EMBEDDIA

Cross-Lingual Embeddings for Less-Represented
Languages in European News Media

Research and Innovation Action

Call: H2020-ICT-2018-1

Call topic: ICT-29-2018 A multilingual Next generation Internet

Project start: 1 January 2019 Project duration: 39 months

D7.6: Reusable EMBEDDIA components available through the
ClowdFlows web interface (T7.4)

Executive summary

ClowdFlows is an open source online data science platform for developing and sharing of data
mining and machine learning workflows that operates in Web browsers, with no need for client-side
installation. It allows visual programming from software components and is therefore suitable for
demonstration purposes and offering solutions to users also outside computer science. An introduction
to ClowdFlows and the descriptions of EMBEDDIA components that were integrated in the first two
years of the project duration were presented in Deliverable D7.4. In this deliverable, we present the
software components and the workflows developed for various use cases in the last year, together with
the outcomes of platform assessment by the end-users.

Partner in charge: JSI

Project co-funded by the European Commission within Horizon 2020

Dissemination Level

\ PU - Public PU
\ PP ' Restricted to other programme participants (including the Commission Services) | -
\ RE - Restricted to a group specified by the Consortium (including the Commission Services) | -
\ CO - Confidential, only for members of the Consortium (including the Commission Services) =

This project has received funding from the European
Union’s Horizon 2020 research and innovation
programme under grant agreement No 825153

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Deliverable Information

Document administrative information

Project acronym: EMBEDDIA

Project number: 825153

Deliverable number: D7.6

Deliverable full title: Reusable EMBEDDIA components available through the ClowdFlows web
interface

Deliverable short title: EMBEDDIA components in ClowdFlows

Document identifier: EMBEDDIA-D76-EMBEDDIAComponentsinClowdFlows-T74-submitted

Lead partner short name: = JSI
Report version: submitted

Report submission date: | 28/02/2022

Dissemination level: PU

Nature: R = Report

Lead author(s): Martin Znidarsié (JSI), Vid Podpeéan (JSI)

Co-author(s): Janez Kranjc (JSI), Andraz Pelicon (JSI), Senja Pollak (JSI)
Status: _ draft, _ final, x submitted

The EMBEDDIA Consortium partner responsible for this deliverable has addressed all comments re-
ceived. Changes to this document are detailed in the change log table below.

Change log
number
13/07/2021 v0.1 Martin Znidarsi¢ (JSI) initial draft
24/09/2021 v0.2 Vid Podpecan (JSI) fastText training widgets descriptions
04/11/2021 v0.2 Vid Podpecéan, Andraz Pelicon, | services widgets descriptions
Janez Kranjc (JSI)
05/11/2021 v0.3 Martin Znidarsi¢ (JSI) workflows draft text
12/11/2021 v0.4 Martin Znidarsi¢ (JSI) widget descriptions update
30/01/2021 v0.5 Vid Podpecan (JSI) additional descriptions
30/01/2022 | v0.5 Martin Znidarsi¢, Senja Pollak = workshop description
(JSI)
31/01/2022 v0.5 Martin Znidarsi¢ (JSI) corrections, conclusions
02/02/2022 v0.6 Marko Robnik-Sikonja (UL) internal review
02/02/2022 v0.7 Marko Praniji¢ (TRI) internal review
21/02/2022 v0.8 Vid Podpecan (JSI), Martin | final corrections and additions
Znidarsié (JSI)
26/02/2022 | v0.9 Nada Lavra¢ (JSI) Quality control
28/02/2022 final Martin Znidarsi¢, Senja Pollak = Additons after quality control
(JSI)
28/02/2022 submitted | Tina Anzi¢ Report submitted

20of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Table of Contents

LS L1 (e o [0 T3 1 o 4
2. New EMBEDDIA components in CIOWAFIOWS........ccccemicuiminnimmiisis i sssessnnns 4
2.1 Support for training fastText MOAEISoooiiii i 5
P2 T B [= 110 £= T [ST PPPP TR PPPPPTTRPPPPIN 5
2.1.2 FastText NeighbOriNg WOIGSuuuiiiiiii et ettt e e e e e eees 6
2.1.3 Evaluate word expressions With fastText.............ooiiiiiiiii i 7

2.1.4 Apply trained fastTeXt MOTEISiiin et 7

2.2 Selected Web service based COMPONENTS.ccciiiiiiiiiiiiici e 8
P22 B VU (g [o] g o] (o] 1T o PP 8
2.2.2 COMMENT @NAIYZET ...c.e ettt ettt et e et e et et e e e 8
2.2.3 KeYWOId DELECHION . .ceeieeiieie et ettt e et e e e e e e e e e a e 8
2.2.4 Named Entity RECOGNITIONuuiitieei e e e 9

P IS U o] oTo] g AL To [0 1= - T PR PRPR 10
2.3.1 Load COrPUS frOM ZIP ... ettt et e 10

P T [(=T g I =0 U= o PP 11
2.3.3 DEIOKENIZE ...t 11

3. Selected EMBEDDIA WOIKFIOWS ...coiiiioierieeirerearesssssesessssessssmsessssmse s s sssessssnssssssmessssssssssssnsessssnesssnns 1
3.1 TOKeN freqQUENCY @NAIYSIScoiiiiiieiiiiee ittt 11
3.2 Word neighbors in a trained fastText Model............ccueii i 12
3.3 Extended embeddings experimentation ... 13
3.4 Application in the financial text analysis...........ccccoiiiiiiiiiii 13
3.5 Author and commeNnt @NalYSISuviiiiiiiii e 14
3.6 Workflow for hands-on experimentation ... 15
N O Yo =TT T o oY o 15
ST 0 o 1] [o 18
L X0 o7 = 1 (=0 01 1 o £ 19

Appendix A: Preliminary experimentation with combinations and extensions of forward-looking
sentence AdeteCtioN WOIAIISTS.....cccceerrsrsrmnnmreerrrrrreere e e e re s s ssssss s s s es e s s ssmmnnmsnn e e e r e e e e e nnereeseessansnnnnnnansn 21

List of abbreviations

Csv Comma separated value

D Deliverable

LSI Latent Semantic Indexing

LR Learning Rate

ML Bert Multilingual BERT

T Task

TEXTA MLP TEXTA Multilingual Language Processor

TNT-KID Transformer-based Neural Tagger for Keyword Identification
WP Work Package

3of 25

O

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

1 Introduction

Software that is developed in the scope of EMBEDDIA offers functionalities that are interesting and of
value to various users, from professional users and software integrators, to researchers and practitioners
in various disciplines of science. In order to provide access and ability of experimentation with our
solutions also to the users that are not sufficiently proficient in programming to be able to exploit our
libraries and APIs, we provide selected software components also in the form of software components
of a visual programming platform named ClowdFlows (Kranjc et al., 2012; Kranjc, 2017). Availability of
our software components in ClowdFlows is primarily intended to allow their use by practitioners outside
computer science that work with natural language, for example by researchers in humanities. With
its graphical user interface, modular component design and ease of sharing of developed solutions,
ClowdFlows is well suited for experimentation, demonstration purposes and use in education.

The work presented in this document was performed the scope of Task T7.4 in EMBEDDIA’s work-
package (WP7) that is focused on disseminating and sharing the results of the project with various
potential users. Task T7.4 is aimed at ensuring sustainability and re-usability of specific components
and solutions also beyond the media context by making them available in ClowdFlows. The concepts
and components considered in T7.4 originate from most of the other work-packages in the project and
tasks that resulted in ready to use software, particularly T1.1, T2.2, T3.1, T3.2, T4.3 and T6.2.

