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1 Introduction
The EMBEDDIA project aims to develop an array of methods and software solutions for the development
and use of multilingual text embeddings. A selection of these software tools, particularly those that are
relevant for the media industry, are to be implemented as Web services in the scope of WP6. While
Web services can also be used for demonstration and experimentation purposes, they are primarily
intended for use by professionals and are suitable for incorporation in industrial solutions. However,
there are several outcomes of EMBEDDIA that are primarily of interest to the research community, also
from domains of science in which knowledge of programming is not an essential skill. To these kinds of
users, an opportunity to explore research experiments and demonstrations as functional and replicable
software solutions is very valuable. The aim of Task T7.4 is to make this possible for a selection of
EMBEDDIA outcomes in scope of a platform named ClowdFlows. This online platform is primarily
intended for development and sharing of data mining and machine learning solutions that are developed
in the form of software components and workflows of these components. Most of the EMBEDDIA
methods are of these or similar kinds, but there are some specific characteristics, such as use of data in
form of textual corpora, exchange of textual embeddings and some others that require specific software
to be developed to support the EMBEDDIA solutions in ClowdFlows and their interoperability with the
other relevant components.

There are two main kinds of software results from EMBEDDIA to be shared through ClowdFlows: (i)
the individual software components (named widgets) that offer specific functionalities and form building
blocks of workflows, and (ii) entire workflows that demonstrate the use of EMBEDDIA components in
use cases that are relevant to the aims and purposes of EMBEDDIA.

This deliverable presents an intermediate state of integration of software components and workflows
from EMBEDDIA in ClowdFlows. The final selection, implementation and integration of components
and workflows will be reported in Deliverable D7.6, which is due in M36. We first introduce the platform
itself in Section 2, where we describe ClowdFlows and its features and provide essential instructions
for its use. The individual software components that were prepared either to showcase methods that
originate from EMBEDDIA or are used in the EMBEDDIA experiments are described in Section 3. The
entire exemplary workflows are presented in Section 4. Section 5 concludes the deliverable with a brief
summary of presented work and plans for further developments.

2 ClowdFlows
ClowdFlows is an online data processing and machine learning platform that is being developed at the
Jožef Stefan Institute since 2010. Development of ClowdFlows resulted in the first stable version in the
scope of the PhD thesis of Janez Kranjc (Kranjc, 2017). The platform prototype was used for software
integration in the EU project MUSE1. A fork of the platform called ConCreTeFlows was developed in the
scope of the EU project ConCreTe2 for the purposes of shared development of computational creativity
solutions. This fork received many contributions and extensions from developers in the computational
creativity community and served its purpose successfully (Žnidaršič et al., 2016). Another dedicated
fork of the platform was TextFlows (Perovšek, Kranjc, Erjavec, Cestnik, & Lavrač, 2016), which was
aimed at text-mining and natural language processing tasks. Operations with large textual corpora,
however, were difficult to handle efficiently with the original workflow execution engine, which was one
of the reasons for re-development of ClowdFlows into its latest version ClowdFlows3 (CF3). The current
development of CF3 is to a large extent influenced by the needs of its use in EMBEDDIA, research
dissemination and teaching.

The main idea with an explanation of its features is provided in Section 2.1. The reasons for using
ClowdFlows in EMBEDDIA are explained in Section 2.2. In Section 2.3 we introduce the latest public
version of the platform in a bit more detail.

1https://cordis.europa.eu/project/id/296703
2https://cordis.europa.eu/project/id/611733
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2.1 Background

ClowdFlows (Kranjc, Podpečan, & Lavrač, 2012) is an online data processing platform with a graphical
user interface that can run in any browser and does not require local installations. It was made to
support data analytics and machine learning in the cloud. The user interface allows combination of
software components (called widgets) into functional workflows, which can be executed in the cloud,
stored, and shared.

