 most frequent words from both domains (i.e., words that appear in both 
domain and have the largest sum of frequencies) and then split randomly into a train 
dictionary containing two-thirds of the words (3333) and a test dictionary contain-
ing one-third of the words (1667).

The success of the alignment was measured on the test dictionary in terms of 
precison@k, where precison@1 represents a share of model’s correct alignments 
(exact matches) in a set of all alignments, and precison@5 represents a share of 
model’s alignments in a set of all alignments, where the correct match for the word 
is found in the set of 5 most probable alignments predicted by the model. In the con-
ducted experiment, we report the precison@1 of 0.4 and precison@5 of 0.55.

Next, we asked a biology expert to identify a list of genes related to the circadian 
rhythm domain. The following list was produced: 

	 1.	 CCA1 = CIRCADIAN CLOCK ASSOCIATED1
	 2.	 LHY = LATE ELONGATED HYPOCOTYL
	 3.	 TOC1 = TIMING OF CAB EXPRESSION 1
	 4.	 PRR1 = PSEUDO-RESPONSE REGULATOR 1
	 5.	 GI = GIGANTEA
	 6.	 LNK1 = NIGHT LIGHT-INDUCIBLE AND CLOCK-REGULATED 1
	 7.	 PRR5 = PSEUDO-RESPONSE REGULATOR 5
	 8.	 ELF4 = EARLY FLOWERING 4
	 9.	 PRR9 = PSEUDO-RESPONSE REGULATOR 9
	10.	 PRR7 = PSEUDO-RESPONSE REGULATOR 7
	11.	 PCL1 = PHYTOCLOCK 1
	12.	 ELF3 = EARLY FLOWERING 3

In addition, we also took more general key concepts from the circadian rhythm 
domain: 

	13.	 NEGATIVE FEEDBACK LOOP
	14.	 OSCILLATOR
	15.	 CLOCK.
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According to the methodology explained in “Novel embeddings-based bisociative 
LBD methodology”, we tried to identify a list of genes related to the concept of 
plant defense in the similar way the genes from the above list are related to the con-
cept of circadian rhythm. First, we calculated embedding x according to the follow-
ing equation:

where a1 is a concept circadian rhythm, a2 is a gene from the above list, and c is a 
concept plant defense.

Finally, once x was calculated for each of the genes from the above list, we 
searched for a set of concepts from the plant defense domain that have an embed-
dings representation most similar to x according to the cosine similarity. To limit 
the results only to genes or gene-related concepts, the concepts from the second 
domain were considered only if they appeared in the reduced genesOnly dataset. 
Ten genes or gene-related concepts with the representation most similar to each of 
the calculated xs were identified and given to the biology expert for the evaluation.

Results

The biology domain expert evaluated the selected set of output terms for all given 
analogy inputs. More specifically, for the analogies—a2 is as important to a1 (cir-
cadian rhythm) as x is to c (plant defense)—for each input relation, the resulting list 
of 10 candidates most similar to x (according to the cosine similarity between the 
candidate’s embedding and x) were evaluated by the expert, who was given instruc-
tions to manually classify the relatedness between a candidate and the plant defense 
domain into the following four categories: NO, NOT AT ALL; NOT REALLY; 
MAYBE; YES. While YES is the category serving as a proof that the methodology 
works, MAYBE is the category containing very interesting terms from the knowl-
edge discovery point of view, as, here, the experts might potentially search for novel 
knowledge.

First, we calculated the average precision at 10 (p@10) for each output list of 10 
candidates, as well as a microaveraged precision for the entire dataset (see Table 2). 
We can observe that the method performed very well. In 40% of the cases, the 
expert found in the scientific literature that the discovered relation between the plant 
defense concept and the proposed term x is meaningful. We can see that precision 
varies for different input relations, but the method was able to find at least one cor-
rect relation in the plant defense domain for each circadian rhythm input relation. 
For input relations between the concept circadian rhythm and genes ELF4, PRR9 
and PRR7, six out of ten term candidates in the resulting candidate lists are related 
to the plant defense domain. On the other hand, the lowest results are for the input 
concept negative feedback loop, where only for one out of ten output terms, the 
expert found that the output term was relevant for the domain. A reason for this 
could be that the input term is one of the few terms, which is not a gene but rather 
a gene-related concept (text), and that it is a multi-word expression, for which the 
average embedding was first calculated (by averaging embeddings for each word in 

� = ���(��) + ���(��) − ���(�),
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the term) to obtain the term embedding, and, therefore, the results might be less 
precise.7

For the category MAYBE, which is the most interesting category for the new 
knowledge discovery and for which the outputs might possibly be investigated in 
detail in the future research by the domain experts, we can note that for all input rela-
tions but one, at least one out of 10 outputs was considered potentially interesting. 
In a knowledge discovery setting, where each discovery if resulting in new domain 
knowledge would have big impact, this was considered as a promising result.

As explained above, the biology expert evaluated 10 candidates for each input 
relation. These relations were ranked according to the cosine similarity between 
x and the candidate, with rank 1 representing the candidate closest to x, i.e., with 
the largest cosine similarity to x. Table  3 presents results for candidates with 
different ranks. Note that here we measured precision at 15, i.e., how many out 
of 15 predicted terms with a specific rank had been evaluated as related to the 
plant defense domain (P@15 yes) or as maybe being related to the plant defense 
domain (P@15 maybe). Interestingly, the correlation between precision at 15 and 
rank was not strong and better ranked candidates were not necessarily more cor-
related to the plant defense domain according to the evaluation. For example, the 
best evaluated candidates had rank 5, where P@15 yes was 0.6 and P@15 maybe 
was 0.133.

Next, we removed duplicate outputs, merged all the output terms from all the 
inputs, and calculated the class distribution for this list (see Table 4). The ration-
ale for this procedure is that since, in our case, the a1 and c were always the same 
(equivalent to domain names circadian rhythm and plant defence) and as the differ-
ent a2 all modeled the same relation—a2 is as important to a1 (circadian rhythm) as 
x is important to c (plant defense)—we could treat also all results as a common list 
of relevant terms (genes). As the results indicate, about 37% of output terms were 
evaluated as relevant to the plant defense domain. Also, together with the category 
MAYBE, which indicates that the output is potentially relevant (but requires further 
research), this percentage of relevant terms increased to nearly 55%.

From 40 examples in the categories YES and MAYBE, 32 were gene names and 
3 were proteins, while the rest referred to a disease or partial names of proteins, 
genes, etc. Below, we list ten terms and their full names that were classified in cat-
egory YES and appeared in results of at least 3 input terms: 

	 1.	 DMR1 = DOWNY MILDEW RESISTANT 1
	 2.	 CPR30 = CONSTITUTIVE EXPRESSER OF PR GENES 1
	 3.	 EIF4G = EUKARYOTIC TRANSLATION INITIATION FACTOR 4 G
	 4.	 SLAC1 = SLOW ANION CHANNEL-ASSOCIATED 1

7  There are several possible multi-word expression aggregation approaches, such as summation of com-
ponent word vectors, averaging of component word vectors, creating multi-word term vectors, etc. As 
comparing different techniques is beyond the scope of this study, we decided for the simple averaging 
technique, as the previous research on this topic conducted on the medical domain [14] found no statisti-
cally significant difference between any multi-word expression aggregation method.
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	 5.	 RFC3 = REPLICATION FACTOR C SUBUNIT 3
	 6.	 RTM1 = RESTRICTED TEV MOVEMENT 1
	 7.	 SNI1 = SUPPRESSOR OF NPR1-1
	 8.	 GRF6 = GROWTH-REGULATING FACTOR 6
	 9.	 NAC083 = NAC DOMAIN CONTAINING PROTEIN 83
	10.	 XAP5 = XAP5 CIRCADIAN TIMEKEEPER

Summary and Lesson Learned from These Experiments

Given the proof-of-concept evaluation of these results, the proposed methodol-
ogy demonstrates its relevance for knowledge discovery research. One of the most 
interesting findings observed from the conducted experiments was the presence 
of some resistance and susceptibility genes among the candidates proposed by the 
method; these genes are known to play an important role in the plant defense pro-
cess. Moreover, the best ranked candidate obtained for the c term inputs CCA1 and 
LHY (two central genes of the circadian clock rhythm) was DMR1 (a susceptibility 
gene, mutation of this gene results in a higher resistance), that is a hot topic of a 
plant resistance research lately. In future work, the genes identified in results will be 
closely inspected by domain experts. In conclusion, let us summarize this section by 
the lesson learned from these experiments. 