The ClowdFlows platform introduction, the intermediate state of integration of EMBEDDIA’s software
components and initial workflows were described in Deliverable D7.4. In this deliverable we report
on the final selection, implementation and integration of components and workflows, as well as on
the feedback of the target users. Apart from listing the previously covered components, we do not
describe the components presented in D7.4, and provide descriptions only for the ones developed
afterwards. Therefore, for a complete overview of integration of EMBEDDIA components in ClowdFlows,
both deliverables (D7.4 and this one D7.6) should be considered.

The rest of this deliverable is organized into four sections. In Section 2, we list previously existing
widgets and describe the ones added since D7.4. Selected public workflows developed using these
components are described in Section 3. Section 4 describes the workshop organized to demonstrate
EMBEDDIA ClowdFlows components to target users and to collect their feedback. Conclusions are
made in Section 5.

2 New EMBEDDIA components in ClowdFlows

In this section we present the widgets (software components that form units of graphical workflows)
developed in the EMBEDDIA project. We first list the widgets that were already reported in Deliverable
D7.4 and then focus on newly added widgets in the subsequent subsections.

In D7.4 we reported on the following widgets:

- BERT « Universal Sentence Encoder
« BERT Embeddia - GloVe

- ML BERT for hate speech - Word2Vec

« ML BERT for sentiment classification - fastText

« Doc2Vec - fastText Croatian

- LSI - fastText Embeddia

- ELMo - fastText Slovenian

« ELMo Embeddia + Punkt Sentence Tokenizer

4 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

- Regex Word Tokenizer - Load Corpus from CSV
+ Tok Tok Word Tokenizer - Token Filtering

- Concatenate embeddings . Load file
« Create Dataset]]

. - Display String
- Create scikit bunch

- Export dataset Filter data by label

+ Import dataset « Join list of strings

- Language - Word cloud

2.1 Support for training fastText models

In the scope of deliverable D7.4 we introduced a number of components that can provide pretrained text
embeddings, for example ELMo, Word2Vec, and various pretrained BERT and fastText models. These
general pretrained models are useful in many contexts. However, the models trained on specific corpora
are also of great importance, particularly for very specific tasks. Training of new embedding models
requires huge datasets, significant computational power, and takes large amounts of time. Large dataset
transfers and processing time latencies do not fit well the interactive online scenarios in ClowdFlows.
Nevertheless, to enable experimentation with custom embeddings models, we developed a component
that builds new embedding models with the fastText algorithm, which is one of the most efficient and least
computationally demanding methods of this kind. In order to ensure near real-time training of a fastText
model it is recommended that the input corpus does not exceed 2M words or approximately 10MB
of raw input text. While this seems tiny in comparison with typical corpora used in training embedding
models, it turns out that typical ClowdFlows end users from the digital humanities domain often work with
even smaller and very specific corpora such as poetry collections, specialized news articles, etc. (see
Section 4). Therefore, the widget for training fastText models also contains hints how to adjust the default
parameters when training on small corpora. In the following, we describe the software component for
training such models and two additional components that extend the use of fastText embeddings beyond
what was reported in D7.4.

2.1.1 Train fastText

The train fastText widget trains a new fastText model on the input corpus. The resulting model can be
passed on to other widgets to perform specific tasks. The input to this widget is a text corpus, such as
e.g., the results from the Load Corpus from CSV widget. The corpus can be tokenized, lemmatized or
used without such preprocessing steps.

The settings available for the train fastText widget, as shown in Figure 1, are the following:

bucket sets the number of buckets (word and character ngram features are hashed into a fixed number
of buckets);

epoch sets the number of training epochs;

Ir sets the learning rate;

dimension sets the size of word vectors;

window sets the size of the context window;

model sets the type of the unsupervised fasttext model (cbow or skipgram), and

min_count sets the minimal number of word occurrences to take the word into account.

5 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

train fastText

bucket

s (decrease for small data)

Number of epochs (increase for small data
learning_rate

005
Learning rate (increase for small data)

dimension

ord vectors (decrease for small data;

= o5 Size of w

train fastText

model
skipgram v
Unsupervised fasiText model

min_count

Minimal number of word eccurences

Advanced widget's input/output configuration

Figure 1: The train fastText widget and its settings.

Where applicable, a description of a parameters includes a hint whether it is advisable to increase or
decrease the value when the training data is small.

There is an Advanced widget’s input/output configuration link at the bottom of the settings window of each
widget. This opens a form in which we can change the order of inputs or outputs to a widget or change
whether we want an input value to be considered an input (like the txt input shown on the left side of the
widget in Figure 1) or a parameter (to be entered in the settings window such as the one on the right
side of Figure 1).

2.1.2 FastText neighboring words

This widget returns top k neighboring words for each input word, according to the given fastText model.
This way we obtain the words that in the training corpus appear in similar contexts as the provided input
words.

There are two parameters that a user can set for this widget (see Figure 2):
Number of neighbors sets the value of k of the returned neighbors,

Threshold is a parameter for the optional filtering of the neighbor list by edit distance. Namely, depend-
ing on the corpus, the preprocessing, and the used language, the neighbors of a given word can
in some situations consist predominantly of its variations. If such neighbors are not of interest,
we can set the Threshold parameter to a value lower than 1, which will cause filtering out words
similar to the given word. Value of 1 causes no filtering, value of 0 is the strictest filtering and
the values in between cause intermediate levels of filtering. The edit distance-based formula to
compute the similarity between words is defined as 1 — % When the result of this
expression exceeds given threshold the word is considered too similar and is not added to the list
of neighbors.

6 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

fastText neighbouring wards

Thresheold

1.0

([}

[mod] q.c Edit distance threshold (1-no filtering, O-very strict)
[num neighbours
fastText 5

neighbouring words Number of neighbours

Advanced widget's input/output configuration

Figure 2: The fastText neighbouring words widget and its settings.

2.1.3 Evaluate word expressions with fastText

As the fasttext python library does not offer the nearest neighboring functionality for word vectors, this
widget implements it by obtaining vectors of all the words of the model and then applies vector and
matrix operations (normalization and dot product) to compute the result.

This widget computes the result of an expression which uses numerical operations on words (internally
represented as fastText embedding vectors), and returns a list of words that have embeddings which
are the most similar to the numerical vector that represents the result of the expression.

It evaluates vectors of word expressions such as "king - man + woman" using the given fastText model.
Two operators are currently supported: + and -. The results can be converted back to words and filtered
using the specified threshold for the distance measure. As shown in Figure 3, the parameters are similar
as in the case of the neighboring words widget:

Threshold is the edit distance filtering threshold (see explanation in Section 2.1.2).

Result size stands for the desired amount of terms that are the closest to the computed result.

Evaluate word expressions with fastText

Threshold
= 10
I D¢ Edit distance threshold (1-no filtering, O-very strict)
Tl
Result size

Evaluate word

expressions with fastText s

The size of the resulting list

Advanced widget's input/output configuration

Close Apply

Figure 3: The Evaluate word expressions with fastText widget and its settings.