Tools for composition of functional components into workflows often use visual programming for their
user interface, which makes them suitable also for non-experts by representing complex procedures
as sequences of simple processing steps. ClowdFlows also employs such an interface and can be
compared to other data mining workflow management tools, such as Weka (Witten & Frank, 2005),
Orange3 (Demšar et al., 2013) and RapidMiner (Mierswa, Wurst, Klinkenberg, Scholz, & Euler, 2006;
Hofmann & Klinkenberg, 2016). The ClowdFlows environment, compared to other existing workflow
processing tools and platforms has several advantages but its main distinctive feature is its pure Web
application design, which allows use in Web browsers without the need for any kind of additional soft-
ware installation. ClowdFlows is open source software, it allows for workflow sharing at the ClowdFlows
instalation site itself thus making them always available (unlike the most widely spread platforms) and
makes workflows easy to compose and execute. Sharing of workflows is a feature already implemented
at the myExperiment portal (Roure, Goble, & Stevens, 2009), or at the ever more useful and popular
OpenML initiative4 (Vanschoren, Van Rijn, Bischl, & Torgo, 2014), which allow the users to publicly
upload and share their workflows. However, the users that wish to execute or edit these workflows
must still install specific software in which the workflows were designed. Remote workflow execution is
also employed by RapidMiner on the RapidAnalytics server. This allows the execution on servers and
data sharing with other users. But also in this case, the client software must be installed on the user’s
computer.

There are two ways to use ClowdFlows: (i) use of the publicly deployed version and (ii) use and devel-
opment of the local version. For the first kind of use, it suffices to visit the published URL with a Web
browser, while for hosting of a dedicated platform and its development, one must download the code and
set the hosting infrastructure. For mere use of the existing components and development and execution
of workflows, the publicly deployed version is more appropriate. This instantiation of ClowdFlows runs
on a dedicated server and its latest public version is available at:

http://cf3.ijs.si

In order to use it, no installation is needed as it runs in a Web browser. Its home page is shown in
Figure 1 . This online version is regularly updated from the common code base, whenever its state is
considered stable.

2.2 Purpose in EMBEDDIA

The main purpose of employing a visual workflow composition platform like ClowdFlows in EMBEDDIA
is to cater to the needs of users that are not familiar with programming, but would still like to use the
methods that are developed in EMBEDDIA on their own data or would benefit from having the ability to
experiment with parameters and methodological alternatives. Most of the state-of-the-art solutions in
domain of text analysis and natural language processing are provided in form of command line tools,
programming language libraries or Web services. These kinds of implementations offer flexibility and ef-
ficiency of use, which are essential for their application in demanding real-world tasks or their reuse and
integration into more complex solutions or experiments. However, while use of such implementations
is seamless for people with programming skills, it represents a hurdle for potential users that lack the
necessary technical knowledge. There are many users of this kind in domains of research and practice
that are relevant for EMBEDDIA: from linguistics to social sciences and journalism. A benefit of visual

3Also supports work with textual embeddings: https://orange.biolab.si/blog/2020/2020-10-15-document-embedders/
4https://www.openml.org
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Figure 1: ClowdFlows home page.

workflows is also their representation of processes, which is done in a way that is to some people more
understandable than programming code and therefore serves also didactic or explanatory purposes.
In case of ClowdFlows, of course, the use is further simplified by the fact that such workflows can be
executed, explored and redesigned without any kind of client-side installation.

The second reason for using ClowdFlows in EMBEDDIA is to simplify sharing of developed methods and
experiments. Namely, workflows in ClowdFlows can be made public, which allows anyone to inspect,
re-run and build upon them. This allows for easy reimplementation, transparency and replicability of
experiments, which are all important for dissemination of our work in the research community.

Finally, ClowdFlows was a tool of choice also because of our substantial development experience
with the platform, which allows for providing support for specific demands of EMBEDDIA and its so-
lutions.

2.3 ClowdFlows3

The latest generation of the ClowdFlows platform is named ClowdFlows3. This is the latest stable version
that is currently being developed. There are numerous workflows that were developed with specific com-
ponents of the previous generation of the platform, so the previous generation platform is still maintained
at: http://clowdflows.org/

ClowdFlows2 was a short-lived development version, which was never publicly deployed and is not an
official version. It was meant to address some inefficiencies of data interchange and some issues of
the backend-frontend relation, but with backwards compatibility (to allow all the workflows that were
developed for the first version to be transferred seamlessly to the new one), which proved to be a major
stumbling block. ClowdFlows3 was therefore developed anew.