Lesson Learned 6: Term 	  
filtering and synonyms matter	� In the experiments using plant defence-circadian 

Table 2   Evaluation for 15 input relations

Source gene/term No, not at all Not really Maybe Yes P@10 Maybe P@10 Yes

CCA1 1 3 1 5 0.1 0.5
LHY 0 5 1 4 0.1 0.4
TOC1 0 1 3 6 0.3 0.6
PRR1 0 5 2 3 0.2 0.3
GI 1 5 2 2 0.2 0.2
LNK1 1 4 1 4 0.1 0.4
PRR5 0 3 3 4 0.3 0.4
ELF4 0 2 2 6 0.2 0.6
PRR9 0 4 0 6 0.0 0.6
PRR7 0 3 1 6 0.1 0.6
PCL1 2 6 0 2 0.0 0.2
ELF3 1 4 2 3 0.2 0.3
NEGATIVE FEED-

BACK LOOP
7 0 2 1 0.2 0.1

OSCILLATOR 4 2 1 3 0.1 0.3
CLOCK 1 1 3 5 0.3 0.5
All 18 48 24 60 0.16 0.4
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rhythm domain pair, the goal was to identify 
potentially interesting new daily regulated 
mechanisms that are responsible for plant 
defence. After obtaining 5412 documents from 
PubMed containing complete articles (2483 
from plant defence and 2929 from circadian 
rhythm), 0.5% documents shorter than 20 char-
acters (mostly empty contents) and longer than 
97,500 characters (containing many different 
articles in proceedings) were removed. Then, 12 
duplicates that were present in both domains (as 
in Lesson Learned 2) were eliminated. The cru-
cial, although simple and straightforward, step 
in this experiment was the replacement of gene 
names with synonyms gathered in the previous 
research projects (22,265 gene names mapped 
into 7863 synonyms). In addition, the docu-
ments were optionally pre-processed to keep 
only gene-related terms (included in synonym 
list and from the gene dictionary containing 

Table 3   Evaluation according to rank

Rank No, not at all Not really Maybe Yes P@15 Maybe P@15 Yes

1. 2 4 1 8 0.067 0.533
2. 2 6 1 6 0.067 0.400
3. 1 7 1 6 0.067 0.400
4. 3 7 2 3 0.133 0.200
5. 1 3 2 9 0.133 0.600
6. 4 1 3 7 0.200 0.467
7. 1 4 4 6 0.267 0.400
8. 2 3 5 5 0.333 0.333
9. 1 6 3 5 0.200 0.333
10. 1 7 2 5 0.133 0.333
All 18 48 24 60 0.160 0.400

Table 4   Evaluation on all output 
terms (duplicates removed)

Label Count Perc. (%)

NO, NOT AT ALL 14 19.18
NOT REALLY 19 26.03
MAYBE 13 17.81
YES 27 36.99
Total 73 100
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additional 6083 gene names), which resulted 
in a substantial reduction of the input file size 
(from 200 to 28 MB).

Conclusions and Further Work

This paper addresses the field of scientific computational creativity, in particular 
bisociative literature-based discovery. The paper mostly focused on finding out-
lier documents as means for finding unexpected links crossing different contexts. 
Selected approaches to bridging term detection through outlier document explora-
tion are briefly outlined, together with the lessons learned from recent applications 
in medical and biological literature-based knowledge discovery. Finally, the paper 
addresses new prospects in bisociative literature-based discovery, proposing a novel 
methodology exploiting the use of advanced embedding technology for bisociative 
cross-domain literature mining.

Our future work, aimed at improving the effectiveness of bridging term detection 
in cross-domain literature mining, will be performed in several directions, based on 
our current research: using ontologies for term enrichment in cross-domain docu-
ment exploration, and using network analysis for cross-domain heterogeneous infor-
mation network exploration.

–	 The use of background knowledge remains largely unexploited in text classi-
fication and clustering. Word taxonomies can easily be exploited as means for 
constructing new semantic features, which can be used in the text representa-
tion learning to improve the performance and robustness of the learned models. 
Consequently, our novel tax2vec algorithm [34] could be used for constructing 
taxonomy-based features to improve the results of document clustering and clas-
sification.

–	 Given that documents can be easily transformed into graphs (e.g., graphs con-
structed from subject–verb–object triplets), network analysis approaches can 
prove to be fruitful for bridging term detection (e.g., community detection and 
finding bridging nodes in graphs between subgraphs representing the detected 
communities).

–	 We will also introduce additional user-interface options for data visualization and 
exploration, as well as advance our bridging term ranking methodology [17] by 
adding new heuristics, which will take into account also the semantic aspects of 
the data.

–	 Most importantly, we will further explore embeddings-based LBD in the closed 
LBD settings, aiming to improve and further explore the methodology proposed 
in “Towards creative embeddings-based bisociative LBD”. Especially, we plan to 
focus on bisociative discovery without known concept c, as well as on enabling 
multi-word expressions as output.

–	 We will experiment with new application topics. It will be especially insight-
ful to address problems in need of discovering novel bisociations between two 
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different domains. Also, it could be useful to investigate two entirely unrelated 
domains to provide a baseline.
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Abstract. The abundance of literature related to the widespread COVID-
19 pandemic is beyond manual inspection of a single expert. Develop-
ment of systems, capable of automatically processing tens of thousands of
scientific publications with the aim to enrich existing empirical evidence
with literature-based associations is challenging and relevant. We propose
a system for contextualization of empirical expression data by approxi-
mating relations between entities, for which representations were learned
from one of the largest COVID-19-related literature corpora. In order to
exploit a larger scientific context by transfer learning, we propose a novel
embedding generation technique that leverages SciBERT language model
pretrained on a large multi-domain corpus of scientific publications and
fine-tuned for domain adaptation on the CORD-19 dataset. The con-
ducted manual evaluation by the medical expert and the quantitative
evaluation based on therapy targets identified in the related work suggest
that the proposed method can be successfully employed for COVID-19
therapy target discovery and that it outperforms the baseline FastText
method by a large margin.

Keywords: Knowledge discovery · Literature mining · Representation
learning · Contextual embeddings · COVID-19.

1 Introduction

Scientific knowledge for a specific domain is in most cases given in an unstruc-
tured form, as a set of scientific papers covering a variety of findings, experiments
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and methodologies related to a specific scientific field or problem. The current
speed and quantity of scientific research production makes manual inspection of
the literature from a specific field virtually impossible. The recent trend of inter-
disciplinary research complicates things even more, as it would require from a
researcher to understand all the aspects, from which a specific research problem
can be covered in order to “connect all the dots” and advance the field by the
discovery of the so-called latent scientific knowledge.

To solve this problem, several automated strategies for uncovering this knowl-
edge have been proposed. Somewhat older studies proposed literature-based dis-
covery (LBD) [8] focusing especially on cross-domain literature mining, which
aims at finding interesting bridging terms (b-terms) or bridging links revealing
the potentially new connections between separate domain corpora of interest.
On the other hand, more recent approaches to latent knowledge discovery from
the scientific literature employ word embeddings [26]. For example, a study by
[34] showed that latent knowledge regarding future discoveries is to a large ex-
tent embedded in past publications by retrieving information from the scientific
literature with the usage of Word2Vec embeddings [26].

The latest development in the natural language processing (NLP) is a new
type of embeddings called contextual embeddings. ELMo (Embeddings from
Language Models) [29] and BERT (Bidirectional Encoder Representations from
Transformers) [12] are the most prominent representatives of this type of con-
textual embeddings, and have been also adapted to scientific literature [3]. The
main difference between these novel contextual embeddings and older “static”
embeddings is that in these embeddings a different vector is generated for each
context a word appears in, i.e., for each specific word usage in the corpus. These
new contextual embeddings solve the problems with word polysemy and other
changes in word meaning given different context. On the other hand, it is not
entirely clear how to generate a meaningful general word representation from the
word usage embeddings. This means that the usage of contextual embeddings
for LBD is not entirely straight forward, since they can not be used in the same
way as the traditional static embeddings, and have at least to our knowledge
not been used for the task at hand.

In this work, we explore how contextual embeddings can be leveraged for
the task of discovering latent scientific knowledge in the very topical scientific
literature about the COVID-19 disease. More specifically, we are interested in
the discovery of new COVID-19 therapy targets from the targets discovered in
the past research. The novelty of this work is two-fold:

– The paper contributes a new methodology of generating general word rep-
resentations from contextual embeddings, proposes an entire workflow for
acquisition of novel COVID-19 therapy targets and shows that our method
of using contextual embeddings for LBD outperforms the baseline method
of using static embeddings by a large margin.

– Medically, the paper contributes to identifying new potential COVID-19
therapy targets, motivated by a recent proof-of-concept study that used a
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state-of-the-art omics approach to identify new possible targets for existing
drugs, such as ribavirin [5].

2 COVID-19 medical background and recent therapy
targets

In late 2019 a novel coronavirus disease (COVID-19), caused by severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), emerged in China [38,39].
COVID-19 quickly spread and was declared a pandemic by the World Health
Organization.

While new targeted therapies and vaccines against SARS-CoV-2 virus are
being actively developed, their potential use in the clinics is not imminent.
Therefore, until effective pharmacological therapies and/or vaccines are avail-
able, medicine needs to resort to other approaches to treat patients with COVID-
19 or prevent transmission of SARS-CoV-2. One approach is to identify which
among the antiviral drugs that were developed to treat other viral diseases might
be effective against SARS-CoV-2. A preliminary report suggests that remdesivir
seems to be the most promising candidate among these drugs [2]. Another ap-
proach is to identify drugs that are used for other purposes but also exert an-
tiviral effects. The most prominent example among these is hydroxychloroquine,
which is used for chronic treatment of rheumatic diseases but also suppresses
SARS-CoV-2 in vitro [22]. Identifying a known drug with well-characterized
adverse effects would certainly save time and lives before more specific treat-
ments are developed. However, repurposing of existing drugs is also a challenge
as highlighted by a recent controversy with hydroxychloroquine [7,25] and new
candidate drugs and/or therapeutic targets are needed.