2.1.4 Apply trained fastText models

This widget applies a trained fastText model to a tokenized corpus and returns a matrix with document
embedding vectors. Here, a document embedding is computed as an aggregation of embeddings of all
tokens of the document. The only available setting is:

7 of 25

o

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Aggregation method which defines how the token embeddings are to be combined. It supports aggre-
gation by summation or by average.

apply trained fastText

Aggregation method

[mod] Qﬁ average v
[EoK]

Token embedd

110

s aggreation

apply trained Advanced widg

fastText

ut/output configuration

Figure 4: The apply trained fastText widget and its settings.

2.2 Selected Web service based components

The widgets described in this subsection offer a ClowdFlows interface to selected REST Web services
that were developed in EMBEDDIA. These Web services are described on the EMBEDDIA Media As-
sistant Web page’, and in Deliverable D6.9, and are intended for professional and research use. In
ClowdFlows, they are offered as widgets for demonstration purposes and to make their application and
re-use possible for users that are not proficient in programming and using Web service APIs.

As these widgets call external (to ClowdFlows) Web services, their operation depends on service avail-
ability, connectivity and access limitations.

2.2.1 Author profiling

This widget implements the interface to a service for English and Spanish author profiling that can
determine whether a tweet or comment was written by a bot, male or female based on the system by
Martinc et al. (2019). The widget expects a list of strings as input, even if there is only one string, so
the input must be prepared accordingly. A simple, robust and flexible approach is to use the Create List
widget as in the example shown in Figure 5. The widget does not have any parameters that could be
defined by the user.

2.2.2 Comment analyzer

The Comment analyzer widget is a wrapper around the comment analyzer service developed in EM-
BEDDIA (Pelicon et al., 2021). It classifies the input texts as "OFFENSIVE" or "OK" (see example in
Figure 6). The widget does not have any parameters.

2.2.3 Keyword Detection

This widget is a wrapper for a number of keyword detection services. Unlike the Author profiling and
Comment analyzer widgets, this widget expects a simple string as input, as provided for example by the
Create String widget. Particular services can be selected as a user defined parameter Analyzer. RaKUn
is implementing the unsupervised system by Skrlj et al. (2019), while TNT-KID (Martinc et al., 2021)
was trained for several languages, where the Estonian and Latvian versions implement the TNT-KID
extension with tagset matching by Koloski et al. (2021).

Thttps://embeddia.texta.ee/

8 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Create String

String txt Qg cls obj | &4 g
That was a brave thing to do e . tr ° ~
P 7 Author profiling Object viewer
v v
Advanced widget's input/output configuration Create String
v

: S .
Close [T el Iﬂ s

['female', 'bot']

Create String

String Crea‘lle List Close Copy to clipboard

=)
There are more and more of us /oSt

Create String

Advanced widget's input/output configuration .

Close W

Figure 5: The Author profiling widget in an example of its use. The widget expects a list of strings even in case of
a single string, which can be ensured by running the texts through the Create List widget as in this small
workflow.

Create String

String
=
What a nice day. txt Qc- cls .ﬁ
y /,@ str cnf obj | € S
Y
Advanced widget's input/foutput configuration

Create String Comment analyzer Object viewer
v v v

Close [=

risualization

Create String

stri ['ok', 'offensive']
ring Create List

Damn, those stupid noisy leaf blowers! v
=
4 /= str Close Copy to clipboard

Create String
v

Advanced widget's input/output configuration

Close [V

Figure 6: The Comment analyzer widget in an example of its use.

Analyzer provides the name of the algorithm for keyword detection. The choices are shown in Figure 7
and are the following:

« RaKUn (multilingual)
TNT-KID (Croatian)
TNT-KID (English)
TNT-KID (Estonian)
» TNT-KID (Latvian)

2.2.4 Named Entity Recognition

This is a wrapper for named entity recognition services developed in EMBEDDIA. It expects raw string
as input and outputs a list of tuples with the entity and its type, like in the example shown in Figure 8.
The widget has only one parameter:

Analyzer which is the name of the algorithm for named entity recognition. The only choice currently is
TEXTA MLP (Multilingual).

9 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

| Detection

Service URL

https:fembeddia-demo. texta eelapitv1larticle_anahyzer’

Article analyzer service URL

E=x] qag I {Analyzer

Keyword Extractor - RakUn (Multilingual) W

Keyword Detection Keyword Extractor - RaKUn (Multiingual)
v Keyword Extractor - TNT-KID {Croatian)
Keyword Extractor - TNT-KID (English)
Keyword Extractor - TNT-KID (Estonian)
Keyword Extractor - TNT-KID {Latvian)

Close Apply

Figure 7: The Keyword Detection widget and its settings.

Z |5 A (SN
Create String Named Entity Object viewer
o Recognition .,

String
ClowdFlows is an open source online data science platform : [('ClowdFlows', 'ORG'), ('Deliverable
for developing and sharing of data mining and machine d D7.4', 'PRODUCT')]

Advanced widget's inputioutput configuration

Close Copy to clipboard
Close [N

Figure 8: The Named Entity Recognition widget in an example of use. In this case, the Executive Summary of this
deliverable is used as input text.

2.3 Support widgets

Since Deliverable D7.4, we created a few support features and widgets. A new feature in the results
views of the Display String and Object Viewer widgets is the Copy to clipboard button, which allows the
users to copy the entire contents of the presented text on to the clipboard. Copying of the resulting texts
proved to be cumbersome in some situations, such as when a lengthy text is shown on the widget’s
canvas. The newly added widgets are described in the subsections below.

2.3.1 Load corpus from ZIP

This widget loads a corpus from the files in a given ZIP archive. This allows for loading from a multitude
of files.

Lead corpus from ZIP

File types

= 4,5
o
Types of files loaded from the ZIP archive (comma separated file endings)

Load corpus from ZIP
Advanced widget's input/output configuration

Close Apply

Figure 9: The Load corpus from ZIP widget and its settings.

The widget offers a setting:

File types that defines the types of files that are to be loaded from the provided ZIP archive. These are

10 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

specified as a comma separated list of file extensions (see Figure 9 for an example). The default
recognized file type is .txt.

2.3.2 Token frequency

This widget outputs the tokens and their frequencies in the text of a given corpus. It does not have any
parameters. The output is sorted by the descending frequency and can be viewed with Display String or
Object Viewer widgets, as in the example shown in Figure 10.

3, 4.5 €,

Regex Word Tokenizer Token frequency Object viewer 2
. v .

L Object viewer 2 visualization

Object viewer 1

v [["wood', 21,

[*a', 21,
['woodchuck', 2],

Obiect viewer 1 visualization

[*chuck’, 21,
['how', 11,
["'How much wood would a woodchuck chuck [*much’, 1],
if a woodchuck could chuck wood?'"] ['would', 11,
[rif', 11,
Close ['could’, 111

Close

Figure 10: The Token frequency widget widget shown with an example of an input and output.

2.3.3 Detokenize

The detokenize widget joins lists of tokens into a string. This is useful when—after processing the text in
a form of tokens—we need it in the form of a string, e.g., a widget might expect string (and not token)
inputs. The need for such widget arises from the fact that for performance reasons ClowdFlows uses
basic data structures which do not store meta information or collect intermediate results. Note that the
widget cannot take into account the strategy used for tokenization and thus joins the input tokens with a
single white-space character.

3 Selected EMBEDDIA workflows

In Deliverable D7.4, we described two initial workflows that were designed with EMBEDDIA components.
In the following, we outline some of the public workflows that were developed since. Most of them were
used in publications or at software demonstration events.