As of ClowdFlows3 the platform became modular. The backend and the frontend are now completely
separated. They communicate through a well-defined API exposed by the backend. The frontend is
written in AngularJS while the backend is written in Python and Django. The backend consists of the
main module named clowdflows-backend which provides the backbone, and a number of modules that
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performs the actual work and reside in separated packages5 such as:

• cf_core which provides core utilities and widgets;

• cf_text_embeddings which provides text embeddings componenents;

• cf_data_mining which provides data mining components using the scikit-learn library;

• rdm which provides components for relational data mining, etc.

ClowdFlows3 has also a new workflow engine, which does not necessarily store data to the database at
each step of the execution (at each widget). Which steps get stored and which not can now be decided
by the user (by pressing a database sign at the selected widget). These changes to the workflow engine
speed-up execution and were mainly made to accommodate execution of EMBEDDIA workflows, which
operate with large datasets and exchange a lot of parameters among their components.

In comparison with older versions, ClowdFlows3 supports two modes of deployment: (a) as a Django
project and (b) using Docker. The former is suitable for programmers developing new packages or
improving existing ones while the later is suitable for end users who just want to run ClowdFlows3 on
their own infrastructure with minimal effort.

2.3.1 Brief instructions for using ClowdFlows3

The opening screen of ClowdFlows is shown in Figure 1. If a user is not logged in ClowdFlows already,
any action on this screen presents the registration and log-in view as shown in Figure 2. Existing
users can log in ClowdFlows there, while new users can register as ClowdFlows users by filling in the
registration form.

Figure 2: Registration and log in page.

After logging in, one can select to try the tutorial, construct a new workflow from scratch, or explore
either the collection of our own workflows or the collection of the publicly available ones.

5These are regular Python packages that can be installed using pip, the Python package manager. Some of them can also be
used outside of ClowdFlows.
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Figure 3: The main screen with workflow development canvas and widget collection.

The workflows get constructed on the main view with the workflow canvas, widget collection and control
buttons, which is shown in Figure 3. The widgets get put on the canvas by either selecting them in the
collection and dragging them to the canvas or double clicking them in the collection. On the canvas,
the outputs of the widgets can get connected with inputs of other (suitable) widget in a way that allows
sensible data-flow. A workflow with connected widgets in ClowdFlows is shown for example in Figure 7
on page 15. Connections among the widgets are made by clicking on the output of one widget and
input of another. Inputs to a widget are represented visually as light blue rectangles on the left side of
the widget and outputs are represented as such rectangles on the right. The rectangles have a short
label that indicates the name of the widget’s input or output, such as the label txt of the ML BERT for
hate speech widget in Figure 4. Connections can be removed by right-clicking on the links and selecting
Remove.

Figure 4: Exemplary connected widgets.

A workflow can be executed in its entirety by clicking the play control button. The widgets that are
already executed get a green check-mark beneath them (see Figure 6). Such widgets will not get
executed again, if the widgets leading to them or their parameters do not change. In such situations,
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only the new widgets or widgets that are affected by any change in the workflow get executed. Individual
widgets can be marked to re-execute by right-clicking them and selecting Reset. Also entire workflow
can be marked this way by selecting Reset workflow at any widget. Workflows can also be executed only
partly. If we right-click on a widget and select Run, only the widgets that are necessary for providing the
input to this widget get executed.

Widgets can also be set to store their results in a database which is particularly useful when working
with lenghty calculations and large corpora, such as the ones often used in EMBEDDIA. Storing to a
database is set by clicking on a database cylinder symbol, which becomes yellow to indicate that results
of such a widget will be stored (see for example the widget ML BERT for hate speech in Figure 4), so the
widget will not get executed again in full or partial workflow executions, unless the widgets that provide
its inputs were changed.