3 Related work

The related work is divided into three Sections, namely related work on Literature-
based discovery in Section 3.1, related work on text representation learning in
Section 3.2 and selected overview of recent NLP research on COVID-19 in Sec-
tion 3.3.

3.1 Literature-based discovery

Literature-based discovery (LBD) aims to generate new knowledge by combining
what is already known in the literature. It has been used to (semi-automatically)
identify new connections between genes, drugs and diseases, etc. [18]. Tradition-
ally, LBD has been addressed as finding interesting bridging terms revealing the
potentially new connections between separate domain corpora of interest [8].
Swanson [33] developed one of the early LBD approaches, the so-called ABC
model, to detecting interesting b-terms to uncover the possible cross-domain
relations among previously unrelated concepts.
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On the other hand, a more recent state-of-the art tool LION LBD [31] enables
researchers to navigate published information and supports hypothesis genera-
tion and testing. The system is built with a particular focus on the molecular
biology of cancer. LBD has led to discovery of potential treatments in other
domains, including multiple sclerosis [19], and has been applied successfully in
drug development and repurpusing [11]. Recent LBD approaches benefit from
word embeddings. One is the study by [34] already mentioned in Section 1 and
the other is the work by [9], who proposed graph-based, neural network methods
to perform open and closed LBD and demonstrated improved performance on
existing tasks.

3.2 Text representation and embeddings

Recently, the embedding approach became a prevalent way to build represen-
tations for many different types of entities, e.g., texts, graphs, electronic health
records, images, relations, recommendations, etc. Text embeddings use large cor-
pora of documents to extract vector representations for words, sentences, and
documents. The first neural word embeddings like Word2vec [26] produced one
vector for each word, irrespective of its polysemy. These so-called static em-
beddings have been further developed and the most popular static embeddings
currently in use besides Word2Vec are GloVe (Global vectors for word represen-
tation) [28] and FastText [4]. Recent developments like ELMo [29] and BERT
[12] take a context of a sentence into account and produce different word vectors
for different contexts of each word. Another novelty of these approaches is the
employment of the transfer learning technique, which has recently become a well
established procedure in the field of NLP. This procedure relies on a language
model pretraining on very large unlabeled textual resources and after that trans-
fer of the knowledge obtained by the language model onto a specific downstream
task by further fine-tuning the model.

3.3 Text mining and NLP research related to COVID-19

With regard to biomedical research on COVID-19, time is a central factor as
scientists try to design treatments and vaccines amid the pandemic caused by
the SARS-CoV-2 virus, therefore leveraging LBD and its potential to reduce
scientific discovery time could prove crucial.

Many search platforms emerged for retrieving COVID-19 related papers.
For example, Neural Covidex6 is based on neural ranking architecture and pro-
vides information access capabilities to the COVID-19 Open Research Dataset
(CORD-19) (see Section 4.1). SciSight [17] in contrast to standard targeted
search facilitates finding connections between biomedical concepts that are not
obvious from reading individual papers. It displays a network of top related
terms mined from the corpus, based on the co-appearance in the same sentence.

6 https://covidex.ai/
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Studies that can generate new knowledge about COVID-19 by applying em-
beddings are still scarce but do exist. For example, a recent study has projected
Covid-related medical texts in a 3D human atlas space that helps to navigate
the literature [14]. The objective was to learn semantically aware groundings of
sentences with five different BERT models [12].

4 Background knowledge and resources

We describe the CORD-19 corpus (Section 4.1) and embeddings technology (Sec-
tion 4.2) used in this study.

4.1 CORD19 database

The scientific literature considered in this work has been recently introduced as
the CORD-19 corpus7. CORD-19 is a resource of over 135,000 scholarly articles,
including over 68,000 with full text, about COVID-19, SARS-CoV-2, and related
coronaviruses. This freely available data set is provided to the global research
community to apply recent advances in NLP and other AI techniques to generate
new insights in support of the ongoing fight against this infectious disease.

We use the corpus version 12, published on May 1st 2020, from which we
extract only full text scholarly articles converted into xml from a pdf format.
This results in altogether 48,410 papers, which are summarized in Table 1.

Table 1. CORD-19 dataset statistics.

Origin Number of papers Number of tokens

Commercial use subset 9,918 46,206,453
Non-commercial use subset 2,584 10,732,608
PMC custom license subset 32,450 156,247,363
bioRxiv (not peers reviewed) 2,670 8,968,183
medRxiv subset (not peer reviewed) 788 3,285,558

All 48,410 225,440,165

4.2 Considered embeddings

We use FastText [4] embeddings as a baseline in this study. The main advantage
of FastText embeddings is its word representation as a sum of n-grams, which
allows the model to, in addition to leveraging semantic relations, also leverage
morphological information.

One of the most oftenly used models for the generation of contextual em-
beddings is the BERT model [12] that was originally pretrained on the Google

7 https://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge
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Books Corpus (800 million tokens) and Wikipedia (2,500 million tokens). This
pretraining is however not entirely appropriate for the text mining tasks on the
scientific literature due to specificities of the scientific language and vocabulary.
For this reason, in this research we opted for SciBERT [3], a version of BERT
pretrained on a large multi-domain corpus of scientific publications, a random
sample of 1.14M papers from Semantic Scholar. SciBERT model has 12 encoder
layers with the attention mechanism and a hidden layer size of 768.

5 Methodology

In this section, we present the methodology of the proposed approach by ex-
plaining how we obtain word representations, how we acquire therapy target
candidates and how we evaluate the approach.

5.1 Word representations

First, we fine-tune SciBERT as a masked language model for domain adaptation
on the lowercased CORD-19 dataset. Next, we generate word representations for
each word in the vocabulary. Figure 1 visualizes the process described below. The
documents from the corpus are split into sequences of byte-pair encoded tokens
[20] of a maximum length of 256 tokens and fed into the fine-tuned SciBERT
model. For each of these sequences of length n, we create a sequence embedding
by summing the last four encoder output layers. The resulting sequence embed-
ding of size n times embeddings size represents a concatenation of contextual
embeddings for the n tokens in the input sequence. By chopping it into n pieces,
we acquire a representation, i.e. a contextual token embedding, for each word
used in the corpus. Note that these representations vary according to the con-
text in which the token appears, meaning that the same word has a different
representation in each specific context (sequence).

Finally, the resulting embeddings are aggregated on the token level (i.e. for
every token in the corpus vocabulary, we create a list of all their contextual
embeddings) and are averaged, in order to get one representation for each token
in the vocabulary. We enforce a constraint that a list of contextual embeddings
for a specific token should contain at least five elements, otherwise the specific
token is discarded. This is done in order to remove tokens that do no appear
in the corpus enough times for the model to learn a meaningful representation
(e.g., mostly tokens that contain typos or very rare technical terms). Since the
byte-pair input encoding scheme [20] employed by the SciBERT model does
not necessarily generate tokens that correspond to words but rather generate
tokens that correspond to parts of words, we also propose the following on the
fly reconstruction mechanism that allows us to get word representations from
byte pair tokens. If a word is split into more than one byte pair token, we take
an embedding for each byte pair token constituting a word and build a word
embedding by averaging these byte pair tokens. The resulting average is used as
a context specific word representation.
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The final result are static embeddings for each word in the vocabulary, ca-
pable of leveraging a broader semantic knowledge due to the SciBERT being
pretrained on a large corpus of scientific articles. As a baseline, we also train a
FastText skip-gram model with an embedding dimension of 100 (which is the de-
fault) on the lowercased CORD-19 dataset. Once again we enforce the constraint
that a word should appear in the corpus at least five times.

Fig. 1. Extraction of word usage embeddings from BERT. Note that only the last 4
out of 12 BERT encoder layers are used for the embedding generation. This was done
in accordance with the previous studies that suggested that the last four layers carry
the bulk of the semantic information obtained by the model [24].

5.2 Synonym resolution

Once embeddings are generated, we conduct synonym resolution with the help
of a list of 19,302 gene names and their most common synonyms [30]. The em-
bedddings belonging to the synonyms of the same gene are averaged in order
to combine contextual information of different identifiers referring to the same
gene and in order to avoid possible mismatches due to different naming.