3.1 Token frequency analysis

There is a series of three new public workflows aimed at token frequency analysis, which we devel-
oped to serve as examples in a recently submitted paper about ClowdFlows and its natural language
processing components that were developed in the scope of EMBEDDIA.

Figure 11 shows all three workflows. It shows the basic ClowdFlows text processing concepts, starting
from loading data from a file with the Load file widget. In the example, this is a file with the first 1000
comments from April 2017 from the New York Times Comments dataset®. This is followed by the Load
Corpus from CSV widget that skips any existing header and non-comment data columns. The result-
ing text is sent to a tokenizer, which produces the tokens. These are used further in three workflow
branches.

®https://www.kaggle.com/aashita/nyt-comments

11 of 25

O

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows
2 2. =N 2.
Load file Tok Tok Word Token frequency Display String
v Load Corpus from CSV Tokepizer
’
Qo Qo
Token Filtering Token frequency Display String
E}I := OI:.=
Token Filtering Token frequency Display String
v v v

Figure 11: The token filtering workflow. Available at: https://c£3.ijs.si/workflow/226

In the first branch, the tokens directly enter the Token frequency widget, described in Section 2.3.2. The
widget outputs the tokens and their frequencies. The output is sorted by the highest frequency and is
visualized with the Display String widget. The first ten tokens and their frequencies for the given data are
shown in Table 1.

Table 1: Most frequent tokens of the first branch of the workflow from Figure 11.

token the , to and of a is in
frequency 2814 2075 1419 1348 1244 1060 1011 950 834 797

As the results of the first branch contain tokens that are not words, a Token Filtering widget is added
to the second branch to filter out the punctuation characters. However, its output still contains stop-
words.

The third branch allows filtering of user-defined tokens that are added as parameters in the Token Filter-
ing. In this case the results are much more useful, as shown in Table 2.

Table 2: Most frequent tokens of the third branch of the workflow from Figure 11.

token trump people one like venezuela would get us time could
frequency 408 191 138 126 123 114 97 94 81 79

3.2 Word neighbors in a trained fastText model

In Section 2.1.1 we presented the train fastText widget, which allows for training of a custom fastText
model. This functionality, with various combinations of filtering and text processing (such as lemmatiza-
tion) can be used for various analyses and studies. Normally, these are out of reach of the users that
are not proficient in computer programming.

To demonstrate the functionality of the train fastText widget and to offer its functionality in a ready-to-use
workflow, we created an exemplary public workflow that uses English texts from the BuzzFeed-Webis
Fake News Corpus (Potthast et al., 2018a,b). The workflow is shown in Figure 12.

This workflow loads a corpus, learns a custom fastText model and then uses the model with widgets
that offer the computation of a word neighborhood and evaluation of word expressions.

The corpus is loaded and parsed (column and cell separator selection) with the Load Corpus from CSV
widget. This data is used in two branches - in the first, the language is detected with the Detect language

12 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

) € %
C 3, o, o,
Load file Detect language train fastText
v Load Corpus from CSV v Lemmagen lemmatizer v
v v
o] =
- 0, Q,
Tok Tok Word
UTok:,nizeﬂrr Object viewer
fastText ’
neighbouging words
]
2, A=
= D"\E Object viewer
fastText v
Create String Evaluate string neighboupng words
v v ¢ o,
- - train fastText =
Object viewer . 2, €
5 g -
{}‘., Object viewer
€ Evaluate word v
Create String Evaluate string X expressions with fastText
v v

Object viewer
v

Figure 12: The "train fastText" workflow. Available at: https://c£3.ijs.si/workflow/253

widget (based on a language-detection library (Shuyo, 2010)) to activate a corresponding language
model in the Lemmagen lemmatizer widget that implements Lemmagen lematizer (Jursi¢ et al., 2010).
The fastText model is trained using the results. The second branch skips lemmatization and trains the
fastText model on non-lemmatized data. In both cases, the fastText neighbouring words widget obtains
neighbors of the words from the input list. The branch in the lower part of the canvas demonstrates
word expression evaluation with the Evaluate word expressions with fastText widget.

3.3 Extended embeddings experimentation

In Section 4.1 of Deliverable D7.4, we presented the Embeddings experimentation workflow demon-
strating how ClowdFlows can be used to experiment with various machine learning algorithms and
embeddings. With the availability of the train fastText widget, we could create an extended version that
shows experiments with custom trained embeddings (see Section 2.1.4). An example of such an exten-
sion is shown in Figure 13.

The results of this single custom trained fastText model in the given setting are good, but still inferior to
the results obtained with concatenation of embeddings from four other general embedding models. The
evaluation on a Slovene news sentiment classification task with a stratified 75/25 split results in a 3%
lower F1 in comparison with the concatenated model.

3.4 Application in the financial text analysis

The train fastText widget was demonstrated also in the domain of financial text analysis, which shows the
exploitation potential for ClowdFlows out of the NLP domain.

It was used in a study of approaches for detection of forward-looking sentences in financial texts with
word lists. The aim of this task is to analyze the given input text (a common example is an annual report
of a company) and output the sentences that contain forward-looking expressions, like expectations,
estimations or predictions.

13 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

. g =
Support Vector
> “ 7 e
Lua? fil, o, of @
Apply mogel
4 ™ p
TfastText
Tok¥ok Word v
Load Corpus from €SV || 10AGIZEr
v o Cﬂr‘nfjl:\’:ya[se
it o
fastText Slovene =
’ B
&
Sa\gﬂ%:l:‘s;l ShrJ:/ F1
fastText Embeddia Classification
v = £,
2, @ e
Support Vector &
Machines Classification
(using liblinear)
(copy) Build model (copy) Show F1 (copy)
Label encoder Create scikit bunch . P F E P
8.2 % e 2T
% g train fastText v Apply mode! (copy)
U B . .
’ Create scikit bunch (S0l Dot
et d; o Lemmagen lemmatizer @,E ’ e o
Cre.]lelﬁmng nug;ysbr_glﬂsd
Figure 13: The extended experimentation workflow using embeddings. Available at:
https://c£3.ijs.si/workflow/186
- £ g Q
L A aﬂ o A 0
Load file Ohject viewer
v train fastText v
Load Corpus from CSV v fastText
v neighbouging words
= o
Creale String Evaluate string
v v
Figure 14: The workflow of the application in domain of analysis of financial texts. Available at:

https://c£3.ijs.si/workflow/223

In the study we experimented also with extensions of word lists with the neighboring words according to
a fastText model that was trained with a train fastText widget on a corpus of annual reports. The workflow
(shown in Figure 14) was described in the paper by Stihec et al. (2021).

3.5 Author and comment analysis
To demonstrate the Author profiling and Comment analyzer EMBEDDIA Web services, we created a public
workflow shown in Figure 15.

The workflow first implements the steps that are necessary for preparing the inputs for these two com-
ponents, as it must be in a corpora representation format. In this particular case when individual inputs
are used the input strings are concatenated into a list. Then, the resulting collection of data is sent to
both services and the results are displayed.

For example, when using the following inputs:
1. How dare you!

2. What a nice day!

14 of 25

O

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows
Create String {:}a::= p= !
P S
Author profiling Object viewer
¥ v

=
=

&
[({

Create String
o’

=
=

Create List

v &,

{1

Create String
v

‘\- .,

Object viewer

v
Comment analyzer

v

Figure 15: The workflow with EMBEDDIA services. Available at: https://c£3.ijs.si/workflow/309

3. Please log in to continue.
the workflow will display
1. [female’, ‘'male’, 'bot’ |
2. [offensive’, 'ok’, ok’]
as the results returned by the two services. Note, however, that while such input is perfectly valid for

both services, it is recommended to use longer text or a collection of texts by the same author for the
Author profiling service in order to obtain reliable results.