Workflows are auto-saved, but can be also saved explicitly and named, by pressing the save control
button. All the user’s workflows are available in the view that the user gets upon pressing Your workflows
in the top right corner of the main view window. This view outlines the user’s workflows, with workflow
management options as shown in Figure 5. There, the user can open a selected workflow for editing,
open its copy, delete a workflow, export it to JSON, or make it public. Public workflows can be shared
by distributing their URL, which allows every ClowdFlows user with such an URL to have their own copy
of the shared workflow and use it further. Public workflows also appear in the Explore workflows view of
all the ClowdFlows users.

Figure 5: Windows with user’s workflows.

2.3.2 Instructions for deployment

The infrastructure of ClowdFlows consists of several services, which need to be installed on a server in
order to deploy the application.

These are the services:

ClowdFlows Frontend
The frontend is written in JavaScript using the Angular Framework. The frontend consists of markup
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files, stylesheets and script files that all run on the client’s browser. These files must be served with
a Web server in order to be accessible to end users. The code for the frontend is located on GitHub:
https://github.com/xflows/clowdflows-webapp.

ClowdFlows API Server
The API server is the backbone of ClowdFlows and processes all requests made by the user and inter-
acts with the distributed workers and the database. It is written in Python using the Django Framework.
The code for the backend is hosted on GitHub: https://github.com/xflows/clowdflows-backend.

WebSocket server
The WebSocket server is required to provide real-time updates to the graphical user interface. These
updates include workflow execution status updates and information about the workflows themselves
(e.g. positions of the components). The repository for the backend includes the code for running the
WebSocket server.

Distributed Workers
These workers execute the workflow components. The scalability of the ClowdFlows platform is directly
influenced by the number of distributed workers running concurrently. During larger load times it is
sensible to run more workers to ensure platform stability and functionality. The repository for the backend
includes the code for running the distributed workers.

Redis
This is an in-memory data store used as a cache and message broker. The workers are using it to
communicate with each other.

Relational database
Workflows and the data on them are saved in a relational database. The platform itself is database
agnostic and supports the following databases: PostgreSQL, MySQL, Oracle, MariaDB and SQLite. In
our deployments we use PostgreSQL because of its DDL (data definition language) transaction support,
which is crucial to allow updates of the application while some users might be using it.

Specific deployment instructions
There are two possibilities to deploy and run ClowdFlows: as a Django project or using Docker. The
former is suitable for programmers developing new packages or improving existing ones; the latter is
suitable for end-users who want to run ClowdFlows on their own infrastructure. Both of these meth-
ods require all the previously described services running either on a development computer or on a
production server.

The services can be run using Docker so getting a development version up and running is a matter
of cloning a repository containing configuration files and running a single command. The configuration
files are written for the Docker Compose tool. Compose is a tool for defining and running multi-container
Docker applications. We have written a YAML file that configures all ClowdFlows’ services and created
a repository where it is located (https://github.com/xflows/clowdflows-docker). Then, with a single com-
mand, all the services from the configuration are created and started.

These configuration files can be augmented to also include a reverse proxy to expose the client facing
services behind a domain name and automatically acquire a SSL certificate for secure communica-
tion. Such an example configuration can be found on the GitHub repository for the cf3.ijs.si installation
(https://github.com/xflows/cf3.ijs.si), where a registered user can create, run, and share scientific work-
flows. In order to migrate this installation to another server or server cluster it is only required to change
all references to this domain name in the configuration file to a custom domain name where a new in-
stallation will be served from. A single command runs all the services necessary to serve a production
deployment of ClowdFlows.
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3 EMBEDDIA components
The software components that form units of graphical workflows are denoted as widgets. This section
outlines the widgets that were either developed in the scope of the work in the EMBEDDIA project, or
were developed to support the workflows that are aimed at showcasing the concepts and solutions of
EMBEDDIA.

3.1 Document based embedding

The BERT widgets introduced in this section perform tokenization internally, so the inputs to them are
documents, which is why they are listed as document embedding widgets.

BERT
A widget that implements the pre-trained BERT : Bidirectional Encoder Representations from Trans-
formers (Devlin, Chang, Lee, & Toutanova, 2018).