5.3 Candidate acquisition

The main idea of our approach is to leverage semantic similarity in order to
derive new scientific knowledge from an already existing one. For this to work,
some initial seed concepts need to be acquired and used as a starting point. We
explore two possibilities for this:

– Seed concepts recommended by the expert: The experts with a med-
ical background were asked to recommend genes and/or proteins with a
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known and confirmed link to COVID-19. The final consensus was to focus
on angiotensin-converting enzyme 2 (ACE2) and transmembrane protease
serine 2 (TMPRSS2). ACE2, a receptor for the spike S protein, is important
because SARS-CoV-2 uses it to enter the host cell [16]. TMPRSS2 promotes
SARS-CoV-2 entry into the cell by priming the spike S protein [16]. Blockage
of binding of SARS-CoV-2 to ACE2 or inhibition of TMPRSS2 are therefore
two possible approaches to treat COVID-19.

– Seed concepts found in the literature: Due to the abundance of recent
research on COVID-19 it is also possible to find seed concepts in the related
research. We opted for a study by [5] in which a set of COVID-19 therapy
targets were identified. The considered list of altogether 2802 potential tar-
gets8 is the result of a large-scale screening for active proteins, and offers a
starting set of candidates obtained empirically. The list is ranked according
to the increase or decrease of production of a specific protein at a specific
time point. We explore what is the optimal number of seed candidates by
exponentially enlarging the size of the seed candidate set. Sampling from the
list is conducted according to the ranking of the protein candidates, i.e., we
sample 2, 4, 8, 16, 32 and 64 best ranked seed candidates according to the
increase in their production 24 hours after the infection (column Ratio 24h
in Supplementary Table 1 in the study by [5]).

Once seed concepts are acquired, we calculate their embeddings and look
for semantically similar concepts by finding the concepts that are the closest to
seed concepts according to the cosine distance between the embeddings9. More
specifically, we find a set of 2802 closest candidate concepts for each gene/protein
in each seed candidate set, and the acquired candidates are ranked according to
the cosine similarity. Finally, we calculate the average ranking for each candidate
(i.e. by averaging ranks for each seed concept in the set) and therefore obtain
NumOfCandidatesInSet ∗ 2802 closest candidates for each of the seed concept
sets with possible duplicates originating from different seed concepts.

Since the initial experiments showed that many of the most similar concepts
are in fact variations of the same base concept (e.g., the closest neighbours to
ACE2 being ACE, ACE2M, ACE2S...) and since we are interested in maximiz-
ing the variety of the acquired candidates, we conduct an additional filtering
according to the normalized Levenshtein distance defined as:

normLD = 1− LD

max(len(w1), len(w2))
,

where normLD stands for normalized Levenshtein distance, LD for Levenshtein
distance, w1 is either a seed concept or a concept already in the list of acquired

8 Note that the original list contains 2715 targets (see Supplementary Table 1 in [5]).
Some of them are however represented as a set of similar genes/proteins belonging
to the same family. On the other hand, we treat each individual gene/protein as a
separate target, which results in a set of 2802 targets.

9 Note that these concepts obtained according to semantic similarity are not neces-
sarily proteins/genes but rather any word in the embedding vocabulary.
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neighbours and w2 is the new candidate neighbour. Concepts for which normal-
ized Levenshtein difference is bigger than 0.7 are discarded10. The filtering is
conducted in order from the top of the list (neighbours with the best average
rank) to the bottom.

At the end of the candidate acquisition process, we cut the ranked list of
neighbours at 2802 target candidates for each of the distinct seed concept sets
used in the evaluation.

5.4 Evaluation

The methods for discovering new therapy targets are evaluated in two evaluation
settings, quantitative and qualitative.

Quantitative Evaluation We evaluate if therapy target candidates acquired
in the previous step have been confirmed as targets in the study by [5], i.e.
how many of them appear in the list of 2802 candidates they identified11. Note
that in this setting we only evaluate the proposed method on the previously
existing knowledge, therefore in the quantitative evaluation we can not asses,
if the method has managed to discover some potentially useful and previously
undiscovered knowledge.

We are interested in precision at rank k. This means that only the candidates
ranked equal to or higher than k are considered and the rest are disregarded.
Precision is the ratio of the number of relevant candidates divided by the number
of candidates returned by the system, or more formally:

precision =
|relevant candidates@k|
|returned candidates|

Recall@k is the ratio of the number of relevant candidates ranked equal to
or higher than k by the system divided by the number of correct ground truth
candidates:

recall =
|relevant candidates@k|
|correct candidates|

We measure precision and recall at k=100 and k=2802 in order to investigate
how different number of retrieved candidates for each seed concept set affects the
precision and recall of the methods. More specifically, we are trying to confirm
or deny a hypothesis that larger k values degrade the overall precision of the
method.

The relevance of the candidate is determined according to two matching
criteria. First one is the exact match, where the candidate is deemed relevant

10 The normalized Levenshtein difference threshold of 0.7 was chosen empirically.
11 Note that the study by [5] is not included in the CORD-19 corpus used for training

the embeddings, since it was published on May 14th 2020 and we use the CORD-19
version published on May 1st 2020.
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if it appears in the list of identified targets in the study by [5]. The second is
the fuzzy match, where we check if the targets belong to the same “family” as
a specific confirmed target. This strategy was proposed by the medical experts
and checks whether the prefix of the specific gene (characters in the gene name
that appear before the first digit in the name) matches a prefix of a specific
gene name in the list. We enforce an additional constraint that the matching
prefixes need to be at least three characters long for a successful match in order
to minimize the false positive rate.

Qualitative Evaluation We generated two distinct therapy target candidate
lists using the proposed SciBERT based embedding method. First one contained
100 closest neighbours to the protein ACE2 according to the cosine distance
between embeddings, and the second one contained 100 closest neighbours to the
protein TMPRSS2. Both lists were given to the medical expert who inspected
the list for possible previously undiscovered candidates.

6 Results

Here we present the results of the quantitative and qualitative evaluation.

6.1 Results of the quantitative evaluation

The results of the quantitative evaluation are presented in Table 2. In column
ACE2 + TMPRSS2 we present results when these two proteins are used as
seed concepts, and in column UBA2 + NCKAP1 we present results when these
two proteins, which were chosen according to the largest value of the Ratio
24h criterion (see Section 5.3) are used as seed concepts. Left part of the Table
presents results for the proposed approach based on SciBERT and the right
part of the Table presents results for the baseline FastText approach in terms of
precision and recall at two distinct k values (100 and 2802). EXACT indicates
that exact matching is used and FUZZY indicates fuzzy matching (see Section
5.4).

Table 2. Results (precision@k and recall@k) of the quantitative evaluation for two
seeds by the expert and two seeds from the literature. Best result in each row is bolded.

SciBERT FastText
ACE2 + TMPRSS2 UBA2 + NCKAP1 ACE2 + TMPRSS2 UBA2 + NCKAP1

EXACT P@100 0.110 0.220 0.040 0.170
EXACT R@100 0.004 0.008 0.001 0.006
EXACT P@2802 0.097 0.118 0.025 0.076
EXACT R@2802 0.097 0.118 0.025 0.076

FUZZY P@100 0.290 0.490 0.070 0.380
FUZZY R@100 0.010 0.017 0.002 0.014
FUZZY P@2802 0.222 0.252 0.092 0.183
FUZZY R@2802 0.222 0.252 0.092 0.183
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Fig. 2. Relation between recall and the number of seed candidates.

SciBERT based method outperforms the FastText baseline by a large mar-
gin in both seed therapy target acquisition scenarios and according to all the
criteria. Using UBA2 + NCKAP1 works better than using ACE2 + TMPRSS2,
achieving the best fuzzy precision@100 of 0.490 and the best exact precision@100
of 0.220. FastText baseline also works fairly well in this scenario, achieving fuzzy
precision@100 of 0.380 and the best exact precision@100 of 0.170. When more
(2802) candidates are obtained, the recall increases for both methods but at an
expense of a significant drop in precision for both methods and for almost all
configurations. The only exception is the increase in fuzzy precision by about 2
percentage points when FastText method and ACE2 + TMPRSS2 seed concepts
are used. The most likely reason for the drop is that at larger k values some of
the target candidates acquired by the method might be semantically too dissim-
ilar to the seed targets, since more candidates per each seed therapy target need
to be acquired in order to get the required amount of semantic neighbours (e.g.,
for k=2802, we get about 1401 semantic neighbours for each of the seed genes).

This raises the question of how many seed terms should be supplied to the
system for the best performance when a large number of target candidates is re-
quired as output. Figure 2 shows the relation between the achieved recall@2802
(exact and fuzzy) of both methods when we increase the number of seed candi-
dates (see Section 5.3 for details about our sampling procedure). For SciBERT
based method, the best fuzzy and exact recalls are achieved when 32 seed candi-
dates are used (28.2% and 14.1% respectively). On the other hand, the FastText
based method shows a spike in performance when 4 seed concepts are used. This
indicates that for some reason the two seed candidates ranked third and fourth
(ENO1 and ATP5O, respectively) according to the Ratio 24 criterion have a
very positive effect on the FastText model but not SciBERT. While we do not
have a clear explanation for this phenomenon, it is hypothesized that it might
be connected with morphological similarity between these two genes and other
genes in the list of candidates proposed by [5], since FastText can also leverage
morphological similarity. Spikes asides, the general trend for both methods and
both recalls is quite similar. There is a gradual increase in performance for up
to 32 seed candidates and after that the performance decreases.
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Table 3. Genes/proteins (in alphabetical order) which are common to the TMPRSS2
and ACE2 list and their (putative) relevance to COVID-19.