3.6 Workflow for hands-on experimentation

Usability assessment of ClowdFlows and its software components provided by EMBEDDIA was con-
ducted in a workshop with target end-users. Details about the workshop are provided in Section 4.

For the purposes of the workshop, we prepared a public workflow, which introduced ClowdFlows, the
use of embeddings, and presented initial exploration of user-provided corpora. To cater to different
formats of the input texts that the participants might want to experiment with, the workflow has two input
branches (see Figure 16), one for texts that are loaded from files and another for directly entered texts.
The rest of the workflow mostly corresponds to the one in Section 3.2.

4 User assessment

Assessment of ClowdFlows and the most important components provided by EMBEDDIA from the view-
point of the targeted end-users was done in the scope of a one-day workshop, held online on 27th of
January 2022.

The workshop was aimed at one of our primary target groups: researchers from various fields of human-
ities, with unknown proficiency in programming. The users were not expected to be proficient enough in
programming to benefit from open APIs and programming libraries, but have the need for corpora anal-
ysis and many ideas for studies in which EMBEDDIA software components might be employed.

15 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

g mé

= E] Create String
L

Load file to string Create List
v = v

W

(]

Create List
Create String
v
e |

=] Evaluate word
expressions with fastText Object viewer
< Regex Word Tokenizer
Load file Load corpus from ZIP
v v

[([]

e

L= |
train fastText Object viewer

Lemmagen lemmatizer fastText
neighbouring words

Create String
-

1w

= Create List
-

Create String
v

Create String
v

Figure 16: The workflow that was wused in the workshop with end-users. Available at:
https://cf3.ijs.si/workflow/283

Initial set-up of the workshop consisted of a common introductory presentation of ClowdFlows and the
workflow from Section 3.6 , which was planned to take 20 minutes, followed by 8 individual 20 minute
sessions in which each user would create its own instance of the workflow, load a corpus of interest
and try some ClowdFlows components, hopefully reaching the ability to proceed independently. One
individual session was dedicated to one user and the user’s data of choice, but other users could be
present as observers. The users in individual sessions were assisted, if they experienced difficulties
with the use of the platform or with preparation of their input data. Participation in the workshop was by
invitation. Participants that were invited to the workshop were all unrelated to EMBEDDIA or JSI directly,
but their contacts were known to the JS| EMBEDDIA team from past collaborations, conferences or user
initiated expressions of interest for language processing tools. None of the participants had previous
experience with ClowdFlows. Due to high interest, the number of sessions was increased to 10.

Various kinds of corpora were used and the participants were interested in diverse aspects of text
processing. In most cases other widgets were added to the initial workflow to resolve an issue or
cater to specific interests. There were two specific technical issues uncovered during workshop: (I)
errors occured in case of non-UTF input text with special characters, (lI) some web services reported
timeout.

An anonymous questionnaire was prepared for the participants and the link to the questionnaire was
provided after the workshop. The questions and summarized responses are provided in Figures 17—
21. Most of the participants found the demonstrated workflow very useful. A large majority of them
(80%) never tried using embeddings before. The ClowdFlows user interface was mostly reported as
easy to use, with only one finding it difficult. This, however, needs to be considered in the context of
the participants responding shortly after using ClowdFlows with assistance. Without introduction and
assistance, the responses might not be so beneficial. Most of the participants said that they would use
ClowdFlows again, if provided with a workflow for their problem of interest and intends to continue using
ClowdFlows.

16 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Did you find the demonstrated workflow useful?

10 responses

@ very useful

@ useful

@ not very useful

@ completely useless

Figure 17

Did you ever perform these kinds of analyses (development and use of word embeddings)

before?

10 responses

® yes
@® no

Figure 18

How do you find the ease of use of the ClowdFlows user interface?

10 responses

@ very easy to use
@ easy to use

© difficult to use

@ very difficult to use

Figure 19

D

O

[

17 of 25

o

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Would you use ClowdFlows again, if provided by a workflow for a problem of your interest? @

10 responses

® very likely

® likely
unlikely

@ very unlikely

Figure 20

Do you intend to continue using ClowdFlows?

[

10 responses

® yes

@ probably yes
probably not

@® no

|

Figure 21

5 Conclusions

Many software components stemming from the work in EMBEDDIA were included in ClowdFlows, to-
gether with a number of support components that were developed to enable or facilitate their use.
During the reported time, we focused less on the implementation of further analytic components, but
rather on development of workflows that can demonstrate the work done in EMBEDDIA and offer it to
users outside the computer science.

During the course of the project there were 42 widgets and 8 public workflows added to ClowdFlows.
We encountered also various issues, bugs and glitches related with the incorporation of EMBEDDIA
components into ClowdFlows. There are also some yet unmet wishes expressed by our users, such as
more visualizations, clearer indications of requested input formats and further user guides. While the
work in the first half of the project provided mostly analytical components, the work in the second half
included more interactions with the target users and provided confirmations that the developed solutions
are interesting, useful and can support our target users.

18 of 25

o

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

6 Associated outputs

The work described in this deliverable has resulted in the following resources:

Description Availability
ClowdFlows3 (online Web app.) https://c£3.ijs.si/ Public
ClowdFlows3 (server-side code)

backend https://github.com/xflows/clowdflows-backend | Public (MIT)
frontend https://github.com/xflows/clowdflows-webapp | Public (MIT)
Docker version https://github.com/xflows/clowdflows-docker | Public (MIT)

Some of the work outlined in this deliverable is published in the following publication:

Citation Status Appendix

Stihec, J., Pollak, S., Znidarsi¢, M. (2021). Preliminary experimentation

with combinations and extensions of forward-looking sentence detec- . A e i
tion wordlists. In Proceedings of the 3rd financial narrative processing Ul ppendix
workshop(pp. 26—30).

19 of 25

O

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

References

JurSi¢, M., Mozeti¢, I., Erjavec, T., & Lavra¢, N. (2010). Lemmagen: Multilingual lemmatisation with
induced ripple-down rules. J. Univers. Comput. Sci., 16, 1190-1214.

Koloski, B., Pollak, S., Skrlj, B., & Martinc, M. (2021, April). Extending neural keyword extraction with
TF-IDF tagset matching. In Proceedings of the eacl hackashop on news media content analysis
and automated report generation (pp. 22—29). Online: Association for Computational Linguistics.
Retrieved from https://aclanthology.org/2021.hackashop-1.4

Kranjc, J. (2017). Web workflows for data mining in the cloud: Doctoral dissertation (Unpublished
doctoral dissertation). Jozef Stefan International Postgraduate School.

Kranjc, J., Podpecan, V., & Lavra¢, N. (2012). ClowdFlows: A cloud based scientific workflow platform.
In P. A. Flach, T. Bie, & N. Cristianini (Eds.), Machine learning and knowledge discovery in databases
(Vol. 7524, pp. 816—819). Springer Berlin Heidelberg.