BERT Embeddia
A widget that implements a trilingual BERT model, trained on Croatian, Slovenian, and English data.
The neural network weights and configuration files in pytorch format (ie. to be used with pytorch library)
are available online6.

ML BERT for hate speech
A widget that implements a multilingual BERT for hate speech classification. The model was trained
on the training subset of the OLID dataset. It was evaluated on the test subset of the OLID dataset
(Zampieri et al., 2019) using their official gold labels and on the test subset of the GermEval 2018
dataset (Wiegand, Siegel, & Ruppenhofer, 2018). In both datasets, only first level annotations (from
the three-level hierarchical annotation scheme), which classify tweets into offensive and not offensive
classes, were used. The second level annotations then categorize offensive language into targeted or
untargeted, and the third level identifies the target. Input into this widget is a list of documents (strings),
such as the one created by the Load corpus from CSV widget. There are two outputs: lab contains the
list of prescribed labels (’hate’ or ’normal’) for each document, and prb contains the list of probabilities
associated with the labels for each document. Examples of inputs and outputs for this widget are
presented in Figure 6.

Figure 6: Input and output examples for the ML BERT for hate speech widget.

6https://www.clarin.si/repository/xmlui/handle/11356/1317
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ML BERT for sentiment classification
A widget that implements a multilingual BERT for news sentiment classification. The model was trained
on the Slovenian news sentiment dataset (Bučar, Žnidaršič, & Povh, 2018) using a two-step training
approach, described in (Pelicon, Pranjić, Miljković, Škrlj, & Pollak, 2020b). The training of the model
was done using labels on the document and paragraph levels. The model was subsequently tested
on the document-level labels of the Croatian news sentiment dataset (Pelicon, Pranjić, Miljković, Škrlj,
& Pollak, 2020a) in a zero-shot setting. The possible labels prescripted to documents are ’positive’,
’negative’ and ’neutral’. In the deployed implementation, there is a minor difference with respect to the
approach described above - shortening of too long documents is done in a way to consider only the first
parts of documents, while in the original approach, a portion from the start and the end is retained. This
change was done to simplify and speed-up the code. The inputs and outputs of this widget are of the
same kind as the inputs and outputs of the ML BERT for hate speech.

Doc2Vec
A widget that implements Doc2vec - an unsupervised algorithm to generate vectors for sentences, para-
graphs and documents. The algorithm is an adaptation of Word2Vec which can generate vectors for
words.

LSI
A widget implementing a fast truncated SVD (Singular Value Decomposition). The SVD decomposi-
tion can be updated with new observations at any time, for an online, incremental, memory-efficient
training.

3.2 Sentence based embedding

ELMo
ELMo is a deep contextualized word representation that models complex characteristics of word use
(e.g., syntax and semantics) and how these uses vary across linguistic contexts (Peters et al., 2018).
The word vectors are based on a deep bidirectional language model, which is pre-trained on a large
text corpus. They were successfully used in solutions to various natural language processing prob-
lems.

ELMo Embeddia
ELMo language model (https://github.com/allenai/bilm-tf) used to produce contextual word embeddings,
trained on large monolingual corpora for 7 languages: Slovenian, Croatian, Finnish, Estonian, Latvian,
Lithuanian and Swedish. Each language’s model was trained for approximately 10 epochs. Corpora
sizes used in training range from over 270 M tokens in Latvian to almost 2 B tokens in Croatian. About 1
million most common tokens were provided as vocabulary during the training for each language model.
The model can also infer out-of-vocabulary words, since the neural network input is on the character
level.

Universal Sentence Encoder
The Universal Sentence Encoder encodes text into high dimensional vectors for use in text analysis (Cer
et al., 2018). The model is trained and optimized for greater-than-word length text, such as sentences,
phrases or short paragraphs. It is trained on a variety of data sources and a variety of tasks with the
aim of dynamically accommodating a wide variety of natural language understanding tasks.