Gene Protein Relevance to COVID-19

ATP2B2 (PMCA2) Plasma membrane Ca2+-transporting ATPase ?

CRTH2 (PTGDR2) Prostaglandin D2 (PGD2) receptor

PGD2 is important for survival of mice infected
with neurotropic coronavirus. Increased production of PGD2
is linked to increased mortality in aged mice. PGD2blockade
improves survival in mice infected with SARS-CoV [35,37].

DPP7 (DPP2) Dipeptidyl peptidase 2
DPP7 is associated with the magnitude of

the antibody response to influenza vaccination [15].

MECP2 Methyl-CpG-binding protein 2
MECP2 duplication in humans is associated with IgA/IgG2

antibody deficiency and severe infections. Mice overexpressing
MECP2 are hypersensitive to influenza A virus [1,10].

METAP2 (P67EIF2)
Methionine aminopeptidase 2 (Initiation
factor 2-associated 67 kDa glycoprotein)

Plays a role in regulation of protein
synthesis during vaccinia virus infection [6].

PLA2R1 Secretory phospholipase A2 (PLA2) receptor
Restricted activity of PLA2 is associated with improved
survival in mice infected with HCoV-OC43. Inhibition

of cytosolic PLA2 suppresses replication of HCoV-229E [13,27].

PTGS2 (COX2) Prostaglandin G/H synthase 2 (cyclooxygenase-2) SARS-CoV induces cyclooxygenase 2 [23].

SOX2 Transcription factor SOX-2
SOX2+ cells are important for regeneration of airway
epithelium after severe influenza infection in mice [32].

SSTR2 (SST2) Somatostatin receptor type 2 ?

6.2 Results of the qualitative evaluation

Nine genes/proteins were the same in the ACE2 and TMPRSS2 lists, indicat-
ing they might be important for pathogenesis of COVID-19. The role of these
genes/proteins in pathogenesis of COVID-19 has not been established, but in-
direct evidence supports this notion at least for some of them. Indeed, most
of these genes/proteins have been previously linked to viral diseases, includ-
ing those caused by SARS-CoV (a virus, which causes SARS, and is related to
SARS-CoV-2), and other coronaviruses (Table 3). Furthermore, METAP2 and
DPP7, which we identified as potentially relevant for COVID-19, were altered in
cells infected with SARS-CoV-2, although the difference for DPP7 did not reach
the level of statistical significance [5].

Interestingly, three proteins in Table 3 (PTGS2, CRTH2, and PLA2R1)
are linked to infection with coronaviruses as well as metabolism of phospho-
lipids and/or prostaglandin synthesis and action. Furthermore, both the ACE2
and TMPRSS2 lists contain genes/proteins, such as PLA2 (phospholipase A2,
PLA2G2D (Group IID secretory phospholipase A2), and SPLA2 (secretory PLA2),
which do not match directly, but are involved in the same or related cellular pro-
cesses. Notably, increased expression of Pla2g2d in older mice was shown to be
linked with increased mortality due to SARS-CoV infection [36]. In addition, a
recent proteomic analysis has demonstrated that protein abundance of PLAA
(phospholipase A2-activating protein), PLA2G4A (cytosolic phospholipase A2),
and PLA2G2 (Group IIA phospholipase A2) is altered in cultured cells infected
with SARS-CoV-2 [5], which gives further credence to the idea that phospholipid
metabolism is important under these conditions. In summary, taken together
with published experimental data, our analysis suggests that phospholipases
and/or prostaglandins might represent a target for treatment of COVID-19.
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7 Conclusions and further work

In this paper we presented a method for discovering new COVID-19 therapy
targets by leveraging contextual embeddings, which outperforms the method
based on FastText embeddings. We explored the best tactics for acquiring seed
targets from the related work if expert knowledge is not available. The results
of the manual qualitative evaluation by the expert indicate that at least two
groups of novel therapy target candidates have been discovered.

The proposed method outperforms the baseline FastText method by a large
margin, which can be explained by the fact that SciBERT is also leveraging
knowledge gained during the pretraining on the large corpus of scientific litera-
ture, which enables the model to generate vector representations that reflect this
wider semantic context. The drawback is however the difference in the amount of
computational resources required by the two methods. We also acknowledge that
the proposed method, which constructs static embeddings from the SciBERT
contextual embeddings is not the only possibility for construction of meaningful
semantic representations. Other possibilities and models (e.g., BioBERT [21])
will be explored in the future work. The quantitative evaluation indicates that
the precision and recall of the method are still relatively low in most cases. This
can on one side indicate that COVID-19 topic is not researched enough to con-
firm relations between COVID-19 and some candidates found by the proposed
method. Another indication of this is the qualitative study, which confirmed that
some of the proposed candidates found by the system have research potential
but have not yet been explicitly confirmed as being related to COVID-19 in the
existing literature.

On the other hand, low precision most likely also indicates that there is still
a large amount of proposed candidates, which play no role in the advancement
and prevention of the COVID-19 disease. Some of these false positives can be
attributed to inadequate synonym resolution since the list used for that task
(see Section 5.2) most likely covers only a small percentage of genes and their
synonyms found in the CORD-19 corpus. Other mistakes can be contributed
to the byte pair encoding scheme SciBERT employs. Since the model generates
embeddings for subword tokens instead for an entire words (see how we deal
with this problem in Section 5.1), some words with similar roots or affixes can
perhaps appear closer in the semantic space as they should according to their
semantic relatedness because of the morphological resemblance. We will address
this issues in the future work.
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Abstract 

We present an experiment in extracting adjectives which express a specific semantic relation using 

word embeddings. The results of the experiment are then thoroughly analysed and categorised into 

groups of adjectives exhibiting formal or semantic similarity. The experiment and analysis are 

performed for English and Croatian in the domain of karstology using data sets and methods 

developed in the TermFrame project. The main original contributions of the article are twofold: 

firstly, proposing a new and promising method of extracting semantically related words relevant 

for terminology, and secondly, providing a detailed evaluation of the output so that we gain a better 

understanding of the domain-specific semantic structures on the one hand and the types of 

similarities extracted by word embeddings on the other. 

 

 

1 Introduction 

 

In this paper we explore the bilingual comparative approach to adjectives through word 

embeddings in the domain of karstology. Because specialized adjectives have not received much 

attention in the field of terminology so far we aim at modelling the semantic relations expressed 

by adjectives within multiword terms and discovering their shared properties through word 

embeddings. Our starting hypothesis is that adjectival semantic relations are an important part of 

conceptual representations as they establish links between terms and their attributes inside 

conceptual frame. For this reason, we aim to reveal adjectives expressing exemplar characteristics 

in order to establish attribute-value pairs for different conceptual categories in karst domain.  

By leveraging word embeddings and sets of seed adjectives expressing specific semantic relations 

we aim to extract additional adjectives that express the same relation and rate the degree of 

semantic similarity between adjectives in the two languages. Furthermore, we perform a detailed 

analysis of the extracted candidates in terms of their semantic and morphosyntactic properties in 

order to identify corresponding clusters between adjectives, but also to better understand the errors 

produced by our prediction algorithm. 
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Karstology is an interdisciplinary domain which studies karst, a type of landscape developing on 

soluble rocks such as limestone or gypsum. The most distinctive features of karst regions include 

caves, various types of relief depressions, submerged rivers, springs, ponors and sinkholes. The 

TermFrame project models the karstology domain using the frame-based approach (Faber, 2012; 

Faber, 2015). To explore typical conceptual frames in karstology we developed a domain-specific 

concept hierarchy of semantic categories, and each category can be described by a set of relations 

which reveal its specific features. In addition to manually identified categories and relations we 

employ a number of advanced text mining techniques to extract structured domain knowledge 

from our corpora (Miljković et al., 2019; Pollak et al., 2019; Vintar et al., 2020, Pollak et al. 2020). 

The final result of the project will be a multilingual visual knowledge base for karstology. 

The experiment and analysis presented in this paper seek to highlight the synergies and parallels 

between the frame-based and cognition-inspired view of specialised language on the one hand, 

and on the other hand word embeddings as a mathematical device to map meaning into a 

multidimensional space. It is no coincidence that we perceive cognition as a dynamic and 

inherently spatial operation, and recent advances in deep learning for NLP prove that conceptual 

similarities are indeed reflected in the spatial proximity or closeness of word embeddings. By 

performing a detailed analysis of the adjectives extracted through embeddings we aim to shed light 

on the different nuances of semantic similarity as computed via deep learning methods. 

The paper is structured as follows: In Section 2 we present related research, Section 3 describes 

the methods used for the extraction experiment and manual analysis, and Section 4 presents the 

analysis of adjectival clusters for each semantic relation and language respectively. We conclude 

with a discussion and final observations. 