Martinc, M., Skrlj, B., & Pollak, S. (2019). Fake or not: Distinguishing between bots, males and females.
In L. Cappellato, N. Ferro, D. E. Losada, & H. Miller (Eds.), Working notes of CLEF 2019 - conference
and labs of the evaluation forum, lugano, switzerland, september 9-12, 2019 (Vol. 2380). CEUR-
WS.org. Retrieved from http://ceur-ws.org/Vol-2380/paper_204.pdf

Martinc, M., Skrlj, B., & Pollak, S. (2021). Tnt-kid: Transformer-based neural tagger for keyword identi-
fication. Natural Language Engineering, 1-40. doi: 10.1017/S1351324921000127

Pelicon, A., Shekhar, R., Martinc, M., Skrlj, B., Purver, M., & Pollak, S. (2021, April). Zero-
shot cross-lingual content filtering: Offensive language and hate speech detection. In Pro-
ceedings of the eacl hackashop on news media content analysis and automated report gen-
eration (pp. 30-34). Online: Association for Computational Linguistics. Retrieved from
https://aclanthology.org/2021.hackashop-1.5

Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2018a, February). Buzzfeed-webis
fake news corpus 2016. Zenodo. Retrieved from https://doi.org/10.5281/zenodo.1239675 doi:
10.5281/zenodo.1239675

Potthast, M., Kiesel, J., Reinartz, K., Bevendorff, J., & Stein, B. (2018b, July). A Stylomet-
ric Inquiry into Hyperpartisan and Fake News. In I. Gurevych & Y. Miyao (Eds.), 56th annual
meeting of the association for computational linguistics (acl 2018) (p. 231-240). Retrieved from
https://www.aclweb.org/anthology/P18-1022

Shuyo, N. (2010). Language detection library for java. Retrieved from
http://code.google.com/p/language-detection/

Skrlj, B., Repar, A., & Pollak, S. (2019). Rakun: Rank-based keyword extraction via unsupervised
learning and meta vertex aggregation. In C. Martin-Vide, M. Purver, & S. Pollak (Eds.), Statistical
language and speech processing (pp. 311-323). Cham: Springer International Publishing.

Stihec, J., Pollak, S., & Znidarsi¢, M. (2021). Preliminary experimentation with combinations and ex-
tensions of forward-looking sentence detection wordlists. In Proceedings of the 3rd financial narrative
processing workshop (pp. 26—30). Retrieved from https://aclanthology.org/2021.fnp-1.4

20 of 25

ICT-29-2018 D7.6: EMBEDDIA components in ClowdFlows

Appendix A: Preliminary experimentation with combi-
nations and extensions of forward-looking sentence
detection wordlists

Preliminary experimentation with combinations and extensions of
forward-looking sentence detection wordlists

Martin Znidarsi¢
Jozef Stefan Institute
Ljubljana, Slovenia
martin.znidarsic@ijs.si

Jan Stihec
University of Ljubljana
Ljubljana, Slovenia
stihec. jan@gmail.com

Senja Pollak
Jozef Stefan Institute
Ljubljana, Slovenia
senja.pollak@ijs.si

Abstract

Forward-looking sentences are often a subject
of studies of financial texts. Detection of such
sentences is usually performed with wordlists
of inclusive and exclusive keywords that are
used as indicators of the forward-looking na-
ture of the sentences at hand. In this paper
we describe our assessment of potential im-
provements of forward-looking sentence detec-
tion wordlists by combining them together and
by extending them with neighboring words in
word-vector representations. Our current re-
sults indicate that simple combinations and
straightforward extensions of wordlists with
vector-space representation neighbors might
not be suitable for FLS detection without fur-
ther methodological improvements.

1 Introduction

Many studies of financial texts focus specifically
on the contents of the forward-looking sentences
(FLS). Detection of such sentences is then either a
part of the methodological approach of a study or
even one of the main aims of research.

Approaches to detection of these sentences usu-
ally employ lists of keywords, which are used as
indicators whether a given sentence tends to be
forward-looking or not. Keyword lists usually con-
sist of: words that imply the future (e.g. “future”),
future years numbers, conjugations of verbs that im-
ply the future (e.g. “we intend”) and combinations
of certain adjectives and time indicators (e.g. “next
year”). Some approaches also use lists of exclusive
words, which are used to exclude a sentence that
contains them from the forward-looking sentences
identification process. Exclusive keywords are not
always correlated with a nature of the sentence not
being forward-looking, but might only indicate that
a sentence containing them should not be analyzed
in a specific study. It might for example contain
keywords that are indicative for the parts of text,
which aren’t relevant for the study at hand.

The aim of our work is to study various wordlists
for forward-looking sentence detection that appear
in the literature, assess their combined use and ex-
periment with wordlist extensions that are based on
vector representation distances (similar to related
work in terminology extraction, see e.g. (Pollak
et al., 2019; Vintar et al., 2020)).

In this paper we report preliminary results of
four wordlists, their combination and one wordlist’s
vector-space based extension on two manually la-
beled datasets. The current results indicate that the
addition of exclusive wordlists might not always
improve the results, which stands also for merging
of the wordlists. The extension of the wordlists
with word vector neighbors increases the amount
of detected forward-looking-sentences, but it also
increases the amount of sentences that are wrongly
classified as FLS. With the current approach, this is-
sue could not be alleviated with a similar extension
of the corresponding exclusive wordlist.

2 Related work

Future-oriented information is recognized as very
relevant to investors and is the subject of varius
studies (Mio et al., 2020). Some studies rely on
manual collection and analysis of FLS, while oth-
ers employ automatic procedures that are mostly
based on a number of widely used FLS wordlists.
Each of these two approaches has its benefits and
drawbacks, but we are interested in the latter one
and the impact of the wordlists that are used for
such purposes.

We identified four wordlists which are proposed
in works that are commonly cited with regards to
FLS identicifation and provide complete wordlists.
Chronologically ordered the first one is the work
by Li (2010), which is focused on information con-
tent and tone of FLS sentences. Next is the one by
Athanasakou and Hussainey (2014) which is aimed
at the assessment of the frequency of such state-
ments and its relations with financial indicators.

26

21 0f 25

ICT-29-2018

D7.6: EMBEDDIA components in ClowdFlows

The work of Muslu et al. (2015) studies the relation
among FLS quantity and the firms’ information en-
vironments. It suggests also use of word combina-
tion patterns, so the FLS wordlist that corresponds
to this approach is relatively extensive. Tao et al.
(2018) study the relationships among FLS features
and IPO valuation. They use a wordlist based FLS
detection approach (similar to the one by Muslu
et al. (2015), but with additional consideration of
sentence structure) in the stage of data preparation
for machine-learning of a neural network based
FLS classifier. All the listed studies provide a list
of FLS inclusive keywords and all with the excep-
tion of Athanasakou and Hussainey (2014) also
provide a list of FLS exclusive keywords.

3 Methodology

The approach that we used for the study described
in this paper consists of: (I) selection of relevant
wordlist-based approaches to FLS detection, (II)
preparation of the data for testing and learning, and
(IIT) design and running of the experiments.

We selected wordlists from four works (Li, 2010;
Athanasakou and Hussainey, 2014; Muslu et al.,
2015; Tao et al., 2018), which are often cited
with regards to FLS detection and also provide
the wordlists and detailed explanation of their FLS
detection processes. We denote these wordlists as
wl-Li, wl-At, wl-Mu and wl-Ta respectively. The
data that was used for assessments and for learning
the vector representations (also referred to as em-
beddings) in our experiments is described in detail
in Section 3.1. For efficient experimentation with
the selected wordlists we implemented a general
wordlist-based labeling tool in python. Section 3.2
is dedicated to description of the methodological
details of experiments.