3.3 Word based embedding

GloVe
GloVe provides vector representations of words with unsupervised learning (Pennington, Socher, &
Manning, 2014). Training is performed on global word co-occurrence statistics from a given corpus.

Word2Vec
Word2vec is a group of related models that are used to produce word embeddings. These models are
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shallow, two-layer neural networks that are trained to reconstruct linguistic contexts of words. Word2vec
takes as its input a large corpus of text and produces a vector space. Word vectors are positioned in
the vector space so that words that share common contexts in the corpus are located closely together
in the word space.

fastText
fastText is an open-source library for learning of word embeddings and text classification (Bojanowski,
Grave, Joulin, & Mikolov, 2016; Joulin, Grave, Bojanowski, & Mikolov, 2016).

fastText Croatian
CLARIN.SI-embed.hr contains word embeddings induced from a large collection of Croatian texts com-
posed of the Croatian Web corpus hrWaC and a 400-million-token-heavy collection of newspaper texts.
The embeddings are based on the skip-gram model of fastText trained on 1,852,631,924 tokens of run-
ning text for (1) 1,742,837 lowercased surface forms (e.g., "hrvatske") and (2) 1,404,515 lowercased
lemmas with added part-of-speech information (e.g., "hrvatska#Np").

fastText Embeddia
These are fastText embeddings trained on Slovenian Gigafida 2.0 corpus. A skipgram model was trained
with default hyperparameters on 8 threads, except for the following two changes: dim parameter was
set to 300 and minCount parameter was set to 20. That is, we calculated 300-dimensional word vectors
of every word that appears at least 20 times in the corpus. Each line in the .vec file consists of the word,
followed by the 300 dimensional vector, all fields are space separated. The first line (642655 300) tells,
there are 642655 word vectors of 300 dimensions.

fastText Slovenian
CLARIN.SI-embed.sl contains word embeddings induced from a large collection of Slovene texts com-
posed of existing corpora of Slovene, e.g GigaFida, Janes, KAS, slWaC etc. The embeddings are based
on the skip-gram model of fastText trained on 3,557,125,771 tokens of running text for (1) 2,466,596 low-
ercased surface forms (e.g., "slovenije").

3.4 Tokenizers

Punkt Sentence Tokenizer
This tokenizer divides text into a list of sentences by using an unsupervised algorithm to build a model
for abbreviation words, collocations, and words that start sentences. Before use, it must be trained on a
text collection in the target language.

Regex Word Tokenizer
The regex word tokenizer is a simple tokenizer that tokenizes a document with ’\w+’ regex to words. It
can also transform document text to lowercase.

Tok Tok Word Tokenizer
The tok-tok tokenizer is a popular simple multilingual tokenizer (Dehdari, 2014).

3.5 Utility widgets for embeddings

Concatenate embeddings
This widget concatenates collections of embeddings. The number of its inputs dynamically increases
to allow for an arbitrary number of collections to be concatenated together. For example, in Figure 7
we can see a concatenation of four collections. If a fifth collection would be added, a sixth input to this
widget would appear to allow further additions.

Create Dataset
Combines embeddings and labels to a dataset of type Orange Data Table.
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Create scikit bunch
Creates a scikit bunch. This is a temporary solution because scikit bunch is deprecated as of 0.22.

Export dataset
Exports embeddings to a file.

Import dataset
Import dataset from a NumPy matrix of embeddings and NumPy matrix of labels.

Language
This widget can be used to set a language to multiple Text Embeddings widgets.

Load Corpus from CSV
This widget loads a file and extracts the document texts and labels into two lists. You can specify to skip
the first header row and specify the delimiter. In the case of tab-separated file, use \t as a delimiter. You
can also define the text and label columns (counting of the columns starts with 1).

Token Filtering
Token Filtering widget filters uninformative characters. The default filter filters:

!, ", #, $, %, &, "", (, ), *, +, ,’, -, ., /, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, :, ;, <, =, >, ?,
@, [, \, ], ^, _, {, |, }.

The user can specify custom tokens to filter, which need to be separated by a new line. Custom tokens
override the default filter.