 

 

2 Related work 

The representation of relations between concepts has already been presented in different 

terminological works which aim to illustrate the dynamics of cognition. From the point of view of 

Frame-Based Terminology (Faber et al. 2007; Faber and Leon Araúz 2016; Gil-Berrozpe et al. 

2019; Cabezas-García and Leon Araúz 2018) knowledge structures are organized as frames on the 

basis of elements and entities which share similar contexts and situations. The relations between 

them allow us to construct meaningful schemes or mental representations of segments that belong 

to a particular specialized domain.  

Even though previous work on exemplar models does not include explicit representation of 

attributes and their values, Barsalou (1992: 25) considers that recognising the values of the same 

attribute relies on the “embedded level of exemplar processing for categorizing characteristics as 

values of attribute categories “.    

According to Petersen (2015), “[t]he attributes in a concept frame are the general properties or 

dimensions by which the respective concept is described“1. Their values express specifications 

that are important for creating concept frames or models for the representation of concepts.  Such 

                                                           
1 The attributes are defined by Barsalou (1992:30) as „a concept that describes an aspect of at least some category members. For 

example, color describes an aspect of birds. (…) A concept is an attribute only when it describes an aspect of a larger whole. When 

people consider color in isolation (e. g., thinking about their favorite color), it is not an attribute but is simply a concept”.  
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frames can be used as templates to guide the formulation of definitions (Duran Muñoz, 2016), or 

they can be applied to predict the semantic category of an attribute in a multi-word term, as our 

study illustrates. 

According to Baroni et al. (2014), context predicting models are a promising way for performing 

a number of experiments on different semantic similarity tasks and datasets such as semantic 

relatedness, synonym detection, concept categorisation, selectional preferences and analogy. 

Diaz et al. (2016) and Pollak et al. (2019) who conducted previous research on set expansion tasks 

showed that embeddings can be successfully employed for query expansion on domain specific 

texts.  

 

3 Methodology 

For the purposes of our research, we use the English and Croatian part of the TermFrame corpus 

which contains relevant contemporary works on karstology and is representative in terms of the 

domain and text types included. It comprises scientific texts (scientific papers, books, articles, 

doctoral and master’s theses, glossaries and dictionaries) from the field of karstology, which in 

itself is an interdisciplinary domain partly overlapping with surface and subsurface 

geomorphology, geology, hydrology and other fields. Table 1 gives basic information about the 

corpus. 

 English Croatian 

Tokens 2,721,042 1,229,368 

Words 2,195,982 969,735 

Sentences 97,187 53,017 

Documents 57 43 

Table 1: Corpus information  

 

In our previous research (Vintar et al., 2020) we proposed a method to extract expressions 

pertaining to a specific semantic relation from a comparable English and Croatian corpus by 

providing a limited number of seed words for each language and relation, then using intersections 

of word embeddings to identify words belonging to same relation class. An evaluation of the 

extracted candidates showed high variability in precision between relations and languages, ranging 

from 0.28 (FUNCTION, Croatian) to 0.80 (COMPOSITION, Croatian).  

In this study we continue our analysis by exploring contexts where adjective-noun phrases are used 

to express semantic relations, by grouping the extracted adjectives into clusters according to their 

semantic and morphosyntactic properties, and by analysing erroneously extracted candidates. 

First, we classify the adjectives according to their semantic relation guided by the conceptual 

frame. The semantic relations of the adjectives are determined according to their dominant 

meaning in the domain of karst. For the purposes of this analysis adjectives are assigned to one of 
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the 5 semantic relations: LOCATION (underground cave), CAUSE (fluvial sediment), FORM 

(vertical shaft), COMPOSITION (gypsum karst) and FUNCTION (soluble rock).   

Nevertheless, it is important to bear in mind that this classification is not unambiguous as 

adjectives can take different meanings depending on the nouns they modify. For example, in a 

phrase like korozijski proces the value korozijski is assigned to the relation FUNCTION, while in 

a syntagm korozijska ponikva the value of the adjective is CAUSE.  

Secondly, we investigate the extraction of adjectives from word embeddings trained on English 

and Croatian specialised corpora. Specifically, the task is to find adjectives that qualify their 

respective headwords along 5 fixed semantic dimensions we refer to as relations, using a set of 

seed adjectives for each relation and language. We trained FastText embeddings (Bojanowski et 

al., 2017) on the English and Croatian part of the TermFrame corpus respectively, using the skip-

gram model with the embedding dimension of 100. For each seed adjective expressing a specific 

semantic relation, we extract a set of 100 closest words according to the cosine distance. Then, we 

calculate intersections between these sets of closest words, for all combinations of seed adjectives 

and subset sizes 2 – 10 (see Vintar et al., 2020).  

 

 location function form composition cause 

 en cr en cr en cr en cr en cr 

N 357 228 147 152 164 152 293 244 183 181 

C 118 88 68 43 108 97 184 197 88 132 

P 0.33 0.39 0.46 0.28 0.66 0.64 0.63 0.80 0.48 0.73 
 

Table 2: Precision per semantic relation and language (N = number of extracted words, C = correct, 

P = precision) 

The results show the overall lowest and highest precisions in both languages as well as large 

differences between individual semantic relations. The prediction of semantic class membership 

is confirmed even for expressions with very low frequency.   

In Section 4 we present the results of a manual analysis of adjectives extracted through the 

embeddings intersection method. In particular, we look for clusters of morphosyntactically, 

semantically or derivationally related words and look for patterns of similarity across the two 

languages. To perform our analysis, we introduce suffix and prefix-based clusters as well as 

derivational cluster. The proposed method helps improve the interpretability of the embedding 

results.  

 

 

4 Analysing patterns of similarity  

In the following subsections we attempt to categorise the extracted adjectives into groups or 

clusters, whereby we consider the seed adjectives provided for each semantic relation prior to the 

extraction task. We present results for English and Croatian respectively, then a comparison is 

made between findings.  
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4.1 CAUSE 

4.1.1 English 

Seed adjectives: allogenic, anthropogenic, fluvial, alluvial, erosional, solutional, periglacial, 

tectonic, volcanic, lacustrine, aeolian  

 

a) Suffix-based clusters corresponding seed words: 

allogenic, anthropogenic: -genic: epigenic, geogenic, cryogenic, autogenic, orogenic, biogenic, 

pathogenic, hypogenic, glacigenic, monogenic, rheogenic, speleogenic, radiogenic, guanogenic 

fluvial, alluvial: -luvial: eluvial, colluvial, pluvial, deluvial,  

periglacial: -glacial: preglacial, subglacial, fluvioglacial, englacial, proglacial, supraglacial, 

postglacial, paraglacial, pleniglacial, glaciofluvial, 

-al (erosional, solutional): disolutional, denudational, compressional, tensional, gravitational, 

lagoonal, formational, corrosional, depositional, torrential, detrital, deglacial, abrasional, 

suffosional, evolutional, dissolutional, subaerial 

 

b) Suffix-based clusters not corresponding seed words:  

-ous: terrigenous, autochthonous, calcareous, argillaceous, igneous 

-clastic: thermoclastic, volcanoclastic, bioclastic, pyroclastic, clastic, siliclastic, siliciclastic  

-karstic: glaciokarstic, fluviokarstic, 

-genetic: paragenetic, 

No group: lacustrine   

 

4.1.2 Croatian 

Seed adjectives: alogen, antropogen, fluvijalan, erozijski, aluvijalan, vulkanski, lakustrijski, 

eolski, periglacijalni, tektonski 

 

a) Suffix-based clusters corresponding seed words: 

alogen, antropogen: -gen: egzogen, kemogen, zoogen, biogen, kriogen, epigenijski, orogenski; 

fluvijalan, aluvijalan: -luvijalan and -fluvijalan: iluvijalan, proluvijalan, delovijalan, diluvijalan, 

koluvijalan, glaciofluvijalan, postfluvijalan; 

periglacijalan: (-glacijalan): glacijalan, proglacijalan, interglacijalan, postglacijalan, 

fluvioglacijalan;  

-ski (erozijski, eolski): abrazijski, mikroerozijski, disolucijski, denudacijski, fluviodenudacijski, 

derazijski, destrukcijski, dislokacijski, soliflukcijski, subdukcijski, inundacijski, marinski, 

međuzrnski, siparski, eforacijski, amfibolski, supsidencijski, egzarazijski, padinski, mindelski, 

evolucijski, monoklinski, piraterijski, magmatski, evorzijski, melioracijski, kriofrakcijski, 
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translacijski, poligonski, riski, oligocenski, intrabazenski, plutonski, drobinski, akumulacijski, 

superpozicijski, litotamnijski, submarinski, regresijski, alveolinski, osulinski  

-an, -ni: erozivan, abrazivan, piroklastični, naplavni, terasan, stadijalan, riječni, šljunčani, žilni, 

bazalni, bazaltni, pretaložen, denudiran, hipoabisalan, nataložen, bujičan, naplavljen, bujičav, 

pleistocenalan;  

 

b) Suffix-based clusters not corresponding seed words:  

-čan : klastičan, vulkanoklastičan, piroklastičan; 

-genetski : biogenetski, klimamorfogenetski, tektogenetski, epigenetski, poligenetski, 

epirogenetski; 

 

Observations:  

Starting from the seed words in two languages we can observe high correspondence in results for 

this relation. Clusters around the same suffixes are formed in both languages: 

-genic (allogenic, anthropogenic) (14) and -gen (alogeni, antropogeni) (7),  

-luvial (fluvial, alluvial) (4) and -luvijalni (fluvijalni, aluvijalni) (8) 

-glacial (periglacial)(10) and -glacijalni (periglacijalni)(5) 

The remainder of the results also exhibit productive suffixes that can be specific for this semantic 

relation: the suffixes -al, -ous, -clastic, -karstic, -genetic in English and the suffixes -ski, -an, -

ni, -čan, -genetski  in Croatian. 