3.1 Data

For the assessments of FLS detection approaches
we used the sentences that were selected at ran-
dom from recent (since 2017) annual reports of ran-

Table 1: Size of the used wordlists in terms of the
amount of keywords.

inclusive exclusive

wl-Li 17 31
wl-At 45 /

wl-Mu 332 6
wl-Ta 373 6

domly selected FTSE 350 index constituents and
were annotated as forward-looking/non-forward-
looking by two human annotators. As the data was
annotated by two annotators who worked on sepa-
rate (not overlapping) groups of sentences, we treat
this data as two datasets of 467 and 459 annotated
sentences respectively and we denote them as Dq
and Ds. There are 260 FLS and 207 non-FLS sen-
tences in D1, while Dy contains 122 FLS and 337
non-FLS sentences.

Data was necessary also in the approach for ex-
tending wordlists, where it was used for learning
vector space representations of words. Annotations
are not needed for this purpose, but the data should
be from the same domain as the task in which the
vector representations are to be employed. We
used a corpus of 604 periodic (10-Q and 10-K)
reports. Specifically, it consisted of the 2018 Q4
reports from the Stage One 10-X Parse Data collec-
tion (from file 10-X_C_2016-2018.zip) of
the well known Notre Dame Software Repository
for Accounting and Finance that was established
by Loughran and McDonald (2016).

3.2 Experimental setup

In our experiments we used each individual se-
lected wordlist and a merged wordlist that is de-
noted as wl-all and contains a set of all the words
appearing in any of the wordlists. The wordlists
were used for labelling the sentences as FLS or
non-FLS. The results were calcualted separately
for each of the two datasets.

With the exception of the approach
by Athanasakou and Hussainey (2014), all
the selected approaches provide an inclusive and
an exclusive wordlist. First, we used only inclusive
wordlists with a straighforward classification
approach: the sentences that contained any word
from a given inclusive list were classified as FLS.
In the next series of experiments we used also
all the corresponding exclusive wordlists in the
sense that any sentence classified as FLS was
re-classified into non-FLS, if it contained any word
from the given list of exclusive words.

Note that our use of the wordlists is not com-
pletely comparable with most of the related works,
from which the wordlists originate, as they were
focused on specific sections of financial reports and
some of the FLS detection approaches additionally
considered numeric indications of future years or,
in case of the approach by Tao et al. (2018), the

27

22 of 25

ICT-29-2018

D7.6: EMBEDDIA components in ClowdFlows

Table 2: Accuracy (acc) and recall (rec) of FLS classi-
fication with inclusive wordlists only.

acc D7 rec Dy acc Dy rec Do
wl-Li 0.67 0.60 0.68 0.70
wl-At 0.68 0.66 0.62 0.74
wl-Mu 0.64 0.45 0.71 0.59
wl-Ta 0.64 0.45 0.71 0.59
wl-all 0.71 0.78 0.60 0.87

use of wordlists represented only a part of the FLS
detection approach.

The last series of experiments, assessment of the
effect of embeddings-based extensions of wordlists,
was done only with one original wordlist - the one
proposed by Li (2010). Again, both only the in-
clusive and the inclusive/exclusive options were
experimented with. The word vector representa-
tions were learned with the fastText approach (Bo-
janowski et al., 2016) in the ClowdFlows3! proto-
type online tool for data analysis (parameters for
learning the fastText model and neighbors selec-
tion: vector size=20, context window size=5, mini-
mal word occurences=5, distance threshold=0.9).
For each of the words in the original wordlist, the
original word and five of the neighboring words
from the vector space were included in the extended
wordlist. The word neighbors were post-processed
as follows: (I) any punctuation character at the
start or the end of the word was removed, (II) any
words that are considered English stop-words by
the NLTK language toolkit> were removed.

The exclusive wordlist from Li (2010) includes
also some bi-grams that are combinations of words:
“expected’, anticipated’, forecasted’, projected’, be-
lieved’ that are preceded with each of the following
auxiliary verbs: ’was’ , ’were’, had’ and "had
been’. To obtain the corresponding embedding-
based neighbors of these terms, we first calculated
the neighbors of the words without the auxiliary
verbs and then added all the combinations with
auxiliary verbs to all the resulting word neighbors.

The resulting extended wordlists are provided in
Appendix A.

4 Results and findings

Results of the assessment for inclusive wordlists
are presented in Table 2 in terms of accuracy and

!ClowdFlows3 homepage: https://cf3.ijs.si/
The used workflow is available at: https://cf3.ijs.
si/workflow/223

Zhttps://www.nltk.org/

Table 3: Accuracy (acc) and recall (rec) of FLS classi-
fication with inclusive and exclusive wordlists.

acc D1 rec Dy acc Dy rec Do
wl-Li 0.67 0.60 0.68 0.70
wl-At 0.68 0.66 0.62 0.74
wl-Mu 0.63 041 0.71 0.51
wl-Ta 0.63 0.40 0.71 0.51
wl-all 0.65 0.58 0.63 0.65

Table 4: Accuracy of FLS detection with embeddings-
based extensions of the wordlists by Li (2010). Use of
extension is denoted by e(), in stands for the use of the
inclusive and ex for the use of the exclusive list.

acc D7 rec Dy acc Dy rec Dy
in 0.67 0.60 0.68 0.70
e(in) 0.68 0.69 0.59 0.78
e(in) ex 0.68 0.69 0.59 0.78
e(in) e(ex) 0.63 0.59 0.60 0.64

recall of the FLS class. The recall might be more
of interest if the aim of FLS detection is to analyse
FLS contents or pre-filtering. For estimation of
the amount of FLS the more relevant measure is
accuracy, but it needs to be considered carefully
in case of unbalanced datasets such as D1 and Ds.
From Table 2 we can see that on D; the best in-
dividual wordlist results are obtained with wl-At
and that the merged wordlist yields better results as
any of the individual approaches in terms of both
performance measures. This is not the case on Ds,
which has more non-FLS sentences. On D5 these
two approaches are better in terms of recall, but
worse than others in terms of accuracy.

Addition of excluding wordlists into considera-
tion slightly reduced all the recalls, with profound
effect mostly in case of the merged wordlist. In
such a setting, the combined wordlist did not out-
perform individual ones on any of the two datasets
as it for example performs worse than wl-Li with
respect to both measures on both datasets.

What we can draw from the first two experiments
is that a combination of individual wordlists is not
necessarily beneficial, particularly not for the case
of considering also exclusive keywords.

Experimental assessment of the embeddings-
based extensions of a wordlist are presented in Ta-
ble 4. The extended inclusive wordlist improves
recall, butin D> at the expense of accuracy. In com-
parison with the wordlist extension approach of
merging the wordlist with other proposed ones, the

28

23 of 25

ICT-29-2018

D7.6:

EMBEDDIA components in ClowdFlows

Predicted Predicted

FLS NON FLS FLS NON FLS

LS 157 103 FLs 86 %
Actual

Actual

NON FLS 50 157 NON FLS 113 224

Predicted Predicted

FLS NON FLS FLS NON FLS

FLS 153 107 FLS 78 44

Actual

Actual

NON FLS 65 142 NON FLS 140 197

Figure 1: Contingency matrix for original inclusive wl-
Lion D; (left) and Dy (right).

extension with embeddings performs worse than
the merged wordlist for both measures on both
datasets.