3.6 Selection of other utility widgets

In the following we list descriptions of some additional utility widgets, which were not developed for
working with embeddings, but they appear in the workflows shown in Section 4. Some of them (Fil-
ter data by label and Join list of strings) were developed specifically to cover the needs of EMBEDDIA
workflows.

Load file
Uploads a file to the ClowdFlows server. Outputs the file name on the server.

Display String
A trivial widget that displays a string from its input.

Filter data by label
This widget filters the data according to a given label. The inputs are dat: a list of data items, and lab:
a corresponding list of labels. The label to use for filtering is a parameter of the widget, which can be
provided by the user upon double-clicking on the widget. Result is a list of only those data items that
have a specified label.

Join list of strings
This widget takes a list of strings from its input and concatenates them into a single string with spaces
put between the list items.

Word cloud
Displays a word cloud based on the input string. If the string is a named line documents file (each line
starts with !classname) a wordcloud will be displayed for each class. Notice: the Word cloud widget has
a specific requirement: it only works properly, if the (string) output of the widget that provides it with
input is set to store the result. For example, see the store setting (yellow stack) in widgets Join list of
strings in the workflows in Figures 8 and 9.

14 of 20



ICT-29-2018 D7.4: ClowdFlows selected components

4 EMBEDDIA workflows
In this section we present some exemplary workflows, that is, entire experiments or solutions that in-
corporate and demonstrate the use of several software components. The first presented workflow is
primarily a demonstration of experimentation possibilities in ClowdFlows, but it also contains some of
the early results of the work in EMBEDDIA. The next two workflows present how a software component
from EMBEDDIA can be used to form a ready-made software solution or a basis for a study.

4.1 Embeddings experimentation workflow

The workflow embedding use test that is shown in Figure 7 and shared at: https://cf3.ijs.si/editor/91
demonstrates how ClowdFlows can be used to experiment with variuos combinations of machine learn-
ing algorithms and sets of embeddings.

Figure 7: Workflow embedding use test that demonstrates experimentation with the use of different embeddings.

In this workflow we first load a file that contains news (in Slovene) and their sentiment as prescribed by
the annotators. As we only need the text and sentiment fields from this CSV file that contains also some
other fields (such as news title, etc.), the Load Corpus from CSV widget is employed, which filters the fields
of interest into separate lists of texts and their associated sentiment labels. The text is used as input in
a number of methods that create embeddings. These are then concatenated together and represent a
feature space for the machine learning problem. These features and the labels (that go also through a
suitable transformation widget) are used by the Create scikit bunch widget to create a scikit-learn dataset.
Namely, the machine learning components that follow are based on the scikit-learn7 library. The dataset
is then split randomly into a training set and test set. The Build model widget uses a (training) dataset
and a learner algorithm to learn a model - in this case a classifier. The learned model is applied to the
test part of the initial dataset in the Apply model widget in order to evaluate its performance. The output is
used by Classification statistics, which provides various performance measures of this combination.

7https://scikit-learn.org
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By connecting various learners, like the Dummy classifier instead of Support Vector Machines Classification,
one can test performance of various machine learning methods with the provided collection of embed-
dings. By adding or removing embedding creation methods one can also analyse the effect of various
embeddings (individual, or various combinations) on classification performance.

4.2 Multilingual hate speech and sentiment detection workflows

In the following we present two similar workflows that demonstrate the use of the ML BERT for hate speech
and the ML BERT for sentiment classification widgets.

Figure 8: Workflow that shows how the ML BERT for hate speech widget and some supporting widgets can be
used to classify and study hate speech in text. An example of use with the first 1000 comments from
the April 2017 NYT comments dataset is shown. The top word cloud is done from comments that were
classified as ’normal’ and the bottom word cloud is made from comments that were classified as ’hate’.