This confirms that embedding methodology successfully retrieves adjectives from the same 

semantic relation. 

 

 

4.2 COMPOSITION 

4.2.1 English 

Seed adjectives: carbonate, limestone, dolomitic, sedimentary, sulphate, calcareous, 

carboniferous, silicate, sulphuric, diagenetic, siliceous, clay 

 

a) Suffix-based clusters corresponding seed words: 

carbonate:  metacarbonate, noncarbonate, bicarbonate; 

limestone: -stone: rimestone, grainstone, dolostone, framestone; 

dolomitic, sulfuric, diagenetic: -ic: evaporitic, quartzitic, conglomeratic, loessic, calcitic, 

sulphuric, silicic, pelitic, andesitic, carbonatic, carbonic, bioclastic, granitic, basaltic, magmatic, 

metallic, elastic, aphanitic, ophiolitic; 
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calcareous, carboniferous, siliceous: -ous: gypsiferous, argillaceous, igneous, amorphous, 

herbaceous, carboniferous, siliceous, carbonaceous, fossiliferous, sulfurous, tufaceous; 

silicate, sulfate: -ate: vanadate, cipitate, dehydrate; 

 

b) Suffix-based clusters not corresponding seed words:  

-ite: siderite, anhydrite, hexahydrite, bassanite, phyllite, kaolinite, tyuyamunite, biomicrite, 

biopelmicrite, kimberlite, phosphorite, micrite, halloysite, serpentinite, dickite, alterite, barite, 

laterite; 

-mineral: thermomineral, monominerallic; 

-grained: finegrained;  

No group: shale, schist, sandy, oxidase, paleokarstic, sulfide, silty, zechstein, claypan, foraminifer, 

manganese, haematite, chalky, nonsoluble, interclas, silicify, phyllito, monocrystalline, oxide, 

 

4.2.2 Croatian 

Seed adjectives: karbonatan, vapnenački, dolomitski, sedimentan, kalcitan, karbonski, sulfatan, 

glinovit, sedren, stijenski 

 

a) Suffix-based clusters corresponding seed words: 

karbonatan: nekarbonatan, hidrokarbonatan; 

kalcitan, sedimentan, sulfatan: -an: aragonitan, detritičan, pješčan, kristaličan, rudistan, silikatan, 

evaporitan, gipsan, flišan; 

dolomitski, karbonski, stijenski: -ski: alveolinski, amfibolski, drobinski, foraminiferski, morenski; 

vapnenački: -čki: škriljevački; 

glinovit: -it: laporovit, muljevit, pjeskovit, šljunkovit; 

 

b) Suffix-based clusters not corresponding seed words:  

zrnat: krupnozrnat, međuzrnski, sitnozrnat, zrnat/ zrnast;    

 

Observations:  

The embedding candidates in English can be organised according to productive suffixes like -ic, -

ous, -ate, -clastic, -ite, -mineral, -grained.  

In Croatian suffixes -an/-ni, -ski, -čki, -it, -zrnat are productive for the semantic relation 

composition. 

 

4.3 FORM 
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4.3.1 English 

Seed adjectives: polygonal, vertical, dendritic, shallow, enclosed, elongated, flat, steep, 

cavernicolous, detrital 

a) Suffix-based clusters corresponding seed words: 

polygonal, vertical: -al: elliptical, elliptic, cylindrical, subparallel, subhorizontal, subvertical, 

centripetal, symmetrical, subhorizontal, sinusoidal, asymmetrical, orthogonal, rectilinear, 

concave, angular, rectangular; 

cavernicolous: -ous: sinuous; 

No group: staircase, meander, singular, elbow, cylinder, labyrinthine, sharply, pinnacle, steeply,  

 

4.3.2 Croatian 

Seed adjectives: vertikalan, ravnocrtan, strm, kavernozan, horizontalan, mrežast, longitudinalan, 

kružan, razgranat, ulegnut, uravnjen 

 

a) Suffix-based clusters corresponding seed words: 

vertikalan, ravnocrtan, horizontalan, longitudinalan: -an: konveksan, tangencijalan, 

trodimenzionalan, subhorizontalan, simetričan, asimetričan, paralelan, tlocrtan, konkavan, 

ustrmljen, ovalan, nepravilan, polukružan, vodoravan, cilindričan, centrifugalan, centripetalan, 

konusan, dijagonalan, lateralan, longitudinalan, horizontalan, radijalan, konvergentan, etažan, 

urušan; 

mrežast:  -ast: ravničast, stepeničast, zvjezdast, žljebast, grozdast, prstenast, rešetkast, laktast, 

klifast, bunarast, dolinast, ponikvast, sigast, stepeničast, terasast;  

 

b) Derivational cluster 

Adjectives like kavernozan, prevjesan, sinklinalan, monoklinalan, abisalan, fleksuran are derived 

from the terms denoting karst forms: 

kavernozan<kaverna, prevjesan<prevjes, sinklinalan<sinklinala, monoklinalan<monoklinala, 

abisalan<abis, fleksuran<fleksura;  

No group: valovit, meandrirajući. 

 

Observations: The results in this semantic relation exhibit clusters around seed adjectives vertical, 

polygonal in English and vertikalan, ravnocrtan, horizontalan, longitudinalan in Croatian. These 

adjectives refer to different shapes that are frequent in karst relief but can also refer to different 

other entities in nature.  
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Results in Croatian demonstrate a group of relational adjectives derived from karst forms: 

kavernozan<kaverna, prevjesan<prevjes, sinklinalan<sinklinala, monoklinalan<monoklinala, 

abisalan<abis, fleksuran<fleksura.  

The suffixe -ast is also productive for expressing karst shapes in Croatian.  

We can observe that the embeddings missed to propose adjectives that refer to karst forms. For. 

ex. bunarast, ponikvast, terasast, krovinski, sigasti, zaravnjen, dolinast, škrapski  

 

 

4.4 FUNCTION  

4.4.1 English 

Seed adjectives: impermeable, permeable, solutional, hydrothermal, speleological, geological, 

soluble, porous, depositional, regressive, undersaturated 

 

a) Suffix-based clusters corresponding seed words: 

soluble: -ble: insoluble, impenetrable, rechargeable; 

porous: -ous: anhydrous, impervious; 

speleological, geological: -logical: paleontological, speleological, seismological, speleogical, 

petrological, biospeleological, climatological, vulcanospeleological, sedimentological, 

karstological; 

Results ending in -logical but not connected to the karst domain: immunological, archeological, 

meteorological,histological, palynological, psychological, methodological, mythological, 

No group: unkarstify, evaporitic, aquifer, dissociate, unsaturate, unconformable, lithoclast, 

friable, diffuse; 

 

4.4.2 Croatian 

Seed adjectives: nepropustan, propustan, speleološki, geološki, topiv, porozan, taložan, urušan 

 

a) Suffix-based clusters corresponding seed words: 

topiv: -iv: netopiv, vodotopiv, vododrživ, vododržljiv, propustljiv; 

porozan, taložan, urušan, nepropustan, propustan: -an: vodonepropustan, vodopropusan, 

vodoprohodan, nepropusan, polupropusan, laminaran, difuzan, procjedan; 

speleološki, geološki: -ški: speleomorfološki, geomofološki, etnološki, geoekološki, arheološki, 

aerološki, fiziološki, geoekološki, geokronološki, biološki, paleontološki,  

 

No group: kemogen 
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Observations:  

Seed adjectives soluble, porous in English and topiv, porozan in Croatian create suffix-based 

clusters in -ble, -ous in English and in -iv, -an in Croatian. While the results in English missed to 

propose the adjective permeable, results in Croatian demonstrate productive cluster around the 

seed adjectives propustan, nepropustan. 

The suffixes -logical, -loški are productive in both languages since they refer to general concepts 

such as speleology, karstology, paleontology, seismology, slimatology, sedimentology.  