Predicted Predicted

FLS NON FLS FLS NON FLS

FLS 180 80 FLS 95 27
Actual

Actual

NON FLS 70 137 NON FLS 163 174

Figure 2: Contingency matrix for extended inclusive
wl-Li on D; (left) and D5 (right).

Consideration of exclusive keywords was ex-
pected to compensate for some of the accuracy lost
on Dy due to potentially too wide reach of the inclu-
sive keyword extensions, but consideration of the
original exclusive keywords did not have an effect
on results (a single sentence was classified differ-
ently in D7), while use of an embedding-extended
exclusive wordlist caused more non-FLS sentences
to be correctly classified and vice-versa for the
FLS (for details see Figures 1 to 3). This caused
slight changes in accuracy in line with the class
distributions of the two datasets. Most importantly,
overall the approach with both the extended inclu-
sive and extended exclusive wordlist in all aspects
performed worse than the approach with original
state of these two wordlists (for comparison see
Table 3).

Our study is preliminary and we intend to con-
duct more experiments on larger datasets, but the
current results indicate that straightforward exten-
sions of wordlists with vector-space representation
neighbors might not be suitable for FLS detection.
In most experimental settings this holds also for
extensions of wordlists by merging them together,
although by a lesser extent.

This does not mean that such approaches cannot
improve FLS detection, but it indicates that it might
be necessary to go beyond a simple automated word
vector neighbor extension and that such method-
ological improvements would be sensible already
before further experimentation.

Figure 3: Contingency matrix for extended inclusive
and extended exclusive wl-Li on D; (left) and D-
(right).

Acknowledgements

This paper is supported by the project Quantitative
and qualitative analysis of the unregulated corpo-
rate financial reporting (No. J5-2554), which was
financially supported by the Slovenian Research
Agency. The paper was supported also by the
European Union’s Horizon 2020 research and in-
novation programme under Grant Agreement No.
825153, project EMBEDDIA (Cross-Lingual Em-
beddings for Less-Represented Languages in Eu-
ropean News Media). The authors acknowledge
also the financial support from the Slovenian Re-
search Agency for research core funding for the pro-
gramme Knowledge Technologies (No. P2-0103).
For access to the dataset of labeled forward looking
sentences we thank the Faculty of Economics of
the University of Ljubljana.

References

Vasiliki Athanasakou and Khaled Hussainey. 2014.
The perceived credibility of forward-looking perfor-
mance disclosures. Accounting and business re-
search, 44(3):227-259.

Piotr Bojanowski, Edouard Grave, Armand Joulin,
and Tomas Mikolov. 2016. Enriching word vec-
tors with subword information. arXiv preprint
arXiv:1607.04606.

Feng Li. 2010. The information content of forward-
looking statements in corporate filings—a naive
bayesian machine learning approach. Journal of Ac-
counting Research, 48(5):1049-1102.

Tim Loughran and Bill McDonald. 2016. Textual anal-
ysis in accounting and finance: A survey. Journal of
Accounting Research, 54(4):1187-1230.

Chiara Mio, Pier Luigi Marchini, and Alice Medioli.
2020. Forward-looking information in integrated re-
ports: Insights from “best in class”. Corporate So-
cial Responsibility and Environmental Management,
27(5):2212-2224.

Volkan Muslu, Suresh Radhakrishnan, KR Subra-
manyam, and Dongkuk Lim. 2015. Forward-
looking md&a disclosures and the information en-
vironment. Management Science, 61(5):931-948.

29

24 of 25

ICT-29-2018

D7.6: EMBEDDIA components in ClowdFlows

Senja Pollak, AndraZ Repar, Matej Martinc, and Pod-
pe¢an Vid. 2019. Karst exploration: extracting
terms and definitions from karst domain corpus. In
Proceedings of eLex19, pages 934-956, Sintra, Por-
tugal.

Jie Tao, Amit V Deokar, and Ashutosh Deshmukh.
2018. Analysing forward-looking statements in ini-
tial public offering prospectuses: a text analytics ap-
proach. Journal of Business Analytics, 1(1):54-70.

gpela Vintar, Larisa Gr¢i¢ Simeunovié, Matej Martinc,
Senja Pollak, and Uro§ Stepi$nik. 2020. Mining se-
mantic relations from comparable corpora through
intersections of word embeddings. In Proceedings
of the 13th Workshop on Building and Using Compa-
rable Corpora, pages 29-34, Marseille, France. Eu-
ropean Language Resources Association.

A Embedding-based extensions

Extension of the inclusive part of wl-Li. The
words from the original wordlist are in bold, fol-
lowed by up to five extensions (less, if removed
as stop-words or duplicates with extensions of pre-
ceeding original words):

will accordingly furthermore should relied re-
garded ultimate context can frequently unreli-
able predicate producibility problem could harm
harmed adverse may even substantial us might
materialize pursued occur difficult expect expand
effectively continue expansion anticipate prof-
itable believe proactively history believes regu-
larly plan plans sponsors sponsor hope hopes suc-
cess perspectives identify teamwork intend intends
seek seeking stop decide project progress feasi-
bility projects predevelopment forecast quarter-to-
quarter profitability forecasting forecasts objective
objectively objectivity maximize goal toward tar-
geting driving striving excellence

Extension of the exclusive part of wl-Li. The
words from the original wordlist are in bold, fol-
lowed by up to five extensions (less, if removed
as stop-words or duplicates with extensions of pre-
ceeding original words):

undersigned, undersigned’s, duly, thereunto, coun-
tersigned, herein, reference, referenced, here-
inafter, hereinabove, mean, indicated, hereof,
TAA, hereon, henceforth, hereto, confirms,
theretofore, grantor, asserted, party, deemed, ob-
ligated, therein, documents, thereof, therefor,
thereon, expected, differences, future, reversals,
different, was expected, was differences, was fu-
ture, was reversals, was different, were expected,
were differences, were future, were reversals, were

different, had expected, had differences, had fu-
ture, had reversals, had different, had been ex-
pected, had been differences, had been future, had
been reversals, had been different, anticipated,
negative, forecast, unanticipated, results, was an-
ticipated, was negative, was forecast, was Unan-
ticipated, was results, were anticipated, were neg-
ative, were forecast, were Unanticipated, were re-
sults, had anticipated, had negative, had forecast,
had Unanticipated, had results, had been antici-
pated, had been negative, had been forecast, had
been Unanticipated, had been results, forecasted,
magnified, imbalance, movements, variability, fluc-
tuation, was forecasted, was magnified, was imbal-
ance, was movements, was variability, was fluctu-
ation, were forecasted, were magnified, were im-
balance, were movements, were variability, were
fluctuation, had forecasted, had magnified, had
imbalance, had movements, had variability, had
fluctuation, had been forecasted, had been magni-
fied, had been imbalance, had been movements,
had been variability, had been fluctuation, pro-
jected, projecting, was projected, was projecting,
were projected, were projecting, had projected,
had projecting, had been projected, had been pro-
jecting, believed, likelihood, verified, mistaken,
livelihood, was believed, was likelihood, was veri-
fied, was mistaken, was livelihood, were believed,
were likelihood, were verified, were mistaken, were
livelihood, had believed, had likelihood, had ver-
ified, had mistaken, had livelihood, had been be-
lieved, had been likelihood, had been verified, had
been mistaken, had been livelihood, shall, hereun-
der,

30

25 0f 25