The hate speech detection workflow8 from Figure 8 first loads a file of news comments, specifically the
first 1000 comments from April 2017 from the New York Times Comments dataset9. This data is not
labeled, so the Load Corpus from CSV widget is only used to filter out the comment texts. The labels
are then provided by the ML BERT for hate speech. The original texts are then filtered according to the
labels provided, in order to obtain separate collections of either hate and normal speech. Finally, the

8https://cf3.ijs.si/workflow/133
9This dataset is available at: https://www.kaggle.com/aashita/nyt-comments under CC BY-NC-SA 4.0 license which ap-

plies also to the sample used here.
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collections (lists) of comments are joined together into simple text which is represented in form of a
word cloud.

The sentiment classification workflow10 from Figure 9 uses a dataset of news articles from the 24sata11

news site. This dataset contains also sentiment labels, but instead of these, we use the ones provided
by the ML BERT for sentiment classification widget. Similarly as in the hate speech detection workflow, the
data is filtered according to these labels and the word clouds are created. The word clouds of the articles
that were classified as expressing a positive or a negative sentiment are shown in the middle of Figure 10.
The word clouds point to an issue in their input data processing - namely they are not very indicative
of the sentiment and mainly contain the so-called stop-words, words which are very common and do not
contain much meaning. While removal of such words might not be wise before the classification step,
it makes sense before the word cloud visualization. There is, however, no stop-word removal widget in
ClowdFlows yet. That is why we also added the display of the classified article texts. The positive ones
are on the let part of Figure 10 and indeed talk about a famous person enjoying on the beach, some
amazing achievements of Croatian sportsmen12 and similar topics. The articles classified as negative
are on the opposite side of the picture and talk about casualties of bad weater in Asia, drunk driving, etc.
The results indicate that the ML BERT for sentiment classification widget classifies the texts well, although
it was tuned on Slovenian news and is employed in this workflow on texts in Croatian language.

Figure 9: Workflow that shows how the ML BERT for sentiment classification widget can be used to classify text
with respect to sentiment. An example of use with a collection of news articles from the Croatian news
site 24sata is shown. Some results of this workflow are shown in Figure 10.

These two workflows can be altered and extended in various ways to study other features of the clas-
sified collections of comments and news, to test other classification approaches or to simply run the
workflows on other datasets.

10https://cf3.ijs.si/workflow/137
11https://www.24sata.hr/
12One might argue that due to frequency of such events these texts should be considered normal or neutral in Croatia.
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Figure 10: Results of the sentiment detection workflow shown in Figure 9. Articles that were classified as express-
ing positive sentiment are shown in display on the left and are represented by the top word cloud. Texts
classified as negative are in the right display and have a corresponding word cloud on the bottom.

5 Conclusions and further work
This document introduced the online platform that is used for dissemination of EMBEDDIA methods
and solutions among the research community and other interested public prone to experimentation.
We outlined the currently integrated software components from EMBEDDIA and presented illustrative
workflow examples to showcase the potential of this kind of presentation of results.

To further improve the suitability of ClowdFlows for dissemination of methods that are developed in
EMBEDDIA and similar projects, we will first improve its documentation and develop more ready-made
solutions. Some additional common utility widgets also need to be added, such as stop-word filters.
Afterwards, we plan to engage interested target users to provide feedback, needs and preferences to
which the platform should be adapted.

In further work on task T7.4 we will keep adding relevant outcomes from EMBEDDIA as widgets to
ClowdFlows. A lot more focus will be on development of workflows, which will be made to serve two
main purposes: to demonstrate the results of the work in the scope of the EMBEDDIA project, and to
offer interesting and valuable solutions to researchers and practitioners in fields of research that are
to be supported by EMBEDDIA. The final collection of EMBEDDIA components and workflows to be
integrated in ClowdFlows in the scope of the project will be reported in Deliverable D7.6, but if the aims
of this task will be reached, new workflows based on these components should be actively developed
also long after that.

6 Associated outputs
The work described in this deliverable has resulted in the following resources:
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Description URL Availability
ClowdFlows3 (online Web application) https://cf3.ijs.si/ Public

ClowdFlows3 (server-side code)
backend https://github.com/xflows/clowdflows-backend Public (MIT)
frontend https://github.com/xflows/clowdflows-webapp Public (MIT)

Docker version https://github.com/xflows/clowdflows-docker Public (MIT)
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