 

4.5. LOCATION 

4.5.1 English 

Seed adjectives: coastal, littoral, sublittoral, submarine, oceanic, subsurface, subterranean, 

subterraneous, subaerial, underground, aquatic, subaqueous, internal, subglacial, phreatic, 

epiphreatic, vadose 

 

a) Suffix-based clusters corresponding seed words: 

coastal, littoral: -al: sublittoral, paralittoral, abyssal, intracontinental, continental, peripheral; 

phreatic, epiphreatic: -ic: bathyphreatic; 

 

b) Suffix-based clusters not corresponding seed words:  

-ic: meteoric, aquatic, semiaquatic, atlantic, pacific, anastomotic;  

-al: interfluvial, terrestrial, superficial; 

-most: uppermost, lowermost; 

-flow: underflow, downflow;  

 

-haline: polyhaline, sakhalin, euhaline, anchihaline, mixohaline; 

-shore: seashore, offshore; 

 

c) Prefix-based clusters corresponding seed words: 

subterraneous, subaqueous, subaerial, submarine, subsurface: sub-: subterranean, subvertical, 

subtidal, subhorizontal, subzone; 

 

d) Prefix-based clusters not corresponding seed words: 

sea-: seafloor, seawater; 

hypo-: hyporheic, hypokarst, hyporheal, hyporheo; 

hyper-: hyperkarst; 

ICT-29-2018 D2.6: Final keyword extraction

142 of 148



11 

 

 

Other: cavernicole, microcavernicole, cavernicolous, anastomose, aquaticus, shallowwater, 

saline, waterline, shoreline, ocean, subjacent, branchwork, mesovoid, lacustrine, intrastratal, 

streamway, surfacedwelling, crevicular, supratidal, interstice, marine, nonmarine, 

 

 

4.5.2 Croatian 

Seed adjectives: obalan, litoralan, priobalan, podmorski, oceanski, podzeman, vadozan, 

podvodan, dolinski, špiljski, freatski, epifreatski 

 

a) Suffix-based clusters corresponding seed words: 

obalan, litoralan, priobalan, vadozan, podvodan: -an: maritiman, bazalan, lateralan, inversan, 

otočan, dugovalan, saturiran; 

podmorski, oceanski, dolinski, špiljski, freatski, epifreatski: -ski: zonski, primorski, 

dubokomorski, prekomorski, plitkomorski, obalski, priobalski, kontinentski, litoralizacijski, 

piedmontski, dubinski, sifonski, jamski, zavalski, ekvatorski, ponorski, kanalski, vršinski,; 

Many of the adjectives ending in -ski are derived from karst forms: jamski<jama, zavalski<zavala, 

ekvatorski<ekvator, ponorski<ponor, kanalski< kanal, 

 

b) Prefix-based clusters not corresponding seed words: 

sub-: submarinski, subfreatski, subaerski;  

 

Observations: Results show that this relation is not as precise as the others because embedding 

candidates cannot be interpreted univocally as locations and great number of mistakes lead us to 

consider the multidimensionality of the adjectives. In the next section we explain this dilemma in 

more detail.   

 

 

4.6 Adjectives assigned to the wrong relation 

 

As the results above show, the method based on word embeddings can be of broad use in pattern 

recognition. However it is also important to bear in mind the mistakes that appear along. Most of 

the mistakes can be found within the semantic relations of LOCATION, FUNCTION and 

COMPOSITION.   

  

4.6.1 LOCATION 
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The adjective candidates that evidently do not determine location are the following:   

- genetic: epigenetic, mesogenetic, eogenetic, paragenetic, diagenetic, telogenetic, speleogenetic, 

ontogenetic; 

-genic: epigenic, rheogenic, geogenic, basaltic, elliptic, orogenic; 

-gean: hypogean, aegean, epigean/epigene, endogean; 

These adjectives determine CAUSE and the embedding methodology extracted them as 

candidates. However, the error originates from the seed word selection where epigenic was 

wrongly assigned to the LOCATION relation. Two similar examples from the same group appear 

in Croatian list of candidates: epigenetski, speleogenetski, poligenetski. 

English: The adjectives like transversal, horizontal, vertical, elliptical, sinusoidal cannot qualify 

location but FORM. The two examples from the same group also appear in Croatian list of 

candidates: vodoravan, konveksan. 

The adjective sulphuric was recognised as qualifying LOCATION while it determines 

COMPOSITION. 

Croatian: The adjectives like vodotopiv, vododrživ, difuzan, porozan, hidrostatski, toplinski, 

drenažan, tlačni, nezasićen, procjedan, direktan, ozonski, protočan do not signify LOCATION 

but FUNCTION. 

 

 

4.6.2 FUNCTION 

In this group we found examples that were recognised in two different semantic relations 

FUNCTION and COMPOSITION. This entails a need for further verification of the results in 

order to determine whether the adjectives show multidimensional meaning or they are erroneously 

attributed to a certain semantic relation. Examples in English and Croatian can confirm that their 

isolated meaning express only COMPOSITION. Nevertheless, it is important to pay attention to 

the nouns they modify which can explain the meaning shift.     

English: argillaceous, carbonaceous, siliceous, dolostone, limestone, ferruginous, gaseous, 

hydrous, cavernous;  

Croatian: sitnozrnat/sitnozrnast, zrnat/zrnast, krupnozrnat/ krupnozrnast, sedimentan, glinovit 

karbonatan, karbonatni, hidrokarbonatan, nekarbonatan, dolomitan, dolomitičan, laporovit, 

gipsan. 

 

4.6.3. COMPOSITION 

Embedding results for the semantic relation COMPOSITION also include adjectives that appear 

as candidates in two different semantic relations but only one is correct. For example, adjectives 

in Croatian like vodonepropustan, vodopropusan, neotopiv, trošiv, polupropusni, topljiv, 

vododržljiv, vododrživ appear in groups COMPOSITION and FUNCTION but only FUNCTION 

is valid. 
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Adjective monoklinski appeared as candidate in COMPOSITION and CAUSE but it only qualifies 

CAUSE. 

The same goes for adjectives derived from the geographical eras like staromezozojski, 

gornjokretacejski, postkretacejski and mladomezozojski. Their meaning qualifies CAUSE and not 

COMPOSITION.  

Mistakes in this group also include adjectives denoting FORM instead of COMPOSITION: 

dendritičan, angularan, amorfan, sigasti, heksagonski.  

 

We can conclude that embedding results are able to point to polysemic meaning by categorising 

the same candidates in two different semantic groups. In these cases, a further validation will 

determine if only one meaning is correct or it is possible to describe the meaning as 

multidimensional. In the next paragraph we present several examples of adjectives whose meaning 

can be attributed to two different semantic relations depending on their definition or the nouns they 

are modifying.   

 

4.7 Multidimensional adjectives 

For certain adjectives we found that two relations are possible and that they should be described 

as multidimensional: 

English:  

carbonate, metacarbonate, noncarbonate (COMPOSITION AND FUNCTION)  

evaporitic (COMPOSITION AND FUNCTION) 

 

Croatian:  

metamorfan, detritičan, neogenski, alogen, evaporitan: CAUSE and FUNCTION 

kavernozan: LOCATION and FORM  

pukotinski: LOCATION and FUNCTION 

osulinski: LOCATION and CAUSE 

 

Furthermore, we list adjectives which vary in meaning depending on their context. They appear in 

two or more relations but their meaning can only be confirmed after analysing the nouns they are 

usually combined with. 

English:  

igneous: COMPOSITION, FUNCTION, CAUSE 

magmatic: COMPOSITION, FUNCTION, CAUSE, LOCATION 

sediment: COMPOSITION, CAUSE, 

subaerial: LOCATION, CAUSE, FUNCTION 
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siliciclastic: COMPOSITION, FUNCTION, CAUSE 

 

Croatian:  

međuzrnski:  CAUSE, COMPOSITION AND LOCATION but only COMPOSITION is valid. 

klastičan, sitnoklastičan, kataklastičan, vulkanoklastičan: COMPOSITION, CAUSE, 

FUNCTION  

 

The only example where embeddings did not suggest the right semantic relation are adjectives 

gornjotrijaski, srednjotrijaski, trijaski, donjotrijaski which were attributed relations 

COMPOSITION and FUNCTION but they refer to CAUSE.  

 

 

5. Discussion and conclusions 

 

We present a method for extracting semantically related adjectives using intersections of word 

embeddings and a detailed manual analysis of the extracted words. The results of the first stage 

show high variability in precision between relations, yet for three out of five target relations the 

method successfully extracts numerous meaningful adjectives pertaining to the target semantic 

relation.  

The analysis performed in the second stage reveals several nuances of semantic similarity which 

we categorise into clusters. In most cases, members of a cluster share a surface linguistic 

component such as a suffix, prefix or word stem. Some suffixes indeed contain a semantic 

component pertaining to a specific relation (-genic -> CAUSE), and a shared word stem almost 

necessarily entails a similarity in meaning. In other cases, word embeddings allow us to retrieve 

synonyms with no surface similarity (podmorski – submarinski) only on the basis of their shared 

contexts. 

While we cannot completely explain why a certain word is extracted as similar, we know that 

FastText embeddings combine the vector of the entire word and some of its substrings into a single 

vector. The cosine similarity thus entails also the similarity of the substrings, i.e. prefixes, suffixes 

and word stems.  

In our future experiments we intend to extend the approach to longer expressions and multi-word 

terms, in particular structures which represent micro-events and which can potentially be modelled 

through embedding analogies.  
